[mlpack] 40/324: change name of leafSize to maxLeafSize. more stuff for the R-tree. Some name changes, some more node splitting, a start on traversal.
Barak A. Pearlmutter
barak+git at cs.nuim.ie
Sun Aug 17 08:21:54 UTC 2014
This is an automated email from the git hooks/post-receive script.
bap pushed a commit to branch svn-trunk
in repository mlpack.
commit 549a8fb582bbb1fb5a0b58d4d1f62937f82130aa
Author: andrewmw94 <andrewmw94 at 9d5b8971-822b-0410-80eb-d18c1038ef23>
Date: Tue Jun 3 20:29:00 2014 +0000
change name of leafSize to maxLeafSize. more stuff for the R-tree. Some name changes, some more node splitting, a start on traversal.
git-svn-id: http://svn.cc.gatech.edu/fastlab/mlpack/trunk@16621 9d5b8971-822b-0410-80eb-d18c1038ef23
---
.../tree/binary_space_tree/binary_space_tree.hpp | 44 +++++------
.../binary_space_tree/binary_space_tree_impl.hpp | 42 +++++------
.../core/tree/rectangle_tree/r_tree_split.hpp | 6 ++
.../core/tree/rectangle_tree/r_tree_split_impl.hpp | 86 +++++++++++++++++-----
.../core/tree/rectangle_tree/rectangle_tree.hpp | 27 +++----
.../tree/rectangle_tree/rectangle_tree_impl.hpp | 11 +--
.../rectangle_tree/rectangle_tree_traverser.hpp | 62 +++++++++++++++-
7 files changed, 197 insertions(+), 81 deletions(-)
diff --git a/src/mlpack/core/tree/binary_space_tree/binary_space_tree.hpp b/src/mlpack/core/tree/binary_space_tree/binary_space_tree.hpp
index 6d83a65..62131d0 100644
--- a/src/mlpack/core/tree/binary_space_tree/binary_space_tree.hpp
+++ b/src/mlpack/core/tree/binary_space_tree/binary_space_tree.hpp
@@ -25,7 +25,7 @@ namespace tree /** Trees and tree-building procedures. */ {
* rebuild the tree entirely.
*
* This tree does take one runtime parameter in the constructor, which is the
- * leaf size to be used.
+ * max leaf size to be used.
*
* @tparam BoundType The bound used for each node. The valid types of bounds
* and the necessary skeleton interface for this class can be found in
@@ -56,8 +56,8 @@ class BinarySpaceTree
//! The number of points of the dataset contained in this node (and its
//! children).
size_t count;
- //! The leaf size.
- size_t leafSize;
+ //! The max leaf size.
+ size_t maxLeafSize;
//! The bound object for this node.
BoundType bound;
//! Any extra data contained in the node.
@@ -89,9 +89,9 @@ class BinarySpaceTree
* dataset. This will modify the ordering of the points in the dataset!
*
* @param data Dataset to create tree from. This will be modified!
- * @param leafSize Size of each leaf in the tree.
+ * @param maxLeafSize Size of each leaf in the tree.
*/
- BinarySpaceTree(MatType& data, const size_t leafSize = 20);
+ BinarySpaceTree(MatType& data, const size_t maxLeafSize = 20);
/**
* Construct this as the root node of a binary space tree using the given
@@ -101,11 +101,11 @@ class BinarySpaceTree
* @param data Dataset to create tree from. This will be modified!
* @param oldFromNew Vector which will be filled with the old positions for
* each new point.
- * @param leafSize Size of each leaf in the tree.
+ * @param maxLeafSize Size of each leaf in the tree.
*/
BinarySpaceTree(MatType& data,
std::vector<size_t>& oldFromNew,
- const size_t leafSize = 20);
+ const size_t maxLeafSize = 20);
/**
* Construct this as the root node of a binary space tree using the given
@@ -118,12 +118,12 @@ class BinarySpaceTree
* each new point.
* @param newFromOld Vector which will be filled with the new positions for
* each old point.
