[mlpack] 183/324: * Added convergence test for SVDBatch and SVDIncremental learning

Barak A. Pearlmutter barak+git at cs.nuim.ie
Sun Aug 17 08:22:08 UTC 2014


This is an automated email from the git hooks/post-receive script.

bap pushed a commit to branch svn-trunk
in repository mlpack.

commit bf1be19e2dd9641afd7c367115f2f31d9da0cb90
Author: sumedhghaisas <sumedhghaisas at 9d5b8971-822b-0410-80eb-d18c1038ef23>
Date:   Mon Jul 14 20:37:58 2014 +0000

    * Added convergence test for SVDBatch and SVDIncremental learning
    
    
    git-svn-id: http://svn.cc.gatech.edu/fastlab/mlpack/trunk@16822 9d5b8971-822b-0410-80eb-d18c1038ef23
---
 .../incomplete_incremental_termination.hpp         |  6 +-
 .../simple_residue_termination.hpp                 |  1 +
 .../simple_tolerance_termination.hpp               |  1 +
 .../validation_RMSE_termination.hpp                | 12 +--
 .../amf/update_rules/svd_incremental_learning.hpp  |  2 +
 src/mlpack/tests/CMakeLists.txt                    |  1 +
 src/mlpack/tests/svd_batch_test.cpp                | 32 ++++++--
 src/mlpack/tests/svd_incremental_test.cpp          | 91 ++++++++++++++++++++++
 8 files changed, 130 insertions(+), 16 deletions(-)

diff --git a/src/mlpack/methods/amf/termination_policies/incomplete_incremental_termination.hpp b/src/mlpack/methods/amf/termination_policies/incomplete_incremental_termination.hpp
index 91424db..cfa499e 100644
--- a/src/mlpack/methods/amf/termination_policies/incomplete_incremental_termination.hpp
+++ b/src/mlpack/methods/amf/termination_policies/incomplete_incremental_termination.hpp
@@ -45,7 +45,11 @@ class IncompleteIncrementalTermination
   {
     return iteration;
   }
-
+  const size_t& MaxIterations()
+  {
+    return t_policy.MaxIterations();
+  }
+  
  private:
   TerminationPolicy t_policy;
 
diff --git a/src/mlpack/methods/amf/termination_policies/simple_residue_termination.hpp b/src/mlpack/methods/amf/termination_policies/simple_residue_termination.hpp
index cbae4ba..b5c4fb5 100644
--- a/src/mlpack/methods/amf/termination_policies/simple_residue_termination.hpp
+++ b/src/mlpack/methods/amf/termination_policies/simple_residue_termination.hpp
@@ -59,6 +59,7 @@ class SimpleResidueTermination
 
   const double& Index() { return residue; }
   const size_t& Iteration() { return iteration; }
+  const size_t& MaxIterations() { return maxIterations; }
 
 public:
   double minResidue;
diff --git a/src/mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp b/src/mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp
index 8518b54..dfc78bd 100644
--- a/src/mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp
+++ b/src/mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp
@@ -100,6 +100,7 @@ class SimpleToleranceTermination
 
   const double& Index() { return residue; }
   const size_t& Iteration() { return iteration; }
+  const size_t& MaxIterations() { return maxIterations; }
 
  private:
   double tolerance;
diff --git a/src/mlpack/methods/amf/termination_policies/validation_RMSE_termination.hpp b/src/mlpack/methods/amf/termination_policies/validation_RMSE_termination.hpp
index ceb7b0c..7f03954 100644
--- a/src/mlpack/methods/amf/termination_policies/validation_RMSE_termination.hpp
+++ b/src/mlpack/methods/amf/termination_policies/validation_RMSE_termination.hpp
@@ -117,15 +117,11 @@ class ValidationRMSETermination
     iteration++;
   }
 
-  const double& Index()
-  {
-    return rmse;
-  }
+  const double& Index() { return rmse; }
 
-  const size_t& Iteration()
-  {
-    return iteration;
-  }
+  const size_t& Iteration() { return iteration; }
+  
+  const size_t& MaxIterations() { return maxIterations; }
 
  private:
   double tolerance;
diff --git a/src/mlpack/methods/amf/update_rules/svd_incremental_learning.hpp b/src/mlpack/methods/amf/update_rules/svd_incremental_learning.hpp
index d1ec14d..a0388c1 100644
--- a/src/mlpack/methods/amf/update_rules/svd_incremental_learning.hpp
+++ b/src/mlpack/methods/amf/update_rules/svd_incremental_learning.hpp
@@ -19,6 +19,8 @@ class SVDIncrementalLearning
   template<typename MatType>
   void Initialize(const MatType& dataset, const size_t rank)
   {
+    (void)rank;
+  
     n = dataset.n_rows;
     m = dataset.n_cols;
 
