[kernel] r9606 - in dists/trunk/linux-2.6/debian: . config patches/features/all patches/series

Maximilian Attems maks at alioth.debian.org
Wed Oct 3 19:18:53 UTC 2007


Author: maks
Date: Wed Oct  3 19:18:52 2007
New Revision: 9606

Log:
Add and enable E1000E.
needed for any new intel board.


Added:
   dists/trunk/linux-2.6/debian/patches/features/all/e1000e-20070806.patch
   dists/trunk/linux-2.6/debian/patches/features/all/e1000e-fixes.patch
Modified:
   dists/trunk/linux-2.6/debian/changelog
   dists/trunk/linux-2.6/debian/config/config
   dists/trunk/linux-2.6/debian/patches/series/1~experimental.1

Modified: dists/trunk/linux-2.6/debian/changelog
==============================================================================
--- dists/trunk/linux-2.6/debian/changelog	(original)
+++ dists/trunk/linux-2.6/debian/changelog	Wed Oct  3 19:18:52 2007
@@ -24,6 +24,7 @@
   * Add and enable IWLWIFI.
   * Add git-ieee1394.patch for latest firewire fixes.
   * [ipv6] Enable IPV6_MULTIPLE_TABLES, IPV6_SUBTREES. (closes: #441226)
+  * Add and enable E1000E.
 
   [ Martin Michlmayr ]
   * [mips] Add a bcm1480 PCI build fix.
@@ -57,7 +58,7 @@
   [ dann frazier ]
   * [ia64] Enable cciss module
 
- -- Bastian Blank <waldi at debian.org>  Wed, 03 Oct 2007 13:43:45 +0200
+ -- maximilian attems <maks at debian.org>  Wed, 03 Oct 2007 21:16:37 +0200
 
 linux-2.6 (2.6.22-5) UNRELEASED; urgency=low
 

Modified: dists/trunk/linux-2.6/debian/config/config
==============================================================================
--- dists/trunk/linux-2.6/debian/config/config	(original)
+++ dists/trunk/linux-2.6/debian/config/config	Wed Oct  3 19:18:52 2007
@@ -1545,6 +1545,7 @@
 # CONFIG_ACENIC_OMIT_TIGON_I is not set
 CONFIG_E1000_NAPI=y
 # CONFIG_E1000_DISABLE_PACKET_SPLIT is not set
+CONFIG_E1000E=m
 CONFIG_SKGE=m
 CONFIG_SKY2=m
 # CONFIG_SKY2_DEBUG is not set

Added: dists/trunk/linux-2.6/debian/patches/features/all/e1000e-20070806.patch
==============================================================================
--- (empty file)
+++ dists/trunk/linux-2.6/debian/patches/features/all/e1000e-20070806.patch	Wed Oct  3 19:18:52 2007
@@ -0,0 +1,18164 @@
+From b0d321c026f3c3f2b53df13e1d9bc1fe21ce129a Mon Sep 17 00:00:00 2001
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Date: Mon, 6 Aug 2007 14:14:44 -0700
+Subject: [PATCH] e1000e: New pci-express e1000 driver (currently for ICH9 devices only)
+
+This driver implements support for the ICH9 on-board LAN ethernet
+device. The device is similar to ICH8.
+
+The driver encompasses code to support 82571/2/3, es2lan and ICH8
+devices as well, but those device IDs are disabled and will be
+"lifted" from the e1000 driver over one at a time once this driver
+receives some more live time.
+
+Changes to the last snapshot posted are exclusively in the internal
+hardware API organization. Many thanks to Jeff Garzik for jumping in
+and getting this organized with a keen eye on the future layout.
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+ drivers/net/Kconfig          |   23 +
+ drivers/net/Makefile         |    1 +
+ drivers/net/e1000e/82571.c   | 1382 +++++++++++++
+ drivers/net/e1000e/Makefile  |   37 +
+ drivers/net/e1000e/defines.h |  738 +++++++
+ drivers/net/e1000e/e1000.h   |  518 +++++
+ drivers/net/e1000e/es2lan.c  | 1255 ++++++++++++
+ drivers/net/e1000e/ethtool.c | 1763 +++++++++++++++++
+ drivers/net/e1000e/hw.h      |  862 +++++++++
+ drivers/net/e1000e/ich8lan.c | 2297 ++++++++++++++++++++++
+ drivers/net/e1000e/lib.c     | 2528 ++++++++++++++++++++++++
+ drivers/net/e1000e/netdev.c  | 4413 ++++++++++++++++++++++++++++++++++++++++++
+ drivers/net/e1000e/param.c   |  382 ++++
+ drivers/net/e1000e/phy.c     | 1821 +++++++++++++++++
+ 14 files changed, 18020 insertions(+), 0 deletions(-)
+ create mode 100644 drivers/net/e1000e/82571.c
+ create mode 100644 drivers/net/e1000e/Makefile
+ create mode 100644 drivers/net/e1000e/defines.h
+ create mode 100644 drivers/net/e1000e/e1000.h
+ create mode 100644 drivers/net/e1000e/es2lan.c
+ create mode 100644 drivers/net/e1000e/ethtool.c
+ create mode 100644 drivers/net/e1000e/hw.h
+ create mode 100644 drivers/net/e1000e/ich8lan.c
+ create mode 100644 drivers/net/e1000e/lib.c
+ create mode 100644 drivers/net/e1000e/netdev.c
+ create mode 100644 drivers/net/e1000e/param.c
+ create mode 100644 drivers/net/e1000e/phy.c
+
+diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig
+index 81ef81c..e5f2f02 100644
+--- a/drivers/net/Kconfig
++++ b/drivers/net/Kconfig
+@@ -2059,6 +2059,29 @@ config E1000_DISABLE_PACKET_SPLIT
+ 
+ 	  If in doubt, say N.
+ 
++config E1000E
++	tristate "Intel(R) PRO/1000 PCI-Express Gigabit Ethernet support"
++	depends on PCI
++	---help---
++	  This driver supports the PCI-Express Intel(R) PRO/1000 gigabit
++	  ethernet family of adapters. For PCI or PCI-X e1000 adapters,
++	  use the regular e1000 driver For more information on how to
++	  identify your adapter, go to the Adapter & Driver ID Guide at:
++
++	  <http://support.intel.com/support/network/adapter/pro100/21397.htm>
++
++	  For general information and support, go to the Intel support
++	  website at:
++
++	  <http://support.intel.com>
++
++	  More specific information on configuring the driver is in
++	  <file:Documentation/networking/e1000e.txt>.
++
++	  To compile this driver as a module, choose M here and read
++	  <file:Documentation/networking/net-modules.txt>.  The module
++	  will be called e1000e.
