[python-arrayfire] 134/250: DOC: Adding missing documentation for vision.py

Ghislain Vaillant ghisvail-guest at moszumanska.debian.org
Mon Mar 28 22:59:40 UTC 2016


This is an automated email from the git hooks/post-receive script.

ghisvail-guest pushed a commit to branch debian/master
in repository python-arrayfire.

commit d2773fbc8f45dc825a114ec207117837ec6dbdcf
Author: Pavan Yalamanchili <pavan at arrayfire.com>
Date:   Tue Nov 10 11:23:10 2015 -0500

    DOC: Adding missing documentation for vision.py
---
 arrayfire/vision.py | 114 ++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 114 insertions(+)

diff --git a/arrayfire/vision.py b/arrayfire/vision.py
index 7b43290..448e5e0 100644
--- a/arrayfire/vision.py
+++ b/arrayfire/vision.py
@@ -6,11 +6,48 @@
 # The complete license agreement can be obtained at:
 # http://arrayfire.com/licenses/BSD-3-Clause
 ########################################################
+
+"""
+Computer vision functions for arrayfire.
+"""
+
 from .library import *
 from .array import *
 from .features import *
 
 def fast(image, threshold=20.0, arc_length=9, non_max=True, feature_ratio=0.05, edge=3):
+    """
+    FAST feature detector.
+
+    Parameters
+    ----------
+
+    image         : af.Array
+                  A 2D array representing an image.
+
+    threshold     : scalar. optional. default: 20.0.
+                  FAST threshold for which a pixel of the circle around a central pixel is consdered.
+
+    arc_length    : scalar. optional. default: 9
+                  The minimum length of arc length to be considered. Max length should be 16.
+
+    non_max       : Boolean. optional. default: True
+                  A boolean flag specifying if non max suppression has to be performed.
+
+    feature_ratio : scalar. optional. default: 0.05 (5%)
+                  Specifies the maximum ratio of features to pixels in the image.
+
+    edge          : scalar. optional. default: 3.
+                  Specifies the number of edge rows and columns to be ignored.
+
+    Returns
+    ---------
+    features     : af.Features()
+                 - x, y, and score are calculated
+                 - orientation is 0 because FAST does not compute orientation
+                 - size is 1 because FAST does not compute multiple scales
+
+    """
     out = Features()
     safe_call(backend.get().af_fast(ct.pointer(out.feat),
                                     image.arr, ct.c_float(threshold), ct.c_uint(arc_length), non_max,
@@ -18,6 +55,37 @@ def fast(image, threshold=20.0, arc_length=9, non_max=True, feature_ratio=0.05,
     return out
 
 def orb(image, threshold=20.0, max_features=400, scale = 1.5, num_levels = 4, blur_image = False):
+    """
+    ORB Feature descriptor.
+
+    Parameters
+    ----------
+
+    image         : af.Array
+                  A 2D array representing an image.
+
+    threshold     : scalar. optional. default: 20.0.
+                  FAST threshold for which a pixel of the circle around a central pixel is consdered.
+
+    max_features  : scalar. optional. default: 400.
+                  Specifies the maximum number of features to be considered.
+
+    scale         : scalar. optional. default: 1.5.
+                  Specifies the factor by which images are down scaled at each level.
+
+    num_levles    : scalar. optional. default: 4.
+                  Specifies the number of levels used in the image pyramid.
+
+    blur_image    : Boolean. optional. default: False.
+                  Flag specifying if the input has to be blurred before computing descriptors.
+                  A gaussian filter with sigma = 2 is applied if True.
+
+
+    Returns
+    ---------
+    (features, descriptor)     : tuple of (af.Features(), af.Array)
+
+    """
     feat = Features()
     desc = Array()
     safe_call(backend.get().af_orb(ct.pointer(feat.feat), ct.pointer(desc.arr),
@@ -26,6 +94,31 @@ def orb(image, threshold=20.0, max_features=400, scale = 1.5, num_levels = 4, bl
     return feat, desc
 
 def hamming_matcher(query, database, dim = 0, num_nearest = 1):
+    """
+    Hamming distance matcher.
+
+    Parameters
+    -----------
+
+    query    : af.Array
+             A query feature descriptor
+
+    database : af.Array
+             A multi dimensional array containing the feature descriptor database.
+
+    dim      : scalar. optional. default: 0.
+             Specifies the dimension along which feature descriptor lies.
+
+    num_neaarest: scalar. optional. default: 1.
+             Specifies the number of nearest neighbors to find.
+
+    Returns
+    ---------
+
+    (location, distance): tuple of af.Array
+                          location and distances of closest matches.
+
+    """
     index = Array()
     dist = Array()
     safe_call(backend.get().af_hamming_matcher(ct.pointer(idx.arr), ct.pointer(dist.arr),
@@ -34,6 +127,27 @@ def hamming_matcher(query, database, dim = 0, num_nearest = 1):
     return index, dist
 
 def match_template(image, template, match_type = MATCH.SAD):
+    """
+    Find the closest match of a template in an image.
+
+    Parameters
+    ----------
+
+    image    : af.Array
+             A multi dimensional array specifying an image or batch of images.
+
+    template : af.Array
+             A multi dimensional array specifying a template or batch of templates.
+
+    match_type: optional: af.MATCH. default: af.MATCH.SAD
+             Specifies the match function metric.
+
+    Returns
+    --------
+    out     : af.Array
+            An array containing the score of the match at each pixel.
+
+    """
     out = Array()
     safe_call(backend.get().af_match_template(ct.pointer(out.arr), image.arr, template.arr, match_type))
     return out

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-science/packages/python-arrayfire.git



More information about the debian-science-commits mailing list