[sagemath] 01/01: Add non-working update to debian-pari-stackwarn.patch.
Tobias Hansen
thansen at moszumanska.debian.org
Fri Dec 2 11:14:20 UTC 2016
This is an automated email from the git hooks/post-receive script.
thansen pushed a commit to branch master
in repository sagemath.
commit 9b84395703f71f4bce3c60c9670b0986d489b109
Author: Tobias Hansen <thansen at broeselmaschine.fc.up.pt>
Date: Fri Dec 2 11:13:27 2016 +0000
Add non-working update to debian-pari-stackwarn.patch.
---
debian/patches/debian-pari-stackwarn-2.patch | 256 +++++++++++++++++++++++++++
1 file changed, 256 insertions(+)
diff --git a/debian/patches/debian-pari-stackwarn-2.patch b/debian/patches/debian-pari-stackwarn-2.patch
new file mode 100644
index 0000000..7c4d13f
--- /dev/null
+++ b/debian/patches/debian-pari-stackwarn-2.patch
@@ -0,0 +1,256 @@
+Description: Set the default size of the PARI stack to 16*10^6 bytes
+ Also ignore the remaining warnings. This gets rid of the warnings
+ of pari increasing the stack size which caused tests to fail.
+ .
+ TODO: This patch should replace debian-pari-stackwarn.patch and make all
+ tests with "Warning: increasing stack size to ..." pass, however
+ they still fail. Does someone know why it's not enough to add the "..."
+ to the tests?
+Author: Tobias Hansen <thansen at debian.org>
+
+--- a/sage/src/sage/libs/pari/pari_instance.pyx
++++ b/sage/src/sage/libs/pari/pari_instance.pyx
+@@ -464,7 +464,7 @@
+
+ @cython.final
+ cdef class PariInstance(PariInstance_auto):
+- def __init__(self, long size=1000000, unsigned long maxprime=500000):
++ def __init__(self, long size=16000000, unsigned long maxprime=500000):
+ """
+ Initialize the PARI system.
+
+@@ -1316,6 +1316,7 @@
+ stack size::
+
+ sage: a = pari('2^100000000')
++ ...
+
+ ``a`` is now a Python variable on the Python heap and does not
+ take up any space on the PARI stack. The PARI stack is still
+@@ -1342,6 +1343,7 @@
+ sage: pari.allocatemem(1, 2^26)
+ PARI stack size set to 1024 bytes, maximum size set to 67108864
+ sage: a = pari(2)^100000000
++ ...
+ sage: pari.stacksize()
+ 16777216
+
+--- a/sage/src/sage/schemes/elliptic_curves/ell_rational_field.py
++++ b/sage/src/sage/schemes/elliptic_curves/ell_rational_field.py
+@@ -1449,6 +1449,7 @@
+ sage: E.analytic_rank(algorithm='pari')
+ 2
+ sage: E.analytic_rank(algorithm='rubinstein')
++ ...
+ 2
+ sage: E.analytic_rank(algorithm='sympow')
+ 2
+@@ -1457,6 +1458,7 @@
+ sage: E.analytic_rank(algorithm='zero_sum')
+ 2
+ sage: E.analytic_rank(algorithm='all')
++ ...
+ 2
+
+ With the optional parameter leading_coefficient set to ``True``, a
+--- a/sage/src/sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py
++++ b/sage/src/sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py
+@@ -445,6 +445,7 @@
+ sage: R.<t> = PolynomialRing(K)
+ sage: H = HyperellipticCurve(t^7 + 487*t^5 + 9*t + 1)
+ sage: H.frobenius_polynomial_pari()
++ ...
+ x^6 - 14*x^5 + 1512*x^4 - 66290*x^3 + 3028536*x^2 - 56168126*x + 8036054027
+
+ Curves defined over a non-prime field are supported as well::
+--- a/sage/src/sage/rings/number_field/number_field_element.pyx
++++ b/sage/src/sage/rings/number_field/number_field_element.pyx
+@@ -2399,6 +2399,7 @@
+ sage: f = x^9 + (zeta22^9 - zeta22^6 + zeta22^4 + 1)*x^8 + (2*zeta22^8 + 4*zeta22^7 - 6*zeta22^5 - 205*zeta22^4 - 6*zeta22^3 + 4*zeta22 + 2)*x^7 + (181*zeta22^9 - 354*zeta22^8 + 145*zeta22^7 - 253*zeta22^6 + 145*zeta22^5 - 354*zeta22^4 + 181*zeta22^3 + 189*zeta22 - 189)*x^6 + (902*zeta22^9 + 13116*zeta22^8 + 902*zeta22^7 - 500*zeta22^5 - 322*zeta22^4 - 176*zeta22^3 + 176*zeta22^2 + 322*zeta22 + 500)*x^5 + (13196*zeta22^9 + 548*zeta22^8 + 9176*zeta22^7 - 17964*zeta22^6 + 8512 [...]
