[mlpack] 34/149: Add Pelleg-Moore k-means. This implementation is faster and prunes more tightly than my previous attempts (which I didn't check in). (That, of course, simply means that my previous implementations were wrong, but this one isn't.)
Barak A. Pearlmutter
barak+git at pearlmutter.net
Sat May 2 09:11:06 UTC 2015
This is an automated email from the git hooks/post-receive script.
bap pushed a commit to branch svn-trunk
in repository mlpack.
commit db2167069a9b53f302db02f46d424127e539dd68
Author: rcurtin <rcurtin at 9d5b8971-822b-0410-80eb-d18c1038ef23>
Date: Sun Oct 12 20:22:29 2014 +0000
Add Pelleg-Moore k-means. This implementation is faster and prunes more tightly
than my previous attempts (which I didn't check in). (That, of course, simply
means that my previous implementations were wrong, but this one isn't.)
git-svn-id: http://svn.cc.gatech.edu/fastlab/mlpack/trunk@17242 9d5b8971-822b-0410-80eb-d18c1038ef23
---
src/mlpack/methods/kmeans/CMakeLists.txt | 5 +
src/mlpack/methods/kmeans/kmeans_main.cpp | 15 +-
src/mlpack/methods/kmeans/pelleg_moore_kmeans.hpp | 70 ++++++++
.../methods/kmeans/pelleg_moore_kmeans_impl.hpp | 90 ++++++++++
.../methods/kmeans/pelleg_moore_kmeans_rules.hpp | 81 +++++++++
.../kmeans/pelleg_moore_kmeans_rules_impl.hpp | 199 +++++++++++++++++++++
.../kmeans/pelleg_moore_kmeans_statistic.hpp | 81 +++++++++
7 files changed, 539 insertions(+), 2 deletions(-)
diff --git a/src/mlpack/methods/kmeans/CMakeLists.txt b/src/mlpack/methods/kmeans/CMakeLists.txt
index 5913ce6..2cf72d6 100644
--- a/src/mlpack/methods/kmeans/CMakeLists.txt
+++ b/src/mlpack/methods/kmeans/CMakeLists.txt
@@ -12,6 +12,11 @@ set(SOURCES
max_variance_new_cluster_impl.hpp
naive_kmeans.hpp
naive_kmeans_impl.hpp
+ pelleg_moore_kmeans.hpp
+ pelleg_moore_kmeans_impl.hpp
+ pelleg_moore_kmeans_rules.hpp
+ pelleg_moore_kmeans_rules_impl.hpp
+ pelleg_moore_kmeans_statistic.hpp
random_partition.hpp
refined_start.hpp
refined_start_impl.hpp
diff --git a/src/mlpack/methods/kmeans/kmeans_main.cpp b/src/mlpack/methods/kmeans/kmeans_main.cpp
index 9c911c1..1a4dcd7 100644
--- a/src/mlpack/methods/kmeans/kmeans_main.cpp
+++ b/src/mlpack/methods/kmeans/kmeans_main.cpp
@@ -11,6 +11,7 @@
#include "refined_start.hpp"
#include "elkan_kmeans.hpp"
#include "hamerly_kmeans.hpp"
+#include "pelleg_moore_kmeans.hpp"
using namespace mlpack;
using namespace mlpack::kmeans;
@@ -32,6 +33,13 @@ PROGRAM_INFO("K-Means Clustering", "This program performs K-Means clustering "
"to be used in each sample, the --percentage parameter is used (it should "
"be a value between 0.0 and 1.0)."
"\n\n"
+ "There are several options available for the algorithm used for each Lloyd "
+ "iteration, specified with the --algorithm (-a) option. The standard O(kN)"
+ " approach can be used ('naive'). Other options include the Pelleg-Moore "
+ "tree-based algorithm ('pelleg-moore'), Elkan's triangle-inequality based "
+ "algorithm ('elkan'), and Hamerly's modification to Elkan's algorithm "
+ "('hamerly')."
+ "\n\n"
"As of October 2014, the --overclustering option has been removed. If you "
"want this support back, let us know -- file a bug at "
"http://www.mlpack.org/trac/ or get in touch through another means.");
@@ -67,7 +75,7 @@ PARAM_DOUBLE("percentage", "Percentage of dataset to use for each refined start"
" sampling (use when --refined_start is specified).", "p", 0.02);
PARAM_STRING("algorithm", "Algorithm to use for the Lloyd iteration ('naive', "
- "'elkan', or 'hamerly').", "a", "naive");
+ "'pelleg-moore', 'elkan', or 'hamerly').", "a", "naive");
// Given the type of initial partition policy, figure out the empty cluster
// policy and run k-means.
