[singular] 17/45: tag gfan using examples
felix salfelder
felix-guest at alioth.debian.org
Sat Sep 14 13:57:03 UTC 2013
This is an automated email from the git hooks/post-receive script.
felix-guest pushed a commit to branch master-3-1-5
in repository singular.
commit 2c8248effc13778d3c973e1d2017915fb6fef95c
Author: Bernhard R. Link <brlink at debian.org>
Date: Sat Mar 3 10:17:51 2012 +0100
tag gfan using examples
Tag all examples in cones.doc, so that the manual can be built
even if compiled without gfan support.
---
doc/cones.doc | 92 ++++++++++++++++++++++++++++-----------------------------
1 file changed, 46 insertions(+), 46 deletions(-)
diff --git a/doc/cones.doc b/doc/cones.doc
index a2e652e..75c287e 100644
--- a/doc/cones.doc
+++ b/doc/cones.doc
@@ -52,7 +52,7 @@ vectors of L is the lineality space of the cone,
if either bit is 0, then program computes the information itself.
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
// Let's define a cone in R^3 generated by the following half lines:
intmat HL[5][3]=
1,0, 0,
@@ -117,7 +117,7 @@ if lower bit is 1, then program assumes the kernel of E is the span of the cone,
if either bit is 0, then program computes the information itself.
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
// Let's define a cone in R^3 given by the following inequalities:
intmat IE[6][3]=
1,3,5,
@@ -211,7 +211,7 @@ cone
canonicalized version of the cone, no more redundant inequalities and equations
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[11][3]=
0,-1,1,
-1,1,0,
@@ -244,7 +244,7 @@ cone
local version of the given cone around the given point of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[3][3]=
1,0,0,
0,1,0,
@@ -306,7 +306,7 @@ int
1 iff c1 entirely contains c2 resp. iff c contains the given point, possibly on one of its facets; 0 otherwise
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[2][2]=
1,0,
0,1;
@@ -343,7 +343,7 @@ int
1 iff the cone contains a point with positive coordinates in its relative interior; 0 otherwise
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,1,
1,-1;
@@ -371,7 +371,7 @@ int
1 iff the given cone contains the given point in its relative interior; 0 otherwise
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[2][2]=
1,0,
0,1;
@@ -399,7 +399,7 @@ int
ambient dimension of the cone;
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -429,7 +429,7 @@ int
codimension of the cone;
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[1][2]=
1,0;
cone c1=coneViaPoints(M1);
@@ -457,7 +457,7 @@ int
dimension of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[1][2]=
1,0;
cone c1=coneViaPoints(M1);
@@ -483,7 +483,7 @@ cone
the dual of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -516,7 +516,7 @@ bigintmat
equations given by the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -546,7 +546,7 @@ bigintmat
inner normal vectors of the facets of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -576,7 +576,7 @@ bigintmat
generating vectors of the lineality space of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[5][3]=
1,0,0,
0,1,0,
@@ -603,7 +603,7 @@ bigintmat
generating vectors of the span of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[3][5]=
1,0,0,0,0,
0,1,0,0,0,
@@ -654,7 +654,7 @@ bigintmat
generating vectors of the orthogonal complement of the span of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[3][5]=
1,0,0,0,0,
0,1,0,0,0,
@@ -679,7 +679,7 @@ bigintmat
inequalities given by the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -709,7 +709,7 @@ int
dimension of the lineality space of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[3][3]=
1,0,0,
0,1,0,
@@ -740,7 +740,7 @@ cone
the lineality space of the cone as a new cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[3][3]=
1,0,0,
0,1,0,
@@ -774,7 +774,7 @@ intvec
linear forms of the cone (can be set by setLinearForms); returns empty intmat if not set
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[2][3]=
-1,0,0,
0,-1,0;
@@ -800,7 +800,7 @@ cone
the negated (or negative) of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[2][2]=
1,0,
0,1;
@@ -825,7 +825,7 @@ bigintmat%
quotient of Z^n intersected with the span of the cone with Z^n intersected with its lineality space
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[3][2]=
1,0,
0,1,
@@ -850,7 +850,7 @@ bigintmat
rays of the cone outside the lineality space, rays inside the lineality space will be ignored
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -881,7 +881,7 @@ intvec
point in the relative interior of the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -909,7 +909,7 @@ intvec