++
+ source "drivers/net/ixp2000/Kconfig"
+ 
+ config MYRI_SBUS
+diff --git a/drivers/net/Makefile b/drivers/net/Makefile
+index e684212..4140a0c 100644
+--- a/drivers/net/Makefile
++++ b/drivers/net/Makefile
+@@ -3,6 +3,7 @@
+ #
+ 
+ obj-$(CONFIG_E1000) += e1000/
++obj-$(CONFIG_E1000E) += e1000e/
+ obj-$(CONFIG_IBM_EMAC) += ibm_emac/
+ obj-$(CONFIG_IXGB) += ixgb/
+ obj-$(CONFIG_CHELSIO_T1) += chelsio/
+diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c
+new file mode 100644
+index 0000000..a1b9d16
+--- /dev/null
++++ b/drivers/net/e1000e/82571.c
+@@ -0,0 +1,1382 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/*
++ * 82571EB Gigabit Ethernet Controller
++ * 82571EB Gigabit Ethernet Controller (Fiber)
++ * 82572EI Gigabit Ethernet Controller (Copper)
++ * 82572EI Gigabit Ethernet Controller (Fiber)
++ * 82572EI Gigabit Ethernet Controller
++ * 82573V Gigabit Ethernet Controller (Copper)
++ * 82573E Gigabit Ethernet Controller (Copper)
++ * 82573L Gigabit Ethernet Controller
++ */
++
++#include "e1000.h"
++
++#define ID_LED_RESERVED_F746 0xF746
++#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
++			      (ID_LED_OFF1_ON2  <<  8) | \
++			      (ID_LED_DEF1_DEF2 <<  4) | \
++			      (ID_LED_DEF1_DEF2))
++
++#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
++
++static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
++static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
++static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
++static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
++static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
++				      u16 words, u16 *data);
++static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
++static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
++static s32 e1000_setup_link_82571(struct e1000_hw *hw);
++static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
++
++/**
++ *  e1000_init_phy_params_82571 - Init PHY func ptrs.
++ *  @hw: pointer to the HW structure
++ *
++ *  This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val = E1000_SUCCESS;
++
++	if (hw->media_type != e1000_media_type_copper) {
++		phy->type = e1000_phy_none;
++		goto out;
++	}
++
++	phy->addr			 = 1;
++	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
++	phy->reset_delay_us		 = 100;
++
++	switch (hw->mac.type) {
++	case e1000_82571:
++	case e1000_82572:
++		phy->type		 = e1000_phy_igp_2;
++		break;
++	case e1000_82573:
++		phy->type		 = e1000_phy_m88;
++		break;
++	default:
++		ret_val = -E1000_ERR_PHY;
++		goto out;
++		break;
++	}
++
++	/* This can only be done after all function pointers are setup. */
++	ret_val = e1000_get_phy_id_82571(hw);
++
++	/* Verify phy id */
++	switch (hw->mac.type) {
++	case e1000_82571:
++	case e1000_82572:
++		if (phy->id != IGP01E1000_I_PHY_ID) {
++			ret_val = -E1000_ERR_PHY;
++			goto out;
++		}
++		break;
++	case e1000_82573:
++		if (phy->id != M88E1111_I_PHY_ID) {
++			ret_val = -E1000_ERR_PHY;
++			goto out;
++		}
++		break;
++	default:
++		ret_val = -E1000_ERR_PHY;
++		goto out;
++		break;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
++ *  @hw: pointer to the HW structure
++ *
++ *  This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	u32 eecd = er32(EECD);
++	u16 size;
++
++	nvm->opcode_bits = 8;
++	nvm->delay_usec = 1;
++	switch (nvm->override) {
++	case e1000_nvm_override_spi_large:
++		nvm->page_size = 32;
++		nvm->address_bits = 16;
++		break;
++	case e1000_nvm_override_spi_small:
++		nvm->page_size = 8;
++		nvm->address_bits = 8;
++		break;
++	default:
++		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
++		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
++		break;
++	}
++
++	switch (hw->mac.type) {
++	case e1000_82573:
++		if (((eecd >> 15) & 0x3) == 0x3) {
++			nvm->type = e1000_nvm_flash_hw;
++			nvm->word_size = 2048;
++			/* Autonomous Flash update bit must be cleared due
++			 * to Flash update issue.
++			 */
++			eecd &= ~E1000_EECD_AUPDEN;
++			ew32(EECD, eecd);
++			break;
++		}
++		/* Fall Through */
++	default:
++		nvm->type	= e1000_nvm_eeprom_spi;
++		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
++				  E1000_EECD_SIZE_EX_SHIFT);
++		/* Added to a constant, "size" becomes the left-shift value
++		 * for setting word_size.
++		 */
++		size += NVM_WORD_SIZE_BASE_SHIFT;
++		nvm->word_size	= 1 << size;
++		break;
++	}
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_init_mac_params_82571 - Init MAC func ptrs.
++ *  @hw: pointer to the HW structure
++ *
++ *  This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct e1000_mac_info *mac = &hw->mac;
++	struct e1000_mac_operations *func = &mac->ops;
++	s32 ret_val = E1000_SUCCESS;
++
++	/* Set media type */
++	switch (adapter->pdev->device) {
++	case E1000_DEV_ID_82571EB_FIBER:
++	case E1000_DEV_ID_82572EI_FIBER:
++	case E1000_DEV_ID_82571EB_QUAD_FIBER:
++		hw->media_type = e1000_media_type_fiber;
++		break;
++	case E1000_DEV_ID_82571EB_SERDES:
++	case E1000_DEV_ID_82572EI_SERDES:
++		hw->media_type = e1000_media_type_internal_serdes;
++		break;
++	default:
++		hw->media_type = e1000_media_type_copper;
++		break;
++	}
++
++	/* Set mta register count */
++	mac->mta_reg_count = 128;
++	/* Set rar entry count */
++	mac->rar_entry_count = E1000_RAR_ENTRIES;
++	/* Set if manageability features are enabled. */
++	mac->arc_subsystem_valid =
++		(er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
++
++	/* check for link */
++	switch (hw->media_type) {
++	case e1000_media_type_copper:
++		func->setup_physical_interface = e1000_setup_copper_link_82571;
++		func->check_for_link = e1000_check_for_copper_link;
++		func->get_link_up_info = e1000_get_speed_and_duplex_copper;
++		break;
++	case e1000_media_type_fiber:
++		func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
++		func->check_for_link = e1000_check_for_fiber_link;
++		func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes;
++		break;
++	case e1000_media_type_internal_serdes:
++		func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
++		func->check_for_link = e1000_check_for_serdes_link;
++		func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes;
++		break;
++	default:
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++		break;
++	}
++
++out:
++	return ret_val;
++}
++
++static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	static int global_quad_port_a; /* global port a indication */
++	struct pci_dev *pdev = adapter->pdev;
++	u16 eeprom_data = 0;
++	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
++	s32 rc;
++
++	rc = e1000_init_mac_params_82571(adapter);
++	if (rc)
++		return rc;
++
++	rc = e1000_init_nvm_params_82571(hw);
++	if (rc)
++		return rc;
++
++	rc = e1000_init_phy_params_82571(hw);
++	if (rc)
++		return rc;
++
++	/* tag quad port adapters first, it's used below */
++	switch (pdev->device) {
++	case E1000_DEV_ID_82571EB_QUAD_COPPER:
++	case E1000_DEV_ID_82571EB_QUAD_FIBER:
++	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
++		adapter->flags |= FLAG_IS_QUAD_PORT;
++		/* mark the first port */
++		if (global_quad_port_a == 0)
++			adapter->flags |= FLAG_IS_QUAD_PORT_A;
++		/* Reset for multiple quad port adapters */
++		global_quad_port_a++;
++		if (global_quad_port_a == 4)
++			global_quad_port_a = 0;
++		break;
++	default:
++		break;
++	}
++
++	switch (adapter->hw.mac.type) {
++	case e1000_82571:
++		/* these dual ports don't have WoL on port B at all */
++		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
++		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
++		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
++		    (is_port_b))
++			adapter->flags &= ~FLAG_HAS_WOL;
++		/* quad ports only support WoL on port A */
++		if (adapter->flags & FLAG_IS_QUAD_PORT &&
++		    (!adapter->flags & FLAG_IS_QUAD_PORT_A))
++			adapter->flags &= ~FLAG_HAS_WOL;
++		break;
++
++	case e1000_82573:
++		if (pdev->device == E1000_DEV_ID_82573L) {
++			e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
++				       &eeprom_data);
++			if (eeprom_data & NVM_WORD1A_ASPM_MASK)
++				adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
++		}
++		break;
++	default:
++		break;
++	}
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
++ *  @hw: pointer to the HW structure
++ *
++ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
++ *  revision in the hardware structure.