- * @param leafSize Size of each leaf in the tree.
+ * @param maxLeafSize Size of each leaf in the tree.
*/
BinarySpaceTree(MatType& data,
std::vector<size_t>& oldFromNew,
std::vector<size_t>& newFromOld,
- const size_t leafSize = 20);
+ const size_t maxLeafSize = 20);
/**
* Construct this node on a subset of the given matrix, starting at column
@@ -134,13 +134,13 @@ class BinarySpaceTree
* @param data Dataset to create tree from. This will be modified!
* @param begin Index of point to start tree construction with.
* @param count Number of points to use to construct tree.
- * @param leafSize Size of each leaf in the tree.
+ * @param maxLeafSize Size of each leaf in the tree.
*/
BinarySpaceTree(MatType& data,
const size_t begin,
const size_t count,
BinarySpaceTree* parent = NULL,
- const size_t leafSize = 20);
+ const size_t maxLeafSize = 20);
/**
* Construct this node on a subset of the given matrix, starting at column
@@ -158,14 +158,14 @@ class BinarySpaceTree
* @param count Number of points to use to construct tree.
* @param oldFromNew Vector which will be filled with the old positions for
* each new point.
- * @param leafSize Size of each leaf in the tree.
+ * @param maxLeafSize Size of each leaf in the tree.
*/
BinarySpaceTree(MatType& data,
const size_t begin,
const size_t count,
std::vector<size_t>& oldFromNew,
BinarySpaceTree* parent = NULL,
- const size_t leafSize = 20);
+ const size_t maxLeafSize = 20);
/**
* Construct this node on a subset of the given matrix, starting at column
@@ -186,7 +186,7 @@ class BinarySpaceTree
* each new point.
* @param newFromOld Vector which will be filled with the new positions for
* each old point.
- * @param leafSize Size of each leaf in the tree.
+ * @param maxLeafSize Size of each leaf in the tree.
*/
BinarySpaceTree(MatType& data,
const size_t begin,
@@ -194,7 +194,7 @@ class BinarySpaceTree
std::vector<size_t>& oldFromNew,
std::vector<size_t>& newFromOld,
BinarySpaceTree* parent = NULL,
- const size_t leafSize = 20);
+ const size_t maxLeafSize = 20);
/**
* Create a binary space tree by copying the other tree. Be careful! This
@@ -251,10 +251,10 @@ class BinarySpaceTree
//! Return whether or not this node is a leaf (true if it has no children).
bool IsLeaf() const;
- //! Return the leaf size.
- size_t LeafSize() const { return leafSize; }
- //! Modify the leaf size.
- size_t& LeafSize() { return leafSize; }
+ //! Return the max leaf size.
+ size_t MaxLeafSize() const { return maxLeafSize; }
+ //! Modify the max leaf size.
+ size_t& MaxLeafSize() { return maxLeafSize; }
//! Fills the tree to the specified level.
size_t ExtendTree(const size_t level);
@@ -440,18 +440,18 @@ class BinarySpaceTree
const size_t count,
BoundType bound,
StatisticType stat,
- const int leafSize = 20) :
+ const int maxLeafSize = 20) :
left(NULL),
right(NULL),
begin(begin),
count(count),
bound(bound),
stat(stat),
- leafSize(leafSize) { }
+ maxLeafSize(maxLeafSize) { }
BinarySpaceTree* CopyMe()
{
- return new BinarySpaceTree(begin, count, bound, stat, leafSize);
+ return new BinarySpaceTree(begin, count, bound, stat, maxLeafSize);
}
/**
diff --git a/src/mlpack/core/tree/binary_space_tree/binary_space_tree_impl.hpp b/src/mlpack/core/tree/binary_space_tree/binary_space_tree_impl.hpp
index 506900a..77d949b 100644
--- a/src/mlpack/core/tree/binary_space_tree/binary_space_tree_impl.hpp
+++ b/src/mlpack/core/tree/binary_space_tree/binary_space_tree_impl.hpp
@@ -24,13 +24,13 @@ template<typename BoundType,
typename SplitType>
BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::BinarySpaceTree(
MatType& data,
- const size_t leafSize) :
+ const size_t maxLeafSize) :
left(NULL),
right(NULL),
parent(NULL),
begin(0), /* This root node starts at index 0, */
count(data.n_cols), /* and spans all of the dataset. */
- leafSize(leafSize),
+ maxLeafSize(maxLeafSize),
bound(data.n_rows),
parentDistance(0), // Parent distance for the root is 0: it has no parent.