@@ -139,11 +147,14 @@ void FindLloydStepType(const InitialPartitionPolicy& ipp)
RunKMeans<InitialPartitionPolicy, EmptyClusterPolicy, ElkanKMeans>(ipp);
else if (algorithm == "hamerly")
RunKMeans<InitialPartitionPolicy, EmptyClusterPolicy, HamerlyKMeans>(ipp);
+ else if (algorithm == "pelleg-moore")
+ RunKMeans<InitialPartitionPolicy, EmptyClusterPolicy,
+ PellegMooreKMeans>(ipp);
else if (algorithm == "naive")
RunKMeans<InitialPartitionPolicy, EmptyClusterPolicy, NaiveKMeans>(ipp);
else
Log::Fatal << "Unknown algorithm: '" << algorithm << "'. Supported options"
- << " are 'naive', 'elkan', and 'hamerly'." << endl;
+ << " are 'naive', 'pelleg-moore', 'elkan', and 'hamerly'." << endl;
}
// Given the template parameters, sanitize/load input and run k-means.
diff --git a/src/mlpack/methods/kmeans/pelleg_moore_kmeans.hpp b/src/mlpack/methods/kmeans/pelleg_moore_kmeans.hpp
new file mode 100644
index 0000000..7a766f5
--- /dev/null
+++ b/src/mlpack/methods/kmeans/pelleg_moore_kmeans.hpp
@@ -0,0 +1,70 @@
+/**
+ * @file pelleg_moore_kmeans.hpp
+ * @author Ryan Curtin
+ *
+ * An implementation of Pelleg-Moore's 'blacklist' algorithm for k-means
+ * clustering.
+ */
+#ifndef __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_HPP
+#define __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_HPP
+
+#include <mlpack/core/tree/binary_space_tree.hpp>
+#include "pelleg_moore_kmeans_statistic.hpp"
+
+namespace mlpack {
+namespace kmeans {
+
+template<typename MetricType, typename MatType>
+class PellegMooreKMeans
+{
+ public:
+ /**
+ * Construct the PellegMooreKMeans object, which must construct a tree.
+ */
+ PellegMooreKMeans(const MatType& dataset, MetricType& metric);
+
+ /**
+ * Delete the tree constructed by the PellegMooreKMeans object.
+ */
+ ~PellegMooreKMeans();
+
+ /**
+ * Run a single iteration of the Pelleg-Moore blacklist algorithm, updating
+ * the given centroids into the newCentroids matrix.
+ *
+ * @param centroids Current cluster centroids.
+ * @param newCentroids New cluster centroids.
+ * @param counts Current counts, to be overwritten with new counts.
+ */
+ double Iterate(const arma::mat& centroids,
+ arma::mat& newCentroids,
+ arma::Col<size_t>& counts);
+
+ size_t DistanceCalculations() const { return distanceCalculations; }
+
+ typedef tree::BinarySpaceTree<bound::HRectBound<2, true>,
+ PellegMooreKMeansStatistic, MatType> TreeType;
+
+ private:
+ //! The original dataset reference.
+ const MatType& datasetOrig; // Maybe not necessary.
+ //! The dataset we are using.
+ const MatType& dataset;
+ //! A copy of the dataset, if necessary.
+ MatType datasetCopy;
+ //! The metric.
+ MetricType& metric;
+
+ //! The tree built on the points.
+ TreeType* tree;
+
+ //! Track distance calculations.
+ size_t distanceCalculations;
+};
+
+} // namespace kmeans
+} // namespace mlpack
+
+#include "pelleg_moore_kmeans_impl.hpp"
+
+#endif
diff --git a/src/mlpack/methods/kmeans/pelleg_moore_kmeans_impl.hpp b/src/mlpack/methods/kmeans/pelleg_moore_kmeans_impl.hpp
new file mode 100644
index 0000000..51dbd66
--- /dev/null
+++ b/src/mlpack/methods/kmeans/pelleg_moore_kmeans_impl.hpp
@@ -0,0 +1,90 @@
+/**
+ * @file pelleg_moore_kmeans_impl.hpp
+ * @author Ryan Curtin
+ *
+ * An implementation of Pelleg-Moore's 'blacklist' algorithm for k-means
+ * clustering.