++ **/
++static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val = E1000_SUCCESS;
++
++	switch (hw->mac.type) {
++	case e1000_82571:
++	case e1000_82572:
++		/* The 82571 firmware may still be configuring the PHY.
++		 * In this case, we cannot access the PHY until the
++		 * configuration is done.  So we explicitly set the
++		 * PHY ID. */
++		phy->id = IGP01E1000_I_PHY_ID;
++		break;
++	case e1000_82573:
++		ret_val = e1000_get_phy_id(hw);
++		break;
++	default:
++		ret_val = -E1000_ERR_PHY;
++		break;
++	}
++
++	return ret_val;
++}
++
++/**
++ *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
++ *  @hw: pointer to the HW structure
++ *
++ *  Acquire the HW semaphore to access the PHY or NVM
++ **/
++static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
++{
++	u32 swsm;
++	s32 ret_val = E1000_SUCCESS;
++	s32 timeout = hw->nvm.word_size + 1;
++	s32 i = 0;
++
++	/* Get the FW semaphore. */
++	for (i = 0; i < timeout; i++) {
++		swsm = er32(SWSM);
++		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
++
++		/* Semaphore acquired if bit latched */
++		if (er32(SWSM) & E1000_SWSM_SWESMBI)
++			break;
++
++		udelay(50);
++	}
++
++	if (i == timeout) {
++		/* Release semaphores */
++		e1000_put_hw_semaphore(hw);
++		hw_dbg(hw, "Driver can't access the NVM\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
++ *  @hw: pointer to the HW structure
++ *
++ *  Release hardware semaphore used to access the PHY or NVM
++ **/
++static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
++{
++	u32 swsm;
++
++	swsm = er32(SWSM);
++
++	swsm &= ~E1000_SWSM_SWESMBI;
++
++	ew32(SWSM, swsm);
++}
++
++/**
++ *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
++ *  @hw: pointer to the HW structure
++ *
++ *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
++ *  Then for non-82573 hardware, set the EEPROM access request bit and wait
++ *  for EEPROM access grant bit.  If the access grant bit is not set, release
++ *  hardware semaphore.
++ **/
++static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
++{
++	s32 ret_val;
++
++	ret_val = e1000_get_hw_semaphore_82571(hw);
++	if (ret_val)
++		goto out;
++
++	if (hw->mac.type != e1000_82573)
++		ret_val = e1000_acquire_nvm(hw);
++
++	if (ret_val)
++		e1000_put_hw_semaphore_82571(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
++ *  @hw: pointer to the HW structure
++ *
++ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
++ **/
++static void e1000_release_nvm_82571(struct e1000_hw *hw)
++{
++	e1000_release_nvm(hw);
++	e1000_put_hw_semaphore_82571(hw);
++}
++
++/**
++ *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
++ *  @hw: pointer to the HW structure
++ *  @offset: offset within the EEPROM to be written to
++ *  @words: number of words to write
++ *  @data: 16 bit word(s) to be written to the EEPROM
++ *
++ *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
++ *
++ *  If e1000_update_nvm_checksum is not called after this function, the
++ *  EEPROM will most likley contain an invalid checksum.
++ **/
++static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
++				 u16 *data)
++{
++	s32 ret_val = E1000_SUCCESS;
++
++	switch (hw->mac.type) {
++	case e1000_82573:
++		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
++		break;
++	case e1000_82571:
++	case e1000_82572:
++		ret_val = e1000_write_nvm_spi(hw, offset, words, data);
++		break;
++	default:
++		ret_val = -E1000_ERR_NVM;
++		break;
++	}
++
++	return ret_val;
++}
++
++/**
++ *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
++ *  @hw: pointer to the HW structure
++ *
++ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
++ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
++ *  value to the EEPROM.
++ **/
++static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
++{
++	u32 eecd;
++	s32 ret_val;
++	u16 i;
++
++	ret_val = e1000_update_nvm_checksum_generic(hw);
++	if (ret_val)
++		goto out;
++
++	/* If our nvm is an EEPROM, then we're done
++	 * otherwise, commit the checksum to the flash NVM. */
++	if (hw->nvm.type != e1000_nvm_flash_hw)
++		goto out;
++
++	/* Check for pending operations. */
++	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
++		msleep(1);
++		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
++			break;
++	}
++
++	if (i == E1000_FLASH_UPDATES) {
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	/* Reset the firmware if using STM opcode. */
++	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
++		/* The enabling of and the actual reset must be done
++		 * in two write cycles.
++		 */
++		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
++		e1e_flush();
++		ew32(HICR, E1000_HICR_FW_RESET);
++	}
++
++	/* Commit the write to flash */
++	eecd = er32(EECD) | E1000_EECD_FLUPD;
++	ew32(EECD, eecd);
++
++	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
++		msleep(1);
++		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
++			break;
++	}
++
++	if (i == E1000_FLASH_UPDATES) {
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
++ *  @hw: pointer to the HW structure
++ *
++ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
++ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
++ **/
++static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
++{
++	if (hw->nvm.type == e1000_nvm_flash_hw)
++		e1000_fix_nvm_checksum_82571(hw);
++
++	return e1000_validate_nvm_checksum_generic(hw);
++}
++
++/**
++ *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
++ *  @hw: pointer to the HW structure
++ *  @offset: offset within the EEPROM to be written to
++ *  @words: number of words to write
++ *  @data: 16 bit word(s) to be written to the EEPROM
++ *
++ *  After checking for invalid values, poll the EEPROM to ensure the previous
++ *  command has completed before trying to write the next word.  After write
++ *  poll for completion.
++ *
++ *  If e1000_update_nvm_checksum is not called after this function, the
++ *  EEPROM will most likley contain an invalid checksum.
++ **/
++static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
++				      u16 words, u16 *data)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	u32 i;
++	u32 eewr = 0;
++	s32 ret_val = 0;
++
++	/* A check for invalid values:  offset too large, too many words,
++	 * and not enough words. */
++	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
++	    (words == 0)) {
++		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	for (i = 0; i < words; i++) {
++		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
++		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
++		       E1000_NVM_RW_REG_START;
++
++		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
++		if (ret_val)
++			break;
++
++		ew32(EEWR, eewr);
++
++		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
++		if (ret_val)
++			break;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_cfg_done_82571 - Poll for configuration done
++ *  @hw: pointer to the HW structure
++ *
++ *  Reads the management control register for the config done bit to be set.