dataset(data)
@@ -49,13 +49,13 @@ template<typename BoundType,
BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::BinarySpaceTree(
MatType& data,
std::vector<size_t>& oldFromNew,
- const size_t leafSize) :
+ const size_t maxLeafSize) :
left(NULL),
right(NULL),
parent(NULL),
begin(0),
count(data.n_cols),
- leafSize(leafSize),
+ maxLeafSize(maxLeafSize),
bound(data.n_rows),
parentDistance(0), // Parent distance for the root is 0: it has no parent.
dataset(data)
@@ -80,13 +80,13 @@ BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::BinarySpaceTree(
MatType& data,
std::vector<size_t>& oldFromNew,
std::vector<size_t>& newFromOld,
- const size_t leafSize) :
+ const size_t maxLeafSize) :
left(NULL),
right(NULL),
parent(NULL),
begin(0),
count(data.n_cols),
- leafSize(leafSize),
+ maxLeafSize(maxLeafSize),
bound(data.n_rows),
parentDistance(0), // Parent distance for the root is 0: it has no parent.
dataset(data)
@@ -117,13 +117,13 @@ BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::BinarySpaceTree(
const size_t begin,
const size_t count,
BinarySpaceTree* parent,
- const size_t leafSize) :
+ const size_t maxLeafSize) :
left(NULL),
right(NULL),
parent(parent),
begin(begin),
count(count),
- leafSize(leafSize),
+ maxLeafSize(maxLeafSize),
bound(data.n_rows),
dataset(data)
{
@@ -144,13 +144,13 @@ BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::BinarySpaceTree(
const size_t count,
std::vector<size_t>& oldFromNew,
BinarySpaceTree* parent,
- const size_t leafSize) :
+ const size_t maxLeafSize) :
left(NULL),
right(NULL),
parent(parent),
begin(begin),
count(count),
- leafSize(leafSize),
+ maxLeafSize(maxLeafSize),
bound(data.n_rows),
dataset(data)
{
@@ -176,13 +176,13 @@ BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::BinarySpaceTree(
std::vector<size_t>& oldFromNew,
std::vector<size_t>& newFromOld,
BinarySpaceTree* parent,
- const size_t leafSize) :
+ const size_t maxLeafSize) :
left(NULL),
right(NULL),
parent(parent),
begin(begin),
count(count),
- leafSize(leafSize),
+ maxLeafSize(maxLeafSize),
bound(data.n_rows),
dataset(data)
{
@@ -212,7 +212,7 @@ BinarySpaceTree<BoundType, StatisticType, MatType>::BinarySpaceTree() :
count(0),
bound(),
stat(),
- leafSize(20) // Default leaf size is 20.
+ maxLeafSize(20) // Default max leaf size is 20.
{
// Nothing to do.
}*/
@@ -232,7 +232,7 @@ BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::BinarySpaceTree(
parent(other.parent),
begin(other.begin),
count(other.count),
- leafSize(other.leafSize),
+ maxLeafSize(other.maxLeafSize),
bound(other.bound),
stat(other.stat),
splitDimension(other.splitDimension),
@@ -561,7 +561,7 @@ void BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::SplitNode(
furthestDescendantDistance = 0.5 * bound.Diameter();
// Now, check if we need to split at all.
- if (count <= leafSize)
+ if (count <= maxLeafSize)
return; // We can't split this.