diff --git a/src/mlpack/tests/CMakeLists.txt b/src/mlpack/tests/CMakeLists.txt
index 5a8794c..897520b 100644
--- a/src/mlpack/tests/CMakeLists.txt
+++ b/src/mlpack/tests/CMakeLists.txt
@@ -51,6 +51,7 @@ add_executable(mlpack_test
   tree_traits_test.cpp
   union_find_test.cpp
   svd_batch_test.cpp
+  svd_incremental_test.cpp
 )
 # Link dependencies of test executable.
 target_link_libraries(mlpack_test
diff --git a/src/mlpack/tests/svd_batch_test.cpp b/src/mlpack/tests/svd_batch_test.cpp
index af14247..820e6f6 100644
--- a/src/mlpack/tests/svd_batch_test.cpp
+++ b/src/mlpack/tests/svd_batch_test.cpp
@@ -16,9 +16,27 @@ using namespace mlpack::amf;
 using namespace arma;
 
 /**
+ * Make sure the SVD Batch lerning is converging.
+ */
+BOOST_AUTO_TEST_CASE(SVDBatchConvergenceElementTest)
+{
+  mlpack::math::RandomSeed(10);
+  sp_mat data;
+  data.sprandn(1000, 1000, 0.2);
+  AMF<SimpleToleranceTermination<sp_mat>, 
+      RandomInitialization, 
+      SVDBatchLearning> amf;
+  mat m1,m2;
+  amf.Apply(data, 2, m1, m2);
+  
+  BOOST_REQUIRE_NE(amf.TerminationPolicy().Iteration(), 
+                    amf.TerminationPolicy().MaxIterations());
+}
+
+/**
  * Make sure the momentum is working okay.
  */
-BOOST_AUTO_TEST_CASE(SVDMomentumTest)
+BOOST_AUTO_TEST_CASE(SVDBatchMomentumTest)
 {
   mat dataset;
   data::Load("GroupLens100k.csv", dataset);
@@ -51,7 +69,7 @@ BOOST_AUTO_TEST_CASE(SVDMomentumTest)
                               SVDBatchLearning(0.0009, 0, 0, 0));
 
   mat m1,m2;
-  size_t RMSE_1 = amf_1.Apply(cleanedData, 2, m1, m2);
+  double RMSE_1 = amf_1.Apply(cleanedData, 2, m1, m2);
   size_t iter_1 = amf_1.TerminationPolicy().Iteration();
 
   mlpack::math::RandomSeed(10);
@@ -61,7 +79,7 @@ BOOST_AUTO_TEST_CASE(SVDMomentumTest)
                               RandomInitialization(),
                               SVDBatchLearning(0.0009, 0, 0, 0.8));
 
-  size_t RMSE_2 = amf_2.Apply(cleanedData, 2, m1, m2);
+  double RMSE_2 = amf_2.Apply(cleanedData, 2, m1, m2);
   size_t iter_2 = amf_2.TerminationPolicy().Iteration();
 
   BOOST_REQUIRE_LE(RMSE_2, RMSE_1);
@@ -71,7 +89,7 @@ BOOST_AUTO_TEST_CASE(SVDMomentumTest)
 /**
  * Make sure the regularization is working okay.
  */
-BOOST_AUTO_TEST_CASE(SVDRegularizationTest)
+BOOST_AUTO_TEST_CASE(SVDBatchRegularizationTest)
 {
   mat dataset;
   data::Load("GroupLens100k.csv", dataset);
@@ -104,7 +122,7 @@ BOOST_AUTO_TEST_CASE(SVDRegularizationTest)
                               SVDBatchLearning(0.0009, 0, 0, 0));
 
   mat m1,m2;
-  size_t RMSE_1 = amf_1.Apply(cleanedData, 2, m1, m2);
+  double RMSE_1 = amf_1.Apply(cleanedData, 2, m1, m2);
 
   mlpack::math::RandomSeed(10);
   AMF<ValidationRMSETermination<sp_mat>,
@@ -113,7 +131,7 @@ BOOST_AUTO_TEST_CASE(SVDRegularizationTest)
                               RandomInitialization(),
                               SVDBatchLearning(0.0009, 0.5, 0.5, 0.8));
 
-  size_t RMSE_2 = amf_2.Apply(cleanedData, 2, m1, m2);
+  double RMSE_2 = amf_2.Apply(cleanedData, 2, m1, m2);
 