++ **/
++static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
++{
++	s32 timeout = PHY_CFG_TIMEOUT;
++	s32 ret_val = E1000_SUCCESS;
++
++	while (timeout) {
++		if (er32(EEMNGCTL) &
++		    E1000_NVM_CFG_DONE_PORT_0)
++			break;
++		msleep(1);
++		timeout--;
++	}
++	if (!timeout) {
++		hw_dbg(hw, "MNG configuration cycle has not completed.\n");
++		ret_val = -E1000_ERR_RESET;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
++ *  @hw: pointer to the HW structure
++ *  @active: TRUE to enable LPLU, FALSE to disable
++ *
++ *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
++ *  this function also disables smart speed and vice versa.  LPLU will not be
++ *  activated unless the device autonegotiation advertisement meets standards
++ *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
++ *  pointer entry point only called by PHY setup routines.
++ **/
++static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 data;
++
++	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
++	if (ret_val)
++		goto out;
++
++	if (active) {
++		data |= IGP02E1000_PM_D0_LPLU;
++		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
++		if (ret_val)
++			goto out;
++
++		/* When LPLU is enabled, we should disable SmartSpeed */
++		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
++		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
++		if (ret_val)
++			goto out;
++	} else {
++		data &= ~IGP02E1000_PM_D0_LPLU;
++		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
++		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
++		 * during Dx states where the power conservation is most
++		 * important.  During driver activity we should enable
++		 * SmartSpeed, so performance is maintained. */
++		if (phy->smart_speed == e1000_smart_speed_on) {
++			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     &data);
++			if (ret_val)
++				goto out;
++
++			data |= IGP01E1000_PSCFR_SMART_SPEED;
++			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     data);
++			if (ret_val)
++				goto out;
++		} else if (phy->smart_speed == e1000_smart_speed_off) {
++			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     &data);
++			if (ret_val)
++				goto out;
++
++			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     data);
++			if (ret_val)
++				goto out;
++		}
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_reset_hw_82571 - Reset hardware
++ *  @hw: pointer to the HW structure
++ *
++ *  This resets the hardware into a known state.  This is a
++ *  function pointer entry point called by the api module.
++ **/
++static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
++{
++	u32 ctrl;
++	u32 extcnf_ctrl;
++	u32 ctrl_ext;
++	u32 icr;
++	s32 ret_val;
++	u16 i = 0;
++
++	/* Prevent the PCI-E bus from sticking if there is no TLP connection
++	 * on the last TLP read/write transaction when MAC is reset.
++	 */
++	ret_val = e1000_disable_pcie_master(hw);
++	if (ret_val)
++		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
++
++	hw_dbg(hw, "Masking off all interrupts\n");
++	ew32(IMC, 0xffffffff);
++
++	ew32(RCTL, 0);
++	ew32(TCTL, E1000_TCTL_PSP);
++	e1e_flush();
++
++	msleep(10);
++
++	/* Must acquire the MDIO ownership before MAC reset.
++	 * Ownership defaults to firmware after a reset. */
++	if (hw->mac.type == e1000_82573) {
++		extcnf_ctrl = er32(EXTCNF_CTRL);
++		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
++
++		do {
++			ew32(EXTCNF_CTRL, extcnf_ctrl);
++			extcnf_ctrl = er32(EXTCNF_CTRL);
++
++			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
++				break;
++
++			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
++
++			msleep(2);
++			i++;
++		} while (i < MDIO_OWNERSHIP_TIMEOUT);
++	}
++
++	ctrl = er32(CTRL);
++
++	hw_dbg(hw, "Issuing a global reset to MAC\n");
++	ew32(CTRL, ctrl | E1000_CTRL_RST);
++
++	if (hw->nvm.type == e1000_nvm_flash_hw) {
++		udelay(10);
++		ctrl_ext = er32(CTRL_EXT);
++		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
++		ew32(CTRL_EXT, ctrl_ext);
++		e1e_flush();
++	}
++
++	ret_val = e1000_get_auto_rd_done(hw);
++	if (ret_val)
++		/* We don't want to continue accessing MAC registers. */
++		goto out;
++
++	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
++	 * Need to wait for Phy configuration completion before accessing
++	 * NVM and Phy.
++	 */
++	if (hw->mac.type == e1000_82573)
++		msleep(25);
++
++	/* Clear any pending interrupt events. */
++	ew32(IMC, 0xffffffff);
++	icr = er32(ICR);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_init_hw_82571 - Initialize hardware
++ *  @hw: pointer to the HW structure
++ *
++ *  This inits the hardware readying it for operation.
++ **/
++static s32 e1000_init_hw_82571(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	u32 reg_data;
++	s32 ret_val;
++	u16 i;
++	u16 rar_count = mac->rar_entry_count;
++
++	e1000_initialize_hw_bits_82571(hw);
++
++	/* Initialize identification LED */
++	ret_val = e1000_id_led_init(hw);
++	if (ret_val) {
++		hw_dbg(hw, "Error initializing identification LED\n");
++		goto out;
++	}
++
++	/* Disabling VLAN filtering */
++	hw_dbg(hw, "Initializing the IEEE VLAN\n");
++	e1000_clear_vfta(hw);
++
++	/* Setup the receive address. */
++	/* If, however, a locally administered address was assigned to the
++	 * 82571, we must reserve a RAR for it to work around an issue where
++	 * resetting one port will reload the MAC on the other port.
++	 */
++	if (e1000_get_laa_state_82571(hw))
++		rar_count--;
++	e1000_init_rx_addrs(hw, rar_count);
++
++	/* Zero out the Multicast HASH table */
++	hw_dbg(hw, "Zeroing the MTA\n");
++	for (i = 0; i < mac->mta_reg_count; i++)
++		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
++
++	/* Setup link and flow control */
++	ret_val = e1000_setup_link_82571(hw);
++
++	/* Set the transmit descriptor write-back policy */
++	reg_data = er32(TXDCTL);
++	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
++		   E1000_TXDCTL_FULL_TX_DESC_WB |
++		   E1000_TXDCTL_COUNT_DESC;
++	ew32(TXDCTL, reg_data);
++
++	/* ...for both queues. */
++	if (mac->type != e1000_82573) {
++		reg_data = er32(TXDCTL1);
++		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
++			   E1000_TXDCTL_FULL_TX_DESC_WB |
++			   E1000_TXDCTL_COUNT_DESC;
++		ew32(TXDCTL1, reg_data);
++	} else {
++		e1000_enable_tx_pkt_filtering(hw);
++		reg_data = er32(GCR);
++		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
++		ew32(GCR, reg_data);
++	}
++
++	/* Clear all of the statistics registers (clear on read).  It is
++	 * important that we do this after we have tried to establish link
++	 * because the symbol error count will increment wildly if there
++	 * is no link.
++	 */
++	e1000_clear_hw_cntrs_82571(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
++ *  @hw: pointer to the HW structure
++ *
++ *  Initializes required hardware-dependent bits needed for normal operation.