// splitCol denotes the two partitions of the dataset after the split. The
@@ -582,9 +582,9 @@ void BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::SplitNode(
// Now that we know the split column, we will recursively split the children
// by calling their constructors (which perform this splitting process).
left = new BinarySpaceTree<BoundType, StatisticType, MatType>(data, begin,
- splitCol - begin, this, leafSize);
+ splitCol - begin, this, maxLeafSize);
right = new BinarySpaceTree<BoundType, StatisticType, MatType>(data, splitCol,
- begin + count - splitCol, this, leafSize);
+ begin + count - splitCol, this, maxLeafSize);
// Calculate parent distances for those two nodes.
arma::vec centroid, leftCentroid, rightCentroid;
@@ -617,7 +617,7 @@ void BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::SplitNode(
furthestDescendantDistance = 0.5 * bound.Diameter();
// First, check if we need to split at all.
- if (count <= leafSize)
+ if (count <= maxLeafSize)
return; // We can't split this.
// splitCol denotes the two partitions of the dataset after the split. The
@@ -639,9 +639,9 @@ void BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::SplitNode(
// Now that we know the split column, we will recursively split the children
// by calling their constructors (which perform this splitting process).
left = new BinarySpaceTree<BoundType, StatisticType, MatType>(data, begin,
- splitCol - begin, oldFromNew, this, leafSize);
+ splitCol - begin, oldFromNew, this, maxLeafSize);
right = new BinarySpaceTree<BoundType, StatisticType, MatType>(data, splitCol,
- begin + count - splitCol, oldFromNew, this, leafSize);
+ begin + count - splitCol, oldFromNew, this, maxLeafSize);
// Calculate parent distances for those two nodes.
arma::vec centroid, leftCentroid, rightCentroid;
@@ -676,7 +676,7 @@ std::string BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::
convert << mlpack::util::Indent(bound.ToString(), 2);
convert << " Statistic: " << std::endl;
convert << mlpack::util::Indent(stat.ToString(), 2);
- convert << " Leaf size: " << leafSize << std::endl;
+ convert << " Max leaf size: " << maxLeafSize << std::endl;
convert << " Split dimension: " << splitDimension << std::endl;
// How many levels should we print? This will print the top two tree levels.
diff --git a/src/mlpack/core/tree/rectangle_tree/r_tree_split.hpp b/src/mlpack/core/tree/rectangle_tree/r_tree_split.hpp
index c1ee80a..bb2b75f 100644
--- a/src/mlpack/core/tree/rectangle_tree/r_tree_split.hpp
+++ b/src/mlpack/core/tree/rectangle_tree/r_tree_split.hpp
@@ -68,6 +68,12 @@ static void AssignNodeDestNode(
const int intI,
const int intJ);
+/**
+ * Insert a node into another node.
+ */
+static void insertNodeIntoTree(
+ RectangleTree& destTree,
+ RectangleTree& srcNode);
}; // namespace tree
}; // namespace mlpack
diff --git a/src/mlpack/core/tree/rectangle_tree/r_tree_split_impl.hpp b/src/mlpack/core/tree/rectangle_tree/r_tree_split_impl.hpp
index 03ced27..79979aa 100644
--- a/src/mlpack/core/tree/rectangle_tree/r_tree_split_impl.hpp
+++ b/src/mlpack/core/tree/rectangle_tree/r_tree_split_impl.hpp
@@ -8,6 +8,7 @@
#define __MLPACK_CORE_TREE_RECTANGLE_TREE_R_TREE_SPLIT_IMPL_HPP
#include "r_tree_split.hpp"
+#include <mlpack/core/math/range.hpp>
namespace mlpack {
namespace tree {
@@ -65,7 +66,8 @@ void RTreeSplit<MatType>::SplitLeafNode(const RectangleTree& tree)
* We call GetBoundSeeds to get the two new nodes that this one will be broken
* into. Then we call AssignNodeDestNode to move the children of this node
* into either of those two nodes. Finally, we delete the now unused information
- * and recurse up the tree if necessary.