   BOOST_REQUIRE_LE(RMSE_2, RMSE_1);
 }
@@ -121,7 +139,7 @@ BOOST_AUTO_TEST_CASE(SVDRegularizationTest)
 /**
  * Make sure the SVD can factorize matrices with negative entries.
  */
-BOOST_AUTO_TEST_CASE(SVDNegativeElementTest)
+BOOST_AUTO_TEST_CASE(SVDBatchNegativeElementTest)
 {
   mat test;
   test.zeros(3,3);
diff --git a/src/mlpack/tests/svd_incremental_test.cpp b/src/mlpack/tests/svd_incremental_test.cpp
new file mode 100644
index 0000000..00b55d3
--- /dev/null
+++ b/src/mlpack/tests/svd_incremental_test.cpp
@@ -0,0 +1,91 @@
+#include <mlpack/core.hpp>
+#include <mlpack/methods/amf/amf.hpp>
+#include <mlpack/methods/amf/update_rules/svd_incremental_learning.hpp>
+#include <mlpack/methods/amf/init_rules/random_init.hpp>
+#include <mlpack/methods/amf/termination_policies/incomplete_incremental_termination.hpp>
+#include <mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp>
+
+#include <boost/test/unit_test.hpp>
+#include "old_boost_test_definitions.hpp"
+
+BOOST_AUTO_TEST_SUITE(SVDIncrementalTest);
+
+using namespace std;
+using namespace mlpack;
+using namespace mlpack::amf;
+using namespace arma;
+
+/**
+ * Test for convergence
+ */
+BOOST_AUTO_TEST_CASE(SVDIncrementalConvergenceTest)
+{
+  mlpack::math::RandomSeed(10);
+  sp_mat data;
+  data.sprandn(1000, 1000, 0.2);
+  SVDIncrementalLearning svd(0.01);
+  IncompleteIncrementalTermination<SimpleToleranceTermination<sp_mat> > iit;
+  AMF<IncompleteIncrementalTermination<SimpleToleranceTermination<sp_mat> >, 
+      RandomInitialization, 
+      SVDIncrementalLearning> amf(iit, RandomInitialization(), svd);
+  mat m1,m2;
+  amf.Apply(data, 2, m1, m2);
+  
+  BOOST_REQUIRE_NE(amf.TerminationPolicy().Iteration(), 
+                    amf.TerminationPolicy().MaxIterations());
+}
+
+/*
+BOOST_AUTO_TEST_CASE(SVDIncrementalRegularizationTest)
+{
+  mat dataset;
+  data::Load("GroupLens100k.csv", dataset);
+
+  // Generate list of locations for batch insert constructor for sparse
+  // matrices.
+  arma::umat locations(2, dataset.n_cols);
+  arma::vec values(dataset.n_cols);
+  for (size_t i = 0; i < dataset.n_cols; ++i)
+  {
+    // We have to transpose it because items are rows, and users are columns.
+    locations(0, i) = ((arma::uword) dataset(0, i));
+    locations(1, i) = ((arma::uword) dataset(1, i));
+    values(i) = dataset(2, i);
+  }
+
+  // Find maximum user and item IDs.
+  const size_t maxUserID = (size_t) max(locations.row(0)) + 1;
+  const size_t maxItemID = (size_t) max(locations.row(1)) + 1;
+
+  // Fill sparse matrix.
+  sp_mat cleanedData = arma::sp_mat(locations, values, maxUserID, maxItemID);
+  sp_mat cleanedData2 = cleanedData;
+
+  mlpack::math::RandomSeed(10);
+  ValidationRMSETermination<sp_mat> vrt(cleanedData, 2000);
+  AMF<IncompleteIncrementalTermination<ValidationRMSETermination<sp_mat> >,
+      RandomInitialization,
+      SVDIncrementalLearning> amf_1(vrt,
+                              RandomInitialization(),
+                              SVDIncrementalLearning(0.001, 0, 0));
+
+  mat m1,m2;
+  double RMSE_1 = amf_1.Apply(cleanedData, 2, m1, m2);
+
+  mlpack::math::RandomSeed(10);
+  ValidationRMSETermination<sp_mat> vrt2(cleanedData2, 2000);
+  AMF<IncompleteIncrementalTermination<ValidationRMSETermination<sp_mat> >,
+      RandomInitialization,
+      SVDIncrementalLearning> amf_2(vrt2,
+                              RandomInitialization(),
+                              SVDIncrementalLearning(0.001, 1e-5, 2e-5));
+
+  mat m3, m4;
+  double RMSE_2 = amf_2.Apply(cleanedData2, 2, m3, m4);
+
+  // RMSE_2 should be less than RMSE_1
+  std::cout << RMSE_1 << " " << RMSE_2 << std::endl;
+}
+*/
+
+BOOST_AUTO_TEST_SUITE_END();

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-science/packages/mlpack.git



More information about the debian-science-commits mailing list