++ **/
++static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
++{
++	u32 reg;
++
++	/* Transmit Descriptor Control 0 */
++	reg = er32(TXDCTL);
++	reg |= (1 << 22);
++	ew32(TXDCTL, reg);
++
++	/* Transmit Descriptor Control 1 */
++	reg = er32(TXDCTL1);
++	reg |= (1 << 22);
++	ew32(TXDCTL1, reg);
++
++	/* Transmit Arbitration Control 0 */
++	reg = er32(TARC0);
++	reg &= ~(0xF << 27); /* 30:27 */
++	switch (hw->mac.type) {
++	case e1000_82571:
++	case e1000_82572:
++		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
++		break;
++	default:
++		break;
++	}
++	ew32(TARC0, reg);
++
++	/* Transmit Arbitration Control 1 */
++	reg = er32(TARC1);
++	switch (hw->mac.type) {
++	case e1000_82571:
++	case e1000_82572:
++		reg &= ~((1 << 29) | (1 << 30));
++		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
++		if (er32(TCTL) & E1000_TCTL_MULR)
++			reg &= ~(1 << 28);
++		else
++			reg |= (1 << 28);
++		ew32(TARC1, reg);
++		break;
++	default:
++		break;
++	}
++
++	/* Device Control */
++	if (hw->mac.type == e1000_82573) {
++		reg = er32(CTRL);
++		reg &= ~(1 << 29);
++		ew32(CTRL, reg);
++	}
++
++	/* Extended Device Control */
++	if (hw->mac.type == e1000_82573) {
++		reg = er32(CTRL_EXT);
++		reg &= ~(1 << 23);
++		reg |= (1 << 22);
++		ew32(CTRL_EXT, reg);
++	}
++}
++
++/**
++ *  e1000_clear_vfta - Clear VLAN filter table
++ *  @hw: pointer to the HW structure
++ *
++ *  Clears the register array which contains the VLAN filter table by
++ *  setting all the values to 0.
++ **/
++void e1000_clear_vfta(struct e1000_hw *hw)
++{
++	u32 offset;
++	u32 vfta_value = 0;
++	u32 vfta_offset = 0;
++	u32 vfta_bit_in_reg = 0;
++
++	if (hw->mac.type == e1000_82573) {
++		if (hw->mng_cookie.vlan_id != 0) {
++			/* The VFTA is a 4096b bit-field, each identifying
++			 * a single VLAN ID.  The following operations
++			 * determine which 32b entry (i.e. offset) into the
++			 * array we want to set the VLAN ID (i.e. bit) of
++			 * the manageability unit.
++			 */
++			vfta_offset = (hw->mng_cookie.vlan_id >>
++				       E1000_VFTA_ENTRY_SHIFT) &
++				      E1000_VFTA_ENTRY_MASK;
++			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
++					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
++		}
++	}
++	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
++		/* If the offset we want to clear is the same offset of the
++		 * manageability VLAN ID, then clear all bits except that of
++		 * the manageability unit.
++		 */
++		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
++		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
++		e1e_flush();
++	}
++}
++
++/**
++ *  e1000_mc_addr_list_update_82571 - Update Multicast addresses
++ *  @hw: pointer to the HW structure
++ *  @mc_addr_list: array of multicast addresses to program
++ *  @mc_addr_count: number of multicast addresses to program
++ *  @rar_used_count: the first RAR register free to program
++ *  @rar_count: total number of supported Receive Address Registers
++ *
++ *  Updates the Receive Address Registers and Multicast Table Array.
++ *  The caller must have a packed mc_addr_list of multicast addresses.
++ *  The parameter rar_count will usually be hw->mac.rar_entry_count
++ *  unless there are workarounds that change this.
++ **/
++static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
++					    u8 *mc_addr_list,
++					    u32 mc_addr_count,
++					    u32 rar_used_count,
++					    u32 rar_count)
++{
++	if (e1000_get_laa_state_82571(hw))
++		rar_count--;
++
++	e1000_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
++					  rar_used_count, rar_count);
++}
++
++/**
++ *  e1000_setup_link_82571 - Setup flow control and link settings
++ *  @hw: pointer to the HW structure
++ *
++ *  Determines which flow control settings to use, then configures flow
++ *  control.  Calls the appropriate media-specific link configuration
++ *  function.  Assuming the adapter has a valid link partner, a valid link
++ *  should be established.  Assumes the hardware has previously been reset
++ *  and the transmitter and receiver are not enabled.
++ **/
++static s32 e1000_setup_link_82571(struct e1000_hw *hw)
++{
++	/* 82573 does not have a word in the NVM to determine
++	 * the default flow control setting, so we explicitly
++	 * set it to full.
++	 */
++	if (hw->mac.type == e1000_82573)
++		hw->mac.fc = e1000_fc_full;
++
++	return e1000_setup_link(hw);
++}
++
++/**
++ *  e1000_setup_copper_link_82571 - Configure copper link settings
++ *  @hw: pointer to the HW structure
++ *
++ *  Configures the link for auto-neg or forced speed and duplex.  Then we check
++ *  for link, once link is established calls to configure collision distance
++ *  and flow control are called.
++ **/
++static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
++{
++	u32 ctrl;
++	u32 led_ctrl;
++	s32 ret_val;
++
++	ctrl = er32(CTRL);
++	ctrl |= E1000_CTRL_SLU;
++	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++	ew32(CTRL, ctrl);
++
++	switch (hw->phy.type) {
++	case e1000_phy_m88:
++		ret_val = e1000_copper_link_setup_m88(hw);
++		break;
++	case e1000_phy_igp_2:
++		ret_val = e1000_copper_link_setup_igp(hw);
++		/* Setup activity LED */
++		led_ctrl = er32(LEDCTL);
++		led_ctrl &= IGP_ACTIVITY_LED_MASK;
++		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
++		ew32(LEDCTL, led_ctrl);
++		break;
++	default:
++		ret_val = -E1000_ERR_PHY;
++		break;
++	}
++
++	if (ret_val)
++		goto out;
++
++	ret_val = e1000_setup_copper_link(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
++ *  @hw: pointer to the HW structure
++ *
++ *  Configures collision distance and flow control for fiber and serdes links.
++ *  Upon successful setup, poll for link.
++ **/
++static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
++{
++	switch (hw->mac.type) {
++	case e1000_82571:
++	case e1000_82572:
++		/* If SerDes loopback mode is entered, there is no form
++		 * of reset to take the adapter out of that mode.  So we
++		 * have to explicitly take the adapter out of loopback
++		 * mode.  This prevents drivers from twidling their thumbs
++		 * if another tool failed to take it out of loopback mode.
++		 */
++		ew32(SCTL,
++				E1000_SCTL_DISABLE_SERDES_LOOPBACK);
++		break;
++	default:
++		break;
++	}
++
++	return e1000_setup_fiber_serdes_link(hw);
++}
++
++/**
++ *  e1000_valid_led_default_82571 - Verify a valid default LED config
++ *  @hw: pointer to the HW structure
++ *  @data: pointer to the NVM (EEPROM)
++ *
++ *  Read the EEPROM for the current default LED configuration.  If the
++ *  LED configuration is not valid, set to a valid LED configuration.