+ * and recurse up the tree if necessary. We don't need to worry about the bounds
+ * higher up the tree because they were already updated if necessary.
*/
bool RTreeSplit<MatType>::SplitNonLeafNode(const RectangleTree& tree)
{
@@ -182,12 +184,15 @@ void RTreeSplit<MatType>::AssignPointDestNode(
treeTwo.insertPoint(oldTree.dataset.col(intJ));
oldTree.dataset.col(intJ) = oldTree.dataset.col(--end); // decrement end
- int index = 0;
+
+ int numAssignedOne = 1;
+ int numAssignedTwo = 1;
// In each iteration, we go through all points and find the one that causes the least
// increase of volume when added to one of the rectangles. We then add it to that
- // rectangle.
- while() {
+ // rectangle. We stop when we run out of points or when all of the remaining points
+ // need to be assigned to the same rectangle to satisfy the minimum fill requirement.
+ while(end > 1 && end < oldTree.minLeafSize() - std::min(numAssignedOne, numAssignedTwo)) {
int bestIndex = 0;
double bestScore = 0;
int bestRect = 0;
@@ -200,7 +205,9 @@ void RTreeSplit<MatType>::AssignPointDestNode(
volTwo *= treeTwo.bound[i].width();
}
- for(int j = 0; j < end; j++) {
+ // Find the point that, when assigned to one of the two new rectangles, minimizes the increase
+ // in volume.
+ for(int index = 0; index < end; index++) {
double newVolOne = 1.0;
double newVolTwo = 1.0;
for(int i = 0; i < bound.Dim(); i++) {
@@ -211,6 +218,7 @@ void RTreeSplit<MatType>::AssignPointDestNode(
(c < treeTwo.bound[i].low() ? (high - c) : (c - low));
}
+ // Choose the rectangle that requires the lesser increase in volume.
if((newVolOne - volOne) < (newVolTwo - volTwo)) {
if(newVolOne - volOne < bestScore) {
bestScore = newVolOne - volOne;
@@ -235,6 +243,19 @@ void RTreeSplit<MatType>::AssignPointDestNode(
oldTree.dataset.col(bestIndex) = oldTree.dataset.col(--end); // decrement end.
}
+
+ // See if we need to satisfy the minimum fill.
+ if(end > 1) {
+ if(numAssignedOne < numAssignedTwo) {
+ for(int i = 0; i < end; i++) {
+ treeOne.insertPoint(oldTree.dataset(i);
+ }
+ } else {
+ for(int i = 0; i < end; i++) {
+ treeTwo.insertPoint(oldTree.dataset(i);
+ }
+ }
+ }
}
void RTreeSplit<MatType>::AssignNodeDestNode(
@@ -253,17 +274,18 @@ void RTreeSplit<MatType>::AssignNodeDestNode(
treeTwo.getChildren()[0] = oldTree.getChildren()[intJ];
oldTree.getChildren()[intJ] = oldTree.getChildren()[--end]; // decrement end
- int index = 0;
+ int numAssignTreeOne = 1;
+ int numAssignTreeTwo = 1;
// In each iteration, we go through all of the nodes and find the one that causes the least
// increase of volume when added to one of the two new rectangles. We then add it to that
// rectangle.
- while() {
+ while(end > 1 && end < oldTree.getMinNumChildren() - std::min(numAssignTreeOne, numAssignTreeTwo)) {
int bestIndex = 0;
double bestScore = 0;
int bestRect = 0;
- // Calculate the increase in volume for assigning this point to each rectangle.