+ */
+#ifndef __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_IMPL_HPP
+#define __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_IMPL_HPP
+
+#include "pelleg_moore_kmeans.hpp"
+#include "pelleg_moore_kmeans_rules.hpp"
+
+namespace mlpack {
+namespace kmeans {
+
+template<typename MetricType, typename MatType>
+PellegMooreKMeans<MetricType, MatType>::PellegMooreKMeans(
+ const MatType& dataset,
+ MetricType& metric) :
+ datasetOrig(dataset),
+ dataset(tree::TreeTraits<TreeType>::RearrangesDataset ? datasetCopy :
+ datasetOrig),
+ metric(metric),
+ distanceCalculations(0)
+{
+ Timer::Start("tree_building");
+
+ // Copy the dataset, if necessary.
+ if (tree::TreeTraits<TreeType>::RearrangesDataset)
+ datasetCopy = datasetOrig;
+
+ // Now build the tree. We don't need any mappings.
+ tree = new TreeType(const_cast<typename TreeType::Mat&>(this->dataset));
+
+ Timer::Stop("tree_building");
+}
+
+template<typename MetricType, typename MatType>
+PellegMooreKMeans<MetricType, MatType>::~PellegMooreKMeans()
+{
+ delete tree;
+}
+
+// Run a single iteration.
+template<typename MetricType, typename MatType>
+double PellegMooreKMeans<MetricType, MatType>::Iterate(
+ const arma::mat& centroids,
+ arma::mat& newCentroids,
+ arma::Col<size_t>& counts)
+{
+ newCentroids.zeros(centroids.n_rows, centroids.n_cols);
+ counts.zeros(centroids.n_cols);
+
+ // Create rules object.
+ typedef PellegMooreKMeansRules<MetricType, TreeType> RulesType;
+ RulesType rules(dataset, centroids, newCentroids, counts, metric);
+
+ // Use single-tree traverser.
+ typename TreeType::template SingleTreeTraverser<RulesType> traverser(rules);
+
+ // Now, do a traversal with a fake query index (since the query index is
+ // irrelevant; we are checking each node with all clusters.
+ traverser.Traverse(0, *tree);
+
+ distanceCalculations += rules.BaseCases() + rules.Scores();
+
+ // Now, calculate how far the clusters moved, after normalizing them.
+ double residual = 0.0;
+ for (size_t c = 0; c < centroids.n_cols; ++c)
+ {
+ if (counts[c] == 0)
+ {
+ newCentroids.col(c).fill(DBL_MAX); // Should have happened anyway I think.
+ }
+ else
+ {
+ newCentroids.col(c) /= counts(c);
+ residual += std::pow(metric.Evaluate(centroids.col(c),
+ newCentroids.col(c)), 2.0);
+ }
+ }
+
+ return std::sqrt(residual);
+}
+
+} // namespace kmeans
+} // namespace mlpack
+
+#endif
diff --git a/src/mlpack/methods/kmeans/pelleg_moore_kmeans_rules.hpp b/src/mlpack/methods/kmeans/pelleg_moore_kmeans_rules.hpp
new file mode 100644
index 0000000..9bb808d
--- /dev/null
+++ b/src/mlpack/methods/kmeans/pelleg_moore_kmeans_rules.hpp
@@ -0,0 +1,81 @@
+/**
+ * @file kmeans_rules.hpp
+ * @author Ryan Curtin
+ *
+ * Defines the pruning rules and base cases rules necessary to perform
+ * single-tree k-means clustering using the Pelleg-Moore fast k-means algorithm,
+ * which has been shoehorned to fit into the mlpack tree abstractions.
+ */
+#ifndef __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_RULES_HPP
+#define __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_RULES_HPP
+
+#include <mlpack/methods/neighbor_search/ns_traversal_info.hpp>
+
+namespace mlpack {
+namespace kmeans {
+
+template<typename MetricType, typename TreeType>
+class PellegMooreKMeansRules
+{
+ public:
+ PellegMooreKMeansRules(const typename TreeType::Mat& dataset,
+ const arma::mat& centroids,
+ arma::mat& newCentroids,
+ arma::Col<size_t>& counts,
+ MetricType& metric);
+
+ double BaseCase(const size_t queryIndex, const size_t referenceIndex);
+
+ double Score(const size_t queryIndex, TreeType& referenceNode);
+
+ double Rescore(const size_t queryIndex,
+ TreeType& referenceNode,
+ const double oldScore);
+
+ //! Get the number of base cases that have been performed.