+ sage: L.<a> = K.extension(f)
+ sage: alpha = (a^8 + (zeta22^9 - zeta22^6 + 2*zeta22^4 + 33)*a^7)/(10**2555) #long time
++ ...
+ sage: beta = ~alpha # long time (about 1:45min on a 2014 MacBook Pro, this used to cause a crash in Sage 7.2)
+ sage: alpha*beta # long time
+ 1
+--- a/sage/src/sage/schemes/elliptic_curves/heegner.py
++++ b/sage/src/sage/schemes/elliptic_curves/heegner.py
+@@ -4687,6 +4687,7 @@
+ sage: H = heegner_points(11).reduce_mod(3)
+ sage: R = H.left_orders()[0]
+ sage: H.optimal_embeddings(-7, 1, R)
++ ...
+ [Embedding sending sqrt(-7) to i - j - k,
+ Embedding sending sqrt(-7) to -i + j + k]
+ sage: H.optimal_embeddings(-7, 2, R)
+--- a/sage/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
++++ b/sage/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
+@@ -1910,6 +1910,7 @@
+
+ sage: E = EllipticCurve([-3440, 77658])
+ sage: isogenies_prime_degree_general(E, 43) # long time (16s)
++ ...
+ [Isogeny of degree 43 from Elliptic Curve defined by y^2 = x^3 - 3440*x + 77658 over Rational Field to Elliptic Curve defined by y^2 = x^3 - 6360560*x - 6174354606 over Rational Field]
+
+ Isogenies of degree equal to the characteristic are computed (but
+--- a/sage/src/sage/quadratic_forms/quadratic_form__automorphisms.py
++++ b/sage/src/sage/quadratic_forms/quadratic_form__automorphisms.py
+@@ -149,6 +149,7 @@
+ sage: [len(vs[i]) for i in range(len(vs))]
+ [1, 72, 270, 720, 936, 2160, 2214, 3600]
+ sage: vs = Q.short_vector_list_up_to_length(30) # long time (28s on sage.math, 2014)
++ ...
+ sage: [len(vs[i]) for i in range(len(vs))] # long time
+ [1, 72, 270, 720, 936, 2160, 2214, 3600, 4590, 6552, 5184, 10800, 9360, 12240, 13500, 17712, 14760, 25920, 19710, 26064, 28080, 36000, 25920, 47520, 37638, 43272, 45900, 59040, 46800, 75600]
+
+--- a/sage/src/sage/plot/line.py
++++ b/sage/src/sage/plot/line.py
+@@ -478,6 +478,7 @@
+
+ sage: E = EllipticCurve('37a')
+ sage: vals = E.lseries().values_along_line(1-I, 1+10*I, 100) # critical line
++ ...
+ sage: L = [(z[1].real(), z[1].imag()) for z in vals]
+ sage: line(L, rgbcolor=(3/4,1/2,5/8))
+ Graphics object consisting of 1 graphics primitive
+--- a/sage/src/sage/rings/integer.pyx
++++ b/sage/src/sage/rings/integer.pyx
+@@ -6511,6 +6511,7 @@
+ ....: (2^100).binomial(2^22, algorithm='pari')
+ ....: except AlarmInterrupt:
+ ....: pass
++ ...
+ """
+ cdef Integer x
+ cdef Integer mm
+--- a/sage/src/sage/lfunctions/zero_sums.pyx
++++ b/sage/src/sage/lfunctions/zero_sums.pyx
+@@ -535,6 +535,7 @@
+ 2
+ sage: Z = LFunctionZeroSum(E)
+ sage: E.lseries().zeros(3)
++ ...
+ [0.000000000, 0.000000000, 2.87609907]
+ sage: Z.zerosum(Delta=1,function="sincsquared_fast") # tol 1.0e-13
+ 2.037500084595065
+@@ -624,6 +625,7 @@
+ 1
+ sage: Z = LFunctionZeroSum(E)
+ sage: E.lseries().zeros(2)
++ ...
+ [0.000000000, 5.00317001]
+
+ E is a rank 1 curve; the lowest noncentral zero has imaginary part
+@@ -831,6 +833,7 @@
+
+ sage: E = EllipticCurve("11a")
+ sage: E.lseries().zeros(2)
++ ...
+ [6.36261389, 8.60353962]
+
+ E is a rank zero curve; the lowest zero has imaginary part ~6.36. The
+--- a/sage/src/sage/schemes/elliptic_curves/lseries_ell.py
++++ b/sage/src/sage/schemes/elliptic_curves/lseries_ell.py
+@@ -267,9 +267,11 @@
+
+ sage: E = EllipticCurve('37a')
+ sage: E.lseries().zeros(2)
++ ...