+ // Calculate the increase in volume for assigning this node to each of the new rectangles.
double volOne = 1.0;
double volTwo = 1.0;
for(int i = 0; i < bound.Dim(); i++) {
@@ -271,17 +293,22 @@ void RTreeSplit<MatType>::AssignNodeDestNode(
volTwo *= treeTwo.bound[i].width();
}
- for(int j = 0; j < end; j++) {
+ for(int index = 0; index < end; index++) {
double newVolOne = 1.0;
double newVolTwo = 1.0;
for(int i = 0; i < bound.Dim(); i++) {
- double c = oldTree.dataset.col(index)[i];
- newVolOne *= treeOne.bound[i].contains(c) ? treeOne.bound[i].width() :
- (c < treeOne.bound[i].low() ? (high - c) : (c - low));
- newVolTwo *= treeTwo.bound[i].contains(c) ? treeTwo.bound[i].width() :
- (c < treeTwo.bound[i].low() ? (high - c) : (c - low));
+ // For each of the new rectangles, find the width in this dimension if we add the rectangle at index to
+ // the new rectangle.
+ math::range range = oldTree.getChildren()[index].Bound(i);
+ newVolOne *= treeOne.Bound(i).Contains(range) ? treeOne.bound[i].width() :
+ (range.Contains(treeOne.Bound(i)) ? range.width : (range.lo() < treeOne.Bound(i).lo() ? (treeOne.Bound(i).hi() - range.lo()) :
+ (range.hi() - treeOne.Bound(i).lo())))
+ newVolTwo *= treeTwo.Bound(i).Contains(range) ? treeTwo.bound[i].width() :
+ (range.Contains(treeTwo.Bound(i)) ? range.width : (range.lo() < treeTwo.Bound(i).lo() ? (treeTwo.Bound(i).hi() - range.lo()) :
+ (range.hi() - treeTwo.Bound(i).lo())));
}
+ // Choose the rectangle that requires the lesser increase in volume.
if((newVolOne - volOne) < (newVolTwo - volTwo)) {
if(newVolOne - volOne < bestScore) {
bestScore = newVolOne - volOne;
@@ -297,17 +324,38 @@ void RTreeSplit<MatType>::AssignNodeDestNode(
}
}
- // Assign the point that causes the least increase in volume
+ // Assign the rectangle that causes the least increase in volume
// to the appropriate rectangle.
if(bestRect == 1)
- treeOne.insertPoint(oldTree.dataset(bestIndex);
+ insertNodeIntoTree(treeOne, oldTree.Children()[bestIndex];
else
- treeTwo.insertPoint(oldTree.dataset(bestIndex);
+ insertNodeIntoTree(treeTwo, oldTree.Children()[bestIndex];
- oldTree.dataset.col(bestIndex) = oldTree.dataset.col(--end); // decrement end.
+ oldTree.Children()[bestIndex] = oldTree.Children()[--end]; // Decrement end.
}
+ // See if we need to satisfy the minimum fill.
+ if(end > 1) {
+ if(numAssignedOne < numAssignedTwo) {
+ for(int i = 0; i < end; i++) {
+ insertNodeIntoTree(treeOne, oldTree.Children()[i]);
+ }
+ } else {
+ for(int i = 0; i < end; i++) {
+ insertNodeIntoTree(treeTwo, oldTree.Children()[i]);
+ }
+ }
+ }
+}
-
+/**
+ * Insert a node into another node. Expanding the bounds and updating the numberOfChildren.
+ */
+static void insertNodeIntoTree(
+ RectangleTree& destTree,
+ RectangleTree& srcNode)
+{
+ destTree.Bound() |= srcNode.Bound();
+ destTree.Children()[destTree.getNumOfChildren()++] = &srcNode;
}
diff --git a/src/mlpack/core/tree/rectangle_tree/rectangle_tree.hpp b/src/mlpack/core/tree/rectangle_tree/rectangle_tree.hpp
index b4c6ff2..b143311 100644
--- a/src/mlpack/core/tree/rectangle_tree/rectangle_tree.hpp
+++ b/src/mlpack/core/tree/rectangle_tree/rectangle_tree.hpp
@@ -1,5 +1,6 @@
/**
* @file rectangle_tree.hpp
+ * @author Andrew Wells
*
* Definition of generalized rectangle type trees (r_tree, r_star_tree, x_tree, and hilbert_r_tree).