++ **/
++static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
++{
++	s32 ret_val;
++
++	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
++	if (ret_val) {
++		hw_dbg(hw, "NVM Read Error\n");
++		goto out;
++	}
++
++	if (hw->mac.type == e1000_82573 &&
++	    *data == ID_LED_RESERVED_F746)
++		*data = ID_LED_DEFAULT_82573;
++	else if (*data == ID_LED_RESERVED_0000 ||
++		 *data == ID_LED_RESERVED_FFFF)
++		*data = ID_LED_DEFAULT;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_laa_state_82571 - Get locally administered address state
++ *  @hw: pointer to the HW structure
++ *
++ *  Retrieve and return the current locally administed address state.
++ **/
++bool e1000_get_laa_state_82571(struct e1000_hw *hw)
++{
++	if (hw->mac.type != e1000_82571)
++		return 0;
++
++	return hw->dev_spec.e82571.laa_is_present;
++}
++
++/**
++ *  e1000_set_laa_state_82571 - Set locally administered address state
++ *  @hw: pointer to the HW structure
++ *  @state: enable/disable locally administered address
++ *
++ *  Enable/Disable the current locally administed address state.
++ **/
++void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
++{
++	if (hw->mac.type != e1000_82571)
++		goto out;
++
++	hw->dev_spec.e82571.laa_is_present = state;
++
++	/* If workaround is activated... */
++	if (state)
++		/* Hold a copy of the LAA in RAR[14] This is done so that
++		 * between the time RAR[0] gets clobbered and the time it
++		 * gets fixed, the actual LAA is in one of the RARs and no
++		 * incoming packets directed to this port are dropped.
++		 * Eventually the LAA will be in RAR[0] and RAR[14].
++		 */
++		e1000_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
++
++out:
++	return;
++}
++
++/**
++ *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
++ *  @hw: pointer to the HW structure
++ *
++ *  Verifies that the EEPROM has completed the update.  After updating the
++ *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
++ *  the checksum fix is not implemented, we need to set the bit and update
++ *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
++ *  we need to return bad checksum.
++ **/
++static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	s32 ret_val = E1000_SUCCESS;
++	u16 data;
++
++	if (nvm->type != e1000_nvm_flash_hw)
++		goto out;
++
++	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
++	 * 10h-12h.  Checksum may need to be fixed.
++	 */
++	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
++	if (ret_val)
++		goto out;
++
++	if (!(data & 0x10)) {
++		/* Read 0x23 and check bit 15.  This bit is a 1
++		 * when the checksum has already been fixed.  If
++		 * the checksum is still wrong and this bit is a
++		 * 1, we need to return bad checksum.  Otherwise,
++		 * we need to set this bit to a 1 and update the
++		 * checksum.
++		 */
++		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
++		if (ret_val)
++			goto out;
++
++		if (!(data & 0x8000)) {
++			data |= 0x8000;
++			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
++			if (ret_val)
++				goto out;
++			ret_val = e1000_update_nvm_checksum(hw);
++		}
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
++ *  @hw: pointer to the HW structure
++ *
++ *  Clears the hardware counters by reading the counter registers.
++ **/
++static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
++{
++	u32 temp;
++
++	e1000_clear_hw_cntrs_base(hw);
++
++	temp = er32(PRC64);
++	temp = er32(PRC127);
++	temp = er32(PRC255);
++	temp = er32(PRC511);
++	temp = er32(PRC1023);
++	temp = er32(PRC1522);
++	temp = er32(PTC64);
++	temp = er32(PTC127);
++	temp = er32(PTC255);
++	temp = er32(PTC511);
++	temp = er32(PTC1023);
++	temp = er32(PTC1522);
++
++	temp = er32(ALGNERRC);
++	temp = er32(RXERRC);
++	temp = er32(TNCRS);
++	temp = er32(CEXTERR);
++	temp = er32(TSCTC);
++	temp = er32(TSCTFC);
++
++	temp = er32(MGTPRC);
++	temp = er32(MGTPDC);
++	temp = er32(MGTPTC);
++
++	temp = er32(IAC);
++	temp = er32(ICRXOC);
++
++	temp = er32(ICRXPTC);
++	temp = er32(ICRXATC);
++	temp = er32(ICTXPTC);
++	temp = er32(ICTXATC);
++	temp = er32(ICTXQEC);
++	temp = er32(ICTXQMTC);
++	temp = er32(ICRXDMTC);
++}
++
++static struct e1000_mac_operations e82571_mac_ops = {
++	.mng_mode_enab		= E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
++	/* .check_for_link: media type dependent */
++	.cleanup_led		= e1000_cleanup_led_generic,
++	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
++	.get_bus_info		= e1000_get_bus_info_pcie,
++	/* .get_link_up_info: media type dependent */
++	.led_on			= e1000_led_on_generic,
++	.led_off		= e1000_led_off_generic,
++	.mc_addr_list_update	= e1000_mc_addr_list_update_82571,
++	.reset_hw		= e1000_reset_hw_82571,
++	.init_hw		= e1000_init_hw_82571,
++	.setup_link		= e1000_setup_link_82571,
++	/* .setup_physical_interface: media type dependent */
++};
++
++static struct e1000_phy_operations e82_phy_ops_igp = {
++	.acquire_phy		= e1000_get_hw_semaphore_82571,
++	.check_reset_block	= e1000_check_reset_block_generic,
++	.commit_phy		= NULL,
++	.force_speed_duplex	= e1000_phy_force_speed_duplex_igp,
++	.get_cfg_done		= e1000_get_cfg_done_82571,
++	.get_cable_length	= e1000_get_cable_length_igp_2,
++	.get_phy_info		= e1000_get_phy_info_igp,
++	.read_phy_reg		= e1000_read_phy_reg_igp,
++	.release_phy		= e1000_put_hw_semaphore_82571,
++	.reset_phy		= e1000_phy_hw_reset_generic,
++	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
++	.set_d3_lplu_state	= e1000_set_d3_lplu_state,
++	.write_phy_reg		= e1000_write_phy_reg_igp,
++};
++
++static struct e1000_phy_operations e82_phy_ops_m88 = {
++	.acquire_phy		= e1000_get_hw_semaphore_82571,
++	.check_reset_block	= e1000_check_reset_block_generic,
++	.commit_phy		= e1000_phy_sw_reset,
++	.force_speed_duplex	= e1000_phy_force_speed_duplex_m88,
++	.get_cfg_done		= e1000_get_cfg_done,
++	.get_cable_length	= e1000_get_cable_length_m88,
++	.get_phy_info		= e1000_get_phy_info_m88,
++	.read_phy_reg		= e1000_read_phy_reg_m88,
++	.release_phy		= e1000_put_hw_semaphore_82571,
++	.reset_phy		= e1000_phy_hw_reset_generic,
