[mlpack] 215/324: Fix normalization bug (transpose); Some more comments.
Barak A. Pearlmutter
barak+git at cs.nuim.ie
Sun Aug 17 08:22:12 UTC 2014
This is an automated email from the git hooks/post-receive script.
bap pushed a commit to branch svn-trunk
in repository mlpack.
commit a5b79f4e53d8c50929bd0ae9fe4f07c2cb15f31f
Author: marcus <marcus at 9d5b8971-822b-0410-80eb-d18c1038ef23>
Date: Fri Jul 25 16:01:52 2014 +0000
Fix normalization bug (transpose); Some more comments.
git-svn-id: http://svn.cc.gatech.edu/fastlab/mlpack/trunk@16857 9d5b8971-822b-0410-80eb-d18c1038ef23
---
src/mlpack/methods/perceptron/perceptron_main.cpp | 47 +++++++++++++----------
1 file changed, 26 insertions(+), 21 deletions(-)
diff --git a/src/mlpack/methods/perceptron/perceptron_main.cpp b/src/mlpack/methods/perceptron/perceptron_main.cpp
index 01c5b23..ebddccd 100644
--- a/src/mlpack/methods/perceptron/perceptron_main.cpp
+++ b/src/mlpack/methods/perceptron/perceptron_main.cpp
@@ -2,7 +2,10 @@
* @file: perceptron_main.cpp
* @author: Udit Saxena
*
- * Main executable for the Perceptron.
+ * This program runs the Simple Perceptron Classifier.
+ *
+ * Perceptrons are simple single-layer binary classifiers, which solve linearly
+ * separable problems with a linear decision boundary.
*/
#include <mlpack/core.hpp>
@@ -46,12 +49,13 @@ PARAM_STRING_REQ("test_file", "A file containing the test set.", "T");
PARAM_STRING("output", "The file in which the predicted labels for the test set"
" will be written.", "o", "output.csv");
PARAM_INT("iterations","The maximum number of iterations the perceptron is "
- "to be run", "i", 1000)
+ "to be run", "i", 1000);
-int main(int argc, char *argv[])
+int main(int argc, char** argv)
{
CLI::ParseCommandLine(argc, argv);
+ // Get reference dataset filename.
const string trainingDataFilename = CLI::GetParam<string>("train_file");
mat trainingData;
data::Load(trainingDataFilename, trainingData, true);
@@ -60,60 +64,61 @@ int main(int argc, char *argv[])
// Load labels.
mat labelsIn;
+ // Did the user pass in labels?
if (CLI::HasParam("labels_file"))
{
- const string labelsFilename = CLI::GetParam<string>("labels_file");
// Load labels.
+ const string labelsFilename = CLI::GetParam<string>("labels_file");
data::Load(labelsFilename, labelsIn, true);
-
- // Do the labels need to be transposed?
- if (labelsIn.n_rows == 1)
- labelsIn = labelsIn.t();
}
else
{
- // Extract the labels as the last
+ // Use the last row of the training data as the labels.
Log::Info << "Using the last dimension of training set as labels." << endl;
-
labelsIn = trainingData.row(trainingData.n_rows - 1).t();
trainingData.shed_row(trainingData.n_rows - 1);
}
- // helpers for normalizing the labels
- Col<size_t> labels;
- vec mappings;
// Do the labels need to be transposed?
if (labelsIn.n_rows == 1)
+ {
labelsIn = labelsIn.t();
+ }
- // normalize the labels
+ // Normalize the labels.
+ Col<size_t> labels;
+ vec mappings;
data::NormalizeLabels(labelsIn.unsafe_col(0), labels, mappings);
+ // Load test dataset.
const string testingDataFilename = CLI::GetParam<string>("test_file");
mat testingData;
data::Load(testingDataFilename, testingData, true);
-
if (testingData.n_rows != trainingData.n_rows)
+ {
Log::Fatal << "Test data dimensionality (" << testingData.n_rows << ") "
<< "must be the same as training data (" << trainingData.n_rows - 1
<< ")!" << std::endl;
+ }
+
int iterations = CLI::GetParam<int>("iterations");
+ // Create and train the classifier.
Timer::Start("Training");
- Perceptron<> p(trainingData, labels, iterations);
+ Perceptron<> p(trainingData, labels.t(), iterations);
Timer::Stop("Training");
+ // Time the running of the Perceptron Classifier.
Row<size_t> predictedLabels(testingData.n_cols);
Timer::Start("Testing");
p.Classify(testingData, predictedLabels);
Timer::Stop("Testing");
+ // Un-normalize labels to prepare output.
vec results;
- data::RevertLabels(predictedLabels, mappings, results);
+ data::RevertLabels(predictedLabels.t(), mappings, results);
- const string outputFilename = CLI::GetParam<string>("output");
- data::Save(outputFilename, results, true, true);
// saving the predictedLabels in the transposed manner in output
-
- return 0;
+ const string outputFilename = CLI::GetParam<string>("output");
+ data::Save(outputFilename, results, true, false);
}
\ No newline at end of file
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-science/packages/mlpack.git
More information about the debian-science-commits
mailing list