*/
@@ -52,8 +53,8 @@ class RectangleTree
//! The number of points in the dataset contained in this node (and its
//! children).
size_t count;
- //! The leaf size. (Maximum allowable leaf size.)
- size_t leafSize;
+ //! The max leaf size.
+ size_t maxLeafSize;
//! The minimum leaf size.
size_t minLeafSize;
//! The bound object for this node.
@@ -81,10 +82,10 @@ class RectangleTree
* dataset. This will modify the ordering of the points in the dataset!
*
* @param data Dataset from which to create the tree. This will be modified!
- * @param leafSize Size of each leaf in the tree;
+ * @param maxLeafSize Maximum size of each leaf in the tree;
* @param maxNumChildren The maximum number of child nodes a non-leaf node may have.
*/
- RectangleTree(MatType& data, const size_t leafSize = 20, const size_t maxNumChildren = 4);
+ RectangleTree(MatType& data, const size_t maxLeafSize = 20, const size_t maxNumChildren = 4);
//TODO implement the oldFromNew stuff if applicable.
@@ -149,10 +150,10 @@ class RectangleTree
//! Return whether or not this node is a leaf (true if it has no children).
bool IsLeaf() const;
- //! Return the leaf size.
- size_t LeafSize() const { return leafSize; }
- //! Modify the leaf size.
- size_t& LeafSize() { return leafSize; }
+ //! Return the max leaf size.
+ size_t MaxLeafSize() const { return maxLeafSize; }
+ //! Modify the max leaf size.
+ size_t& MaxLeafSize() { return maxLeafSize; }
//! Gets the parent of this node.
RectangleTree* Parent() const { return parent; }
@@ -181,9 +182,9 @@ class RectangleTree
size_t& getNumOfChildren() { return numOfChildren; }
//! Get the children of this node.
- const std::vector<RectangleTree*>& getChildren() const { return children; }
+ const std::vector<RectangleTree*>& Children() const { return children; }
//! Modify the children of this node.
- std::vector<RectangleTree*>& getChildren() { return children; }
+ std::vector<RectangleTree*>& Children() { return children; }
/**
* Return the furthest distance to a point held in this node. If this is not
@@ -327,16 +328,16 @@ class RectangleTree
const size_t count,
HRectBound bound,
StatisticType stat,
- const int leafSize = 20) :
+ const int maxLeafSize = 20) :
begin(begin),
count(count),
bound(bound),
stat(stat),
- leafSize(leafSize) { }
+ maxLeafSize(maxLeafSize) { }
RectangleTree* CopyMe()
{
- return new RectangleTree(begin, count, bound, stat, leafSize);
+ return new RectangleTree(begin, count, bound, stat, maxLeafSize);
}
/**
diff --git a/src/mlpack/core/tree/rectangle_tree/rectangle_tree_impl.hpp b/src/mlpack/core/tree/rectangle_tree/rectangle_tree_impl.hpp
index d454c46..7059081 100644
--- a/src/mlpack/core/tree/rectangle_tree/rectangle_tree_impl.hpp
+++ b/src/mlpack/core/tree/rectangle_tree/rectangle_tree_impl.hpp
@@ -1,5 +1,6 @@
/**
* @file rectangle_tree_impl.hpp
+ * @author Andrew Wells
*
* Implementation of generalized rectangle tree.
*/
@@ -22,7 +23,7 @@ template<typename StatisticType,
typename DescentType>
RectangleTree<StatisticType, MatType, SplitType, DescentType>::RectangleTree(
MatType& data,
- const size_t leafSize,
+ const size_t maxLeafSize,
const size_t minLeafSize,
const size_t maxNumChildren,
const size_t minNumChildren):
@@ -34,13 +35,13 @@ RectangleTree<StatisticType, MatType, SplitType, DescentType>::RectangleTree(
this.parent = NULL;
this.begin = 0;
this.count = 0;
- this.leafSize = leafSize;
+ this.maxLeafSize = maxLeafSize;
this.minLeafSize = minLeafSize;
this.bound = new HRectBound(data.n_rows);
this.stat = EmptyStatistic;
this.parentDistance = 0.0;
this.furthestDescendantDistance = 0.0;
- this.dataset = new MatType(leafSize+1); // Add one to make splitting the node simpler
+ this.dataset = new MatType(maxLeafSize+1); // Add one to make splitting the node simpler
// For now, just insert the points in order.