++	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
++	.set_d3_lplu_state	= e1000_set_d3_lplu_state,
++	.write_phy_reg		= e1000_write_phy_reg_m88,
++};
++
++static struct e1000_nvm_operations e82571_nvm_ops = {
++	.acquire_nvm		= e1000_acquire_nvm_82571,
++	.read_nvm		= e1000_read_nvm_spi,
++	.release_nvm		= e1000_release_nvm_82571,
++	.update_nvm		= e1000_update_nvm_checksum_82571,
++	.valid_led_default	= e1000_valid_led_default_82571,
++	.validate_nvm		= e1000_validate_nvm_checksum_82571,
++	.write_nvm		= e1000_write_nvm_82571,
++};
++
++static struct e1000_nvm_operations e82573_nvm_ops = {
++	.acquire_nvm		= e1000_acquire_nvm_82571,
++	.read_nvm		= e1000_read_nvm_eerd,
++	.release_nvm		= e1000_release_nvm_82571,
++	.update_nvm		= e1000_update_nvm_checksum_82571,
++	.valid_led_default	= e1000_valid_led_default_82571,
++	.validate_nvm		= e1000_validate_nvm_checksum_82571,
++	.write_nvm		= e1000_write_nvm_82571,
++};
++
++struct e1000_info e1000_82571_info = {
++	.mac			= e1000_82571,
++	.flags			= FLAG_HAS_HW_VLAN_FILTER
++				  | FLAG_HAS_JUMBO_FRAMES
++				  | FLAG_HAS_STATS_PTC_PRC
++				  | FLAG_HAS_WOL
++				  | FLAG_APME_IN_CTRL3
++				  | FLAG_RX_CSUM_ENABLED
++				  | FLAG_HAS_CTRLEXT_ON_LOAD
++				  | FLAG_HAS_STATS_ICR_ICT
++				  | FLAG_HAS_SMART_POWER_DOWN
++				  | FLAG_RESET_OVERWRITES_LAA /* errata */
++				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
++				  | FLAG_APME_CHECK_PORT_B,
++	.pba			= 38,
++	.get_invariants		= e1000_get_invariants_82571,
++	.mac_ops		= &e82571_mac_ops,
++	.phy_ops		= &e82_phy_ops_igp,
++	.nvm_ops		= &e82571_nvm_ops,
++};
++
++struct e1000_info e1000_82572_info = {
++	.mac			= e1000_82572,
++	.flags			= FLAG_HAS_HW_VLAN_FILTER
++				  | FLAG_HAS_JUMBO_FRAMES
++				  | FLAG_HAS_STATS_PTC_PRC
++				  | FLAG_HAS_WOL
++				  | FLAG_APME_IN_CTRL3
++				  | FLAG_RX_CSUM_ENABLED
++				  | FLAG_HAS_CTRLEXT_ON_LOAD
++				  | FLAG_HAS_STATS_ICR_ICT
++				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
++	.pba			= 38,
++	.get_invariants		= e1000_get_invariants_82571,
++	.mac_ops		= &e82571_mac_ops,
++	.phy_ops		= &e82_phy_ops_igp,
++	.nvm_ops		= &e82571_nvm_ops,
++};
++
++struct e1000_info e1000_82573_info = {
++	.mac			= e1000_82573,
++	.flags			= FLAG_HAS_HW_VLAN_FILTER
++				  | FLAG_HAS_JUMBO_FRAMES
++				  | FLAG_HAS_STATS_PTC_PRC
++				  | FLAG_HAS_WOL
++				  | FLAG_APME_IN_CTRL3
++				  | FLAG_RX_CSUM_ENABLED
++				  | FLAG_HAS_STATS_ICR_ICT
++				  | FLAG_HAS_SMART_POWER_DOWN
++				  | FLAG_HAS_AMT
++				  | FLAG_HAS_ASPM
++				  | FLAG_HAS_ERT
++				  | FLAG_HAS_SWSM_ON_LOAD,
++	.pba			= 20,
++	.get_invariants		= e1000_get_invariants_82571,
++	.mac_ops		= &e82571_mac_ops,
++	.phy_ops		= &e82_phy_ops_m88,
++	.nvm_ops		= &e82573_nvm_ops,
++};
++
+diff --git a/drivers/net/e1000e/Makefile b/drivers/net/e1000e/Makefile
+new file mode 100644
+index 0000000..650f866
+--- /dev/null
++++ b/drivers/net/e1000e/Makefile
+@@ -0,0 +1,37 @@
++################################################################################
++#
++# Intel PRO/1000 Linux driver
++# Copyright(c) 1999 - 2007 Intel Corporation.
++#
++# This program is free software; you can redistribute it and/or modify it
++# under the terms and conditions of the GNU General Public License,
++# version 2, as published by the Free Software Foundation.
++#
++# This program is distributed in the hope it will be useful, but WITHOUT
++# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++# more details.
++#
++# You should have received a copy of the GNU General Public License along with
++# this program; if not, write to the Free Software Foundation, Inc.,
++# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++#
++# The full GNU General Public License is included in this distribution in
++# the file called "COPYING".
++#
++# Contact Information:
++# Linux NICS <linux.nics at intel.com>
++# e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++#
++################################################################################
++
++#
++# Makefile for the Intel(R) PRO/1000 ethernet driver
++#
++
++obj-$(CONFIG_E1000E) += e1000e.o
++
++e1000e-objs := 82571.o ich8lan.o es2lan.o \
++	       lib.o phy.o param.o ethtool.o netdev.o
++
+diff --git a/drivers/net/e1000e/defines.h b/drivers/net/e1000e/defines.h
+new file mode 100644
+index 0000000..e0a36f1
+--- /dev/null
++++ b/drivers/net/e1000e/defines.h
+@@ -0,0 +1,738 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#ifndef _E1000_DEFINES_H_
++#define _E1000_DEFINES_H_
++
++#define E1000_TXD_POPTS_IXSM 0x01       /* Insert IP checksum */
++#define E1000_TXD_POPTS_TXSM 0x02       /* Insert TCP/UDP checksum */
++#define E1000_TXD_CMD_EOP    0x01000000 /* End of Packet */
++#define E1000_TXD_CMD_IFCS   0x02000000 /* Insert FCS (Ethernet CRC) */
++#define E1000_TXD_CMD_IC     0x04000000 /* Insert Checksum */
++#define E1000_TXD_CMD_RS     0x08000000 /* Report Status */
++#define E1000_TXD_CMD_RPS    0x10000000 /* Report Packet Sent */
++#define E1000_TXD_CMD_DEXT   0x20000000 /* Descriptor extension (0 = legacy) */
++#define E1000_TXD_CMD_VLE    0x40000000 /* Add VLAN tag */
++#define E1000_TXD_CMD_IDE    0x80000000 /* Enable Tidv register */
++#define E1000_TXD_STAT_DD    0x00000001 /* Descriptor Done */
++#define E1000_TXD_STAT_EC    0x00000002 /* Excess Collisions */
++#define E1000_TXD_STAT_LC    0x00000004 /* Late Collisions */
++#define E1000_TXD_STAT_TU    0x00000008 /* Transmit underrun */
++#define E1000_TXD_CMD_TCP    0x01000000 /* TCP packet */
++#define E1000_TXD_CMD_IP     0x02000000 /* IP packet */
++#define E1000_TXD_CMD_TSE    0x04000000 /* TCP Seg enable */
++#define E1000_TXD_STAT_TC    0x00000004 /* Tx Underrun */
++
++/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
++#define REQ_TX_DESCRIPTOR_MULTIPLE  8
++#define REQ_RX_DESCRIPTOR_MULTIPLE  8
++
++/* Definitions for power management and wakeup registers */
++/* Wake Up Control */
++#define E1000_WUC_APME       0x00000001 /* APM Enable */
++#define E1000_WUC_PME_EN     0x00000002 /* PME Enable */
++
++/* Wake Up Filter Control */
++#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