+ size_t BaseCases() const { return baseCases; }
+ //! Modify the number of base cases that have been performed.
+ size_t& BaseCases() { return baseCases; }
+
+ //! Get the number of scores that have been performed.
+ size_t Scores() const { return scores; }
+ //! Modify the number of scores that have been performed.
+ size_t& Scores() { return scores; }
+
+ //! Convenience typedef.
+ typedef neighbor::NeighborSearchTraversalInfo<TreeType> TraversalInfoType;
+
+ //! Get the traversal info.
+ const TraversalInfoType& TraversalInfo() const { return traversalInfo; }
+ //! Modify the traversal info.
+ TraversalInfoType& TraversalInfo() { return traversalInfo; }
+
+ private:
+ //! The dataset.
+ const typename TreeType::Mat& dataset;
+ //! The clusters.
+ const arma::mat& centroids;
+ //! The new centroids.
+ arma::mat& newCentroids;
+ //! The counts of points in each cluster.
+ arma::Col<size_t>& counts;
+ //! Instantiated metric.
+ MetricType& metric;
+
+ //! The number of base cases that have been performed.
+ size_t baseCases;
+ //! The number of scores that have been performed.
+ size_t scores;
+
+ TraversalInfoType traversalInfo;
+
+ arma::uvec spareBlacklist;
+};
+
+}; // namespace kmeans
+}; // namespace mlpack
+
+// Include implementation.
+#include "pelleg_moore_kmeans_rules_impl.hpp"
+
+#endif
diff --git a/src/mlpack/methods/kmeans/pelleg_moore_kmeans_rules_impl.hpp b/src/mlpack/methods/kmeans/pelleg_moore_kmeans_rules_impl.hpp
new file mode 100644
index 0000000..1ad6fd4
--- /dev/null
+++ b/src/mlpack/methods/kmeans/pelleg_moore_kmeans_rules_impl.hpp
@@ -0,0 +1,199 @@
+/**
+ * @file pelleg_moore_kmeans_rules_impl.hpp
+ * @author Ryan Curtin
+ *
+ * Implementation of the pruning rules and base cases necessary to perform
+ * single-tree k-means clustering using the fast Pelleg-Moore k-means algorithm,
+ * which has been shoehorned into the mlpack tree abstractions.
+ */
+#ifndef __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_RULES_IMPL_HPP
+#define __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_RULES_IMPL_HPP
+
+namespace mlpack {
+namespace kmeans {
+
+template<typename MetricType, typename TreeType>
+PellegMooreKMeansRules<MetricType, TreeType>::PellegMooreKMeansRules(
+ const typename TreeType::Mat& dataset,
+ const arma::mat& centroids,
+ arma::mat& newCentroids,
+ arma::Col<size_t>& counts,
+ MetricType& metric) :
+ dataset(dataset),
+ centroids(centroids),
+ newCentroids(newCentroids),
+ counts(counts),
+ metric(metric),
+ baseCases(0),
+ scores(0),
+ spareBlacklist(centroids.n_cols)
+{
+ // Nothing to do.
+ spareBlacklist.zeros();
+}
+
+template<typename MetricType, typename TreeType>
+inline force_inline
+double PellegMooreKMeansRules<MetricType, TreeType>::BaseCase(
+ const size_t /* queryIndex */,
+ const size_t /* referenceIndex */)
+{
+ return 0.0;
+}
+
+template<typename MetricType, typename TreeType>
+double PellegMooreKMeansRules<MetricType, TreeType>::Score(
+ const size_t /* queryIndex */,
+ TreeType& referenceNode)
+{
+ // Obtain the parent's blacklist. If this is the root node, we'll start with
+ // an empty blacklist. This means that after each iteration, we don't need to
+ // reset any statistics.
+ arma::uvec* blacklistPtr = NULL;
+ if (referenceNode.Parent() == NULL ||
+ referenceNode.Parent()->Stat().Blacklist().size() == 0)
+ blacklistPtr = &spareBlacklist;
+ else
+ blacklistPtr = &referenceNode.Parent()->Stat().Blacklist();
+
+ // If the blacklist hasn't been initialized, fill it with zeros.