// This won't actually work for any meaningful size of data since the root changes.
@@ -296,7 +297,7 @@ void RectangleTree<StatisticType, MatType, SplitType, DescentType>::SplitNode(
boost::assert(numChildren == 0);
// See if we are full.
- if(points < leafSize)
+ if(points < maxLeafSize)
return;
// If we are full, then we need to move up the tree. The SplitType takes
@@ -322,7 +323,7 @@ std::string BinarySpaceTree<StatisticType, MatType, SplitType, DescentType>::ToS
convert << mlpack::util::Indent(bound.ToString(), 2);
convert << " Statistic: " << std::endl;
convert << mlpack::util::Indent(stat.ToString(), 2);
- convert << " Leaf size: " << leafSize << std::endl;
+ convert << " Max leaf size: " << maxLeafSize << std::endl;
convert << " Split dimension: " << splitDimension << std::endl;
// How many levels should we print? This will print the root and it's children.
diff --git a/src/mlpack/core/tree/rectangle_tree/rectangle_tree_traverser.hpp b/src/mlpack/core/tree/rectangle_tree/rectangle_tree_traverser.hpp
index 8d1c8b6..5dbea6f 100644
--- a/src/mlpack/core/tree/rectangle_tree/rectangle_tree_traverser.hpp
+++ b/src/mlpack/core/tree/rectangle_tree/rectangle_tree_traverser.hpp
@@ -1 +1,61 @@
-
+/**
+ * @file rectangle_tree_traverser.hpp
+ * @author Andrew Wells
+ *
+ * A class for traversing rectangle type trees with a given set of rules
+ * which indicate the branches to prune and the order in which to recurse.
+ * This is a depth-first traverser.
+ */
+#ifndef __MLPACK_CORE_TREE_RECTANGLE_TREE_RECTANGLE_TREE_TRAVERSER_HPP
+#define __MLPACK_CORE_TREE_RECTANGLE_TREE_RECTANGLE_TREE_TRAVERSER_HPP
+
+#include <mlpack/core.hpp>
+
+#include "rectangle_tree.hpp"
+
+namespace mlpack {
+namespace tree {
+
+template<typename Statistic Type,
+ typename MatType,
+ typename SplitType>
+template<typename RuleType>
+class RectangleTree<StatisticType, MatType, SplitType>::
+ RectangleTreeTraverser
+{
+ public:
+ /**
+ * Instantiate the traverser with the given rule set.
+ */
+ RectangleTreeTraverser(RuleType& rule);
+
+ /**
+ * Traverse the tree with the given point.
+ *
+ * @param queryIndex The index of the point in the query set which is being
+ * used as the query point.
+ * @param referenceNode The tree node to be traversed.
+ */
+ void Traverse(const size_t queryIndex, const RectangleTree& referenceNode);
+
+ //! Get the number of prunes.
+ size_t NumPrunes() const { return numPrunes; }
+ //! Modify the number of prunes.
+ size_t& NumPrunes() { return numPrunes; }
+
+ private:
+ //! Reference to the rules with which the tree will be traversed.
+ RuleType& rule;
+
+ //! The number of nodes which have been prenud during traversal.
+ size_t numPrunes;
+}
+
+
+}; // namespace tree
+}; // namespace mlpack
+
+// Include implementation.
+#include "rectangle_tree_traverser_impl.hpp"
+
+#endif
\ No newline at end of file
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-science/packages/mlpack.git
More information about the debian-science-commits
mailing list