if dimension(c)=linealityDimension(c)+1, then the quotient lattice of Z^n intersected with the span and Z^n intersected with the lineality space is Z^1 and the class of the cone is a semigroup. returns a generator of that semigroup. (like quotientLatticeBasis(cone c), but as intvec)
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[3][2]=
1,0,
0,1,
@@ -933,7 +933,7 @@ intvec
special-purpose interior point which supports recognition of symmetries among non-intersecting cones (used in implementation of fans)
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -964,7 +964,7 @@ cone if both input arguments are cones, else polytope
the hull of the two objects
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -1006,7 +1006,7 @@ cone if both input arguments are cones, else polytope
the intersection of the two objects
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[2][2]=
1,0,
0,1;
@@ -1045,7 +1045,7 @@ int
1 iff the cone is the entire ambient space; 0 otherwise
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
cone c1;
isFullSpace(c1);
intmat M2[2][2]=
@@ -1077,7 +1077,7 @@ int
1 iff the cone is just the origin of the ambient space; 0 otherwise
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
cone c1; // full cone in zero-dimensional ambient space
isOrigin(c1);
intmat M2[2][2]=
@@ -1110,7 +1110,7 @@ int
1 iff the cone resp. fan is simplicial; 0 otherwise
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M1[3][3]=
1,0,0,
0,1,0,
@@ -1159,7 +1159,7 @@ isSimplicial(f);
adds the information of a linear form to the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[2][3]=
-1,0,0,
0,-1,0;
@@ -1185,7 +1185,7 @@ linearForms(c);
adds the information of a multiplicity to the cone
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[2][3]=
-1,0,0,
0,-1,0;
@@ -1329,7 +1329,7 @@ cone
1 iff c is contained in the collection of cones that is f; 0 otherwise
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
fan f=emptyFan(2);
intmat M[2][2]=
1,0,
@@ -1419,7 +1419,7 @@ cone
cone (orbit=0) or orbit (orbit=1) of a certain index (ranges from 1 to numberOfConesOfDimension(f,2,0,0)) in a given dimension; if maximal=0, all cones and orbits are considered, if maximal=1, only maximal cones and orbits are considered
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[3][3]=
1,0,0,
0,1,0,
@@ -1448,7 +1448,7 @@ none
inserts the cone into the fan; checks for compatibility beforehand unless check is passed and equal 0
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
fan f=emptyFan(3);
f;
intmat M[3][3]=
@@ -1476,7 +1476,7 @@ int
1 iff cone is compatible with the fan; 0 otherwise
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
fan f=emptyFan(3);
intmat M1[3][3]=
1,0,0,
@@ -1514,7 +1514,7 @@ isCompatible(f,c3);
@c 1 iff the fan is complete; 0 otherwise
@c @item @strong{Example:}
@c @smallexample
- at c @c example
+ at c @c example tag:gfan
@c fan f=fullFan(2);
@c isComplete(f);
@c fan g=emptyFan(2);
@@ -1554,7 +1554,7 @@ int
1 iff the fan is pure; 0 otherwise
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
fan f=fullFan(2);
isPure(f);
fan g=emptyFan(2);
@@ -1586,7 +1586,7 @@ int
number of maximal cones in f
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
fan f=emptyFan(3);
nmaxcones(f);
intmat M1[3][3]=
@@ -1619,7 +1619,7 @@ int
number of cones in f
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
fan f=emptyFan(3);
ncones(f);
intmat M1[3][3]=
@@ -1652,7 +1652,7 @@ int
number of cones (orbit=0) or orbits (orbit=1) of a given dimension; if maximal=0, then all cones are considered, if maximal=1, only maximal cones are considered
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
fan f=emptyFan(3);
ncones(f);
intmat M[3][3]=
@@ -1687,7 +1687,7 @@ none
removes the cone from the fan; checks for compatibility beforehand unless check is passed and equal 0
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[2][2]=1,0,0,1;
intmat N[2][2]=1,0,1,-1;
cone c=coneViaPoints(M);
@@ -1741,7 +1741,7 @@ a vertex of the polytope,
if flags is 0, then program computes the information itself.
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
// Let's a polytope in R^2 generated by:
intmat V[4][3]=
1,0,0,
@@ -1782,7 +1782,7 @@ if lower bit is 1, then program assumes the kernel of E is the span of the cone,
if either bit is 0, then program computes the information itself.
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat IE[2][3]=
1,0,0,
0,1,0;
@@ -1876,7 +1876,7 @@ intmat
vertices of p
@item @strong{Example:}
@smallexample
- at c example
+ at c example tag:gfan
intmat M[4][3]=
1,0,0,
1,2,0,
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-science/packages/singular.git
More information about the debian-science-commits
mailing list