+ if (blacklistPtr->n_elem == 0)
+ blacklistPtr->zeros(centroids.n_cols);
+ referenceNode.Stat().Blacklist() = *blacklistPtr;
+
+ // The query index is a fake index that we won't use, and the reference node
+ // holds all of the points in the dataset. Our goal is to determine whether
+ // or not this node is dominated by a single cluster.
+ const size_t whitelisted = centroids.n_cols - arma::accu(*blacklistPtr);
+
+ scores += whitelisted;
+
+ arma::vec minDistances(whitelisted);
+ minDistances.fill(DBL_MAX);
+ arma::Col<size_t> indexMappings(whitelisted);
+ size_t index = 0;
+ for (size_t i = 0; i < centroids.n_cols; ++i)
+ {
+ if ((*blacklistPtr)[i] == 0)
+ {
+ minDistances(index) = referenceNode.MinDistance(centroids.col(i));
+ indexMappings(index) = i;
+ ++index;
+ }
+ }
+
+ // Which cluster has minimum distance to the node? Sort by distance.
+ // This should probably be rewritten -- we only need the minimum, not the
+ // entire sorted list. That'll cost O(k) not O(k log k) (depending on sort
+ // type).
+ arma::uvec sortedClusterIndices = sort_index(minDistances);
+ const size_t closestCluster = indexMappings(sortedClusterIndices[0]);
+
+
+ // Now, for every other whitelisted cluster, determine if the closest cluster
+ // owns the point. This calculation is specific to hyperrectangle trees (but,
+ // this implementation is specific to kd-trees, so that's okay). For
+ // circular-bound trees, the condition should be simpler and can probably be
+ // expressed as a comparison between minimum and maximum distances.
+ size_t newBlacklisted = 0;
+ for (size_t c = 0; c < centroids.n_cols; ++c)
+ {
+ if (referenceNode.Stat().Blacklist()[c] == 1 || c == closestCluster)
+ continue;
+
+ // This algorithm comes from the proof of Lemma 4 in the extended version
+ // of the Pelleg-Moore paper (the CMU tech report, that is). It has been
+ // adapted for speed.
+ arma::vec cornerPoint(centroids.n_rows);
+ for (size_t d = 0; d < referenceNode.Bound().Dim(); ++d)
+ {
+ if (centroids(d, c) > centroids(d, closestCluster))
+ cornerPoint(d) = referenceNode.Bound()[d].Hi();
+ else
+ cornerPoint(d) = referenceNode.Bound()[d].Lo();
+ }
+
+ const double closestDist = metric.Evaluate(cornerPoint,
+ centroids.col(closestCluster));
+ const double otherDist = metric.Evaluate(cornerPoint, centroids.col(c));
+
+ if (closestDist < otherDist)
+ {
+ // The closest cluster dominates the node with respect to the cluster c.
+ // So we can blacklist c.
+ referenceNode.Stat().Blacklist()[c] = 1;
+ ++newBlacklisted;
+ }
+ }
+
+ if (whitelisted - newBlacklisted == 1)
+ {
+ // This node is dominated by the first cluster.
+ const size_t cluster = indexMappings(sortedClusterIndices[0]);
+ counts[cluster] += referenceNode.NumDescendants();
+ newCentroids.col(cluster) += referenceNode.NumDescendants() *
+ referenceNode.Stat().Centroid();
+
+ if (referenceNode.Parent() == NULL ||
+ referenceNode.Parent()->Stat().Blacklist().size() == 0)
+ {
+ spareBlacklist.zeros(centroids.n_cols);
+ }
+
+ return DBL_MAX;
+ }
+
+ if (referenceNode.Parent() == NULL ||
+ referenceNode.Parent()->Stat().Blacklist().size() == 0)
+ {
+ spareBlacklist.zeros(centroids.n_cols);
+ }
+
+ // Perform the base case here.
+ for (size_t i = 0; i < referenceNode.NumPoints(); ++i)
+ {
+ size_t bestCluster = centroids.n_cols;
+ double bestDistance = DBL_MAX;
+ for (size_t c = 0; c < centroids.n_cols; ++c)
+ {
+ if (referenceNode.Stat().Blacklist()[c] == 1)
+ continue;
+
+ ++baseCases;
+
+ // The reference index is the index of the data point.