+ [0.000000000, 5.00317001]
+
+ sage: a = E.lseries().zeros(20) # long time
++ ...
+ sage: point([(1,x) for x in a]) # graph (long time)
+ Graphics object consisting of 1 graphics primitive
+
+@@ -305,6 +307,7 @@
+
+ sage: E = EllipticCurve('37a')
+ sage: E.lseries().zeros_in_interval(6, 10, 0.1) # long time
++ ...
+ [(6.87039122, 0.248922780), (8.01433081, -0.140168533), (9.93309835, -0.129943029)]
+ """
+ from sage.lfunctions.lcalc import lcalc
+@@ -336,6 +339,7 @@
+
+ sage: E = EllipticCurve('37a')
+ sage: E.lseries().values_along_line(1, 0.5 + 20*I, 5)
++ ...
+ [(0.500000000, ...),
+ (0.400000000 + 4.00000000*I, 3.31920245 - 2.60028054*I),
+ (0.300000000 + 8.00000000*I, -0.886341185 - 0.422640337*I),
+@@ -374,6 +378,7 @@
+
+ sage: E = EllipticCurve('37a')
+ sage: vals = E.lseries().twist_values(1, -12, -4)
++ ...
+ sage: vals # abs tol 1e-17
+ [(-11, 1.47824342), (-8, 8.9590946e-18), (-7, 1.85307619), (-4, 2.45138938)]
+ sage: F = E.quadratic_twist(-8)
+@@ -414,7 +419,9 @@
+
+ sage: E = EllipticCurve('37a')
+ sage: E.lseries().twist_zeros(3, -4, -3) # long time
+- {-4: [1.60813783, 2.96144840, 3.89751747], -3: [2.06170900, 3.48216881, 4.45853219]}
++ ...
++ {-4: [1.60813783, 2.96144840, 3.89751747],
++ -3: [2.06170900, 3.48216881, 4.45853219]}
+ """
+ from sage.lfunctions.lcalc import lcalc
+ return lcalc.twist_zeros(n, dmin, dmax, L=self.__E)
+--- a/sage/src/sage/libs/pari/gen.pyx
++++ b/sage/src/sage/libs/pari/gen.pyx
+@@ -44,6 +44,7 @@
+ sage: x = polygen(ZpFM(3,10))
+ sage: pol = ((x-1)^50 + x)
+ sage: pari(pol).poldisc()
++ ...
+ 2*3 + 3^4 + 2*3^6 + 3^7 + 2*3^8 + 2*3^9 + O(3^10)
+ """
+
+--- a/sage/src/sage/lfunctions/lcalc.py
++++ b/sage/src/sage/lfunctions/lcalc.py
+@@ -122,6 +122,7 @@
+ sage: lcalc.zeros(5, L='--tau') # long time
+ [9.22237940, 13.9075499, 17.4427770, 19.6565131, 22.3361036]
+ sage: lcalc.zeros(3, EllipticCurve('37a')) # long time
++ ...
+ [0.000000000, 5.00317001, 6.87039122]
+ """
+ L = self._compute_L(L)
+@@ -231,6 +232,7 @@
+
+ sage: E = EllipticCurve('389a')
+ sage: E.lseries().values_along_line(0.5, 3, 5)
++ ...
+ [(0.000000000, 0.209951303),
+ (0.500000000, -...e-16),
+ (1.00000000, 0.133768433),
+@@ -376,6 +378,7 @@
+
+ sage: E = EllipticCurve('37a')
+ sage: lcalc.analytic_rank(E)
++ ...
+ 1
+ """
+ L = self._compute_L(L)
+--- a/sage/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py
++++ b/sage/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py
+@@ -555,6 +555,7 @@
+
+ sage: Q = DiagonalQuadraticForm(ZZ, [1, 1])
+ sage: Q.representation_vector_list(10)
++ ...
+ [[(0, 0)],
+ [(0, 1), (0, -1), (1, 0), (-1, 0)],
+ [(1, 1), (-1, -1), (1, -1), (-1, 1)],
+--- a/sage/src/sage/libs/pari/handle_error.pyx
++++ b/sage/src/sage/libs/pari/handle_error.pyx
+@@ -197,6 +197,7 @@
+ sage: pari.allocatemem(2^12, 2^26)
+ PARI stack size set to 4096 bytes, maximum size set to 67108864
+ sage: x = pari('2^(2^26)')
++ ...
+ sage: x == 2^(2^26)
+ True
+
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-science/packages/sagemath.git
More information about the debian-science-commits
mailing list