+ const double distance = metric.Evaluate(centroids.col(c),
+ dataset.col(referenceNode.Point(i)));
+
+ if (distance < bestDistance)
+ {
+ bestDistance = distance;
+ bestCluster = c;
+ }
+ }
+
+ // Add to resulting centroid.
+ newCentroids.col(bestCluster) += dataset.col(referenceNode.Point(i));
+ ++counts(bestCluster);
+ }
+
+ // Otherwise, we're not sure, so we can't prune. Recursion order doesn't make
+ // a difference, so we'll just return a score of 0.
+ return 0.0;
+}
+
+template<typename MetricType, typename TreeType>
+double PellegMooreKMeansRules<MetricType, TreeType>::Rescore(
+ const size_t /* queryIndex */,
+ TreeType& /* referenceNode */,
+ const double oldScore)
+{
+ // There's no possible way that calling Rescore() can produce a prune now when
+ // it couldn't before.
+ return oldScore;
+}
+
+}; // namespace kmeans
+}; // namespace mlpack
+
+#endif
diff --git a/src/mlpack/methods/kmeans/pelleg_moore_kmeans_statistic.hpp b/src/mlpack/methods/kmeans/pelleg_moore_kmeans_statistic.hpp
new file mode 100644
index 0000000..2f8244e
--- /dev/null
+++ b/src/mlpack/methods/kmeans/pelleg_moore_kmeans_statistic.hpp
@@ -0,0 +1,81 @@
+/**
+ * @file pelleg_moore_kmeans_statistic.hpp
+ * @author Ryan Curtin
+ *
+ * A StatisticType for trees which holds the blacklist for various k-means
+ * clusters. See the Pelleg and Moore paper for more details.
+ */
+#ifndef __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_STATISTIC_HPP
+#define __MLPACK_METHODS_KMEANS_PELLEG_MOORE_KMEANS_STATISTIC_HPP
+
+namespace mlpack {
+namespace kmeans {
+
+/**
+ * A statistic for trees which holds the blacklist for Pelleg-Moore k-means
+ * clustering (which represents the clusters that cannot possibly own any points
+ * in a node).
+ */
+class PellegMooreKMeansStatistic
+{
+ public:
+ //! Initialize the statistic without a node (this does nothing).
+ PellegMooreKMeansStatistic() { }
+
+ //! Initialize the statistic for a node; this calculates the centroid and
+ //! caches it.
+ template<typename TreeType>
+ PellegMooreKMeansStatistic(TreeType& node)
+ {
+ centroid.zeros(node.Dataset().n_rows);
+
+ // Hope it's a depth-first build procedure. Also, this won't work right for
+ // trees that have self-children or stuff like that.
+ for (size_t i = 0; i < node.NumChildren(); ++i)
+ {
+ centroid += node.Child(i).NumDescendants() *
+ node.Child(i).Stat().Centroid();
+ }
+
+ for (size_t i = 0; i < node.NumPoints(); ++i)
+ {
+ centroid += node.Dataset().col(node.Point(i));
+ }
+
+ if (node.NumDescendants() > 0)
+ centroid /= node.NumDescendants();
+ else
+ centroid.fill(DBL_MAX); // Invalid centroid. What else can we do?
+ }
+
+ //! Get the cluster blacklist.
+ const arma::uvec& Blacklist() const { return blacklist; }
+ //! Modify the cluster blacklist.
+ arma::uvec& Blacklist() { return blacklist; }
+
+ //! Get the node's centroid.
+ const arma::vec& Centroid() const { return centroid; }
+ //! Modify the node's centroid (be careful!).
+ arma::vec& Centroid() { return centroid; }
+
+ //! Return the object as a string.
+ std::string ToString() const
+ {
+ std::ostringstream convert;
+ convert << "KMeansStatistic [" << this << "]" << std::endl;
+ convert << " Blacklist: " << blacklist.t();
+ convert << " Centroid: " << centroid.t();
+ return convert.str();
+ }
+
+ private:
+ //! The cluster blacklist for the node.
+ arma::uvec blacklist;
+ //! The centroid of the node, cached for use during prunes.
+ arma::vec centroid;
+};
+
+}; // namespace kmeans
+}; // namespace mlpack
+
+#endif
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-science/packages/mlpack.git
More information about the debian-science-commits
mailing list