++#define E1000_WUFC_MAG  0x00000002 /* Magic Packet Wakeup Enable */
++#define E1000_WUFC_EX   0x00000004 /* Directed Exact Wakeup Enable */
++#define E1000_WUFC_MC   0x00000008 /* Directed Multicast Wakeup Enable */
++#define E1000_WUFC_BC   0x00000010 /* Broadcast Wakeup Enable */
++
++/* Extended Device Control */
++#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
++#define E1000_CTRL_EXT_EE_RST    0x00002000 /* Reinitialize from EEPROM */
++#define E1000_CTRL_EXT_RO_DIS    0x00020000 /* Relaxed Ordering disable */
++#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
++#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES  0x00C00000
++#define E1000_CTRL_EXT_DRV_LOAD       0x10000000 /* Driver loaded bit for FW */
++#define E1000_CTRL_EXT_IAME           0x08000000 /* Interrupt acknowledge Auto-mask */
++#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000 /* Clear Interrupt timers after IMS clear */
++
++/* Receive Decriptor bit definitions */
++#define E1000_RXD_STAT_DD       0x01    /* Descriptor Done */
++#define E1000_RXD_STAT_EOP      0x02    /* End of Packet */
++#define E1000_RXD_STAT_IXSM     0x04    /* Ignore checksum */
++#define E1000_RXD_STAT_VP       0x08    /* IEEE VLAN Packet */
++#define E1000_RXD_STAT_UDPCS    0x10    /* UDP xsum caculated */
++#define E1000_RXD_STAT_TCPCS    0x20    /* TCP xsum calculated */
++#define E1000_RXD_ERR_CE        0x01    /* CRC Error */
++#define E1000_RXD_ERR_SE        0x02    /* Symbol Error */
++#define E1000_RXD_ERR_SEQ       0x04    /* Sequence Error */
++#define E1000_RXD_ERR_CXE       0x10    /* Carrier Extension Error */
++#define E1000_RXD_ERR_TCPE      0x20    /* TCP/UDP Checksum Error */
++#define E1000_RXD_ERR_RXE       0x80    /* Rx Data Error */
++#define E1000_RXD_SPC_VLAN_MASK 0x0FFF  /* VLAN ID is in lower 12 bits */
++
++#define E1000_RXDEXT_STATERR_CE    0x01000000
++#define E1000_RXDEXT_STATERR_SE    0x02000000
++#define E1000_RXDEXT_STATERR_SEQ   0x04000000
++#define E1000_RXDEXT_STATERR_CXE   0x10000000
++#define E1000_RXDEXT_STATERR_RXE   0x80000000
++
++/* mask to determine if packets should be dropped due to frame errors */
++#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
++    E1000_RXD_ERR_CE  |                \
++    E1000_RXD_ERR_SE  |                \
++    E1000_RXD_ERR_SEQ |                \
++    E1000_RXD_ERR_CXE |                \
++    E1000_RXD_ERR_RXE)
++
++/* Same mask, but for extended and packet split descriptors */
++#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
++    E1000_RXDEXT_STATERR_CE  |            \
++    E1000_RXDEXT_STATERR_SE  |            \
++    E1000_RXDEXT_STATERR_SEQ |            \
++    E1000_RXDEXT_STATERR_CXE |            \
++    E1000_RXDEXT_STATERR_RXE)
++
++#define E1000_RXDPS_HDRSTAT_HDRSP              0x00008000
++
++/* Management Control */
++#define E1000_MANC_SMBUS_EN      0x00000001 /* SMBus Enabled - RO */
++#define E1000_MANC_ASF_EN        0x00000002 /* ASF Enabled - RO */
++#define E1000_MANC_ARP_EN        0x00002000 /* Enable ARP Request Filtering */
++#define E1000_MANC_RCV_TCO_EN    0x00020000 /* Receive TCO Packets Enabled */
++#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000 /* Block phy resets */
++#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000 /* Enable MAC address
++						    * filtering */
++#define E1000_MANC_EN_MNG2HOST   0x00200000 /* Enable MNG packets to host
++					     * memory */
++
++/* Receive Control */
++#define E1000_RCTL_EN             0x00000002    /* enable */
++#define E1000_RCTL_SBP            0x00000004    /* store bad packet */
++#define E1000_RCTL_UPE            0x00000008    /* unicast promiscuous enable */
++#define E1000_RCTL_MPE            0x00000010    /* multicast promiscuous enab */
++#define E1000_RCTL_LPE            0x00000020    /* long packet enable */
++#define E1000_RCTL_LBM_NO         0x00000000    /* no loopback mode */
++#define E1000_RCTL_LBM_MAC        0x00000040    /* MAC loopback mode */
++#define E1000_RCTL_LBM_TCVR       0x000000C0    /* tcvr loopback mode */
++#define E1000_RCTL_DTYP_PS        0x00000400    /* Packet Split descriptor */
++#define E1000_RCTL_RDMTS_HALF     0x00000000    /* rx desc min threshold size */
++#define E1000_RCTL_MO_SHIFT       12            /* multicast offset shift */
++#define E1000_RCTL_BAM            0x00008000    /* broadcast enable */
++/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
++#define E1000_RCTL_SZ_2048        0x00000000    /* rx buffer size 2048 */
++#define E1000_RCTL_SZ_1024        0x00010000    /* rx buffer size 1024 */
++#define E1000_RCTL_SZ_512         0x00020000    /* rx buffer size 512 */
++#define E1000_RCTL_SZ_256         0x00030000    /* rx buffer size 256 */
++/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
++#define E1000_RCTL_SZ_16384       0x00010000    /* rx buffer size 16384 */
++#define E1000_RCTL_SZ_8192        0x00020000    /* rx buffer size 8192 */
++#define E1000_RCTL_SZ_4096        0x00030000    /* rx buffer size 4096 */
++#define E1000_RCTL_VFE            0x00040000    /* vlan filter enable */
++#define E1000_RCTL_CFIEN          0x00080000    /* canonical form enable */
++#define E1000_RCTL_CFI            0x00100000    /* canonical form indicator */
++#define E1000_RCTL_BSEX           0x02000000    /* Buffer size extension */
++#define E1000_RCTL_SECRC          0x04000000    /* Strip Ethernet CRC */
++
++/* Use byte values for the following shift parameters
++ * Usage:
++ *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
++ *                  E1000_PSRCTL_BSIZE0_MASK) |
++ *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
++ *                  E1000_PSRCTL_BSIZE1_MASK) |
++ *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
++ *                  E1000_PSRCTL_BSIZE2_MASK) |
++ *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
++ *                  E1000_PSRCTL_BSIZE3_MASK))
++ * where value0 = [128..16256],  default=256
++ *       value1 = [1024..64512], default=4096
++ *       value2 = [0..64512],    default=4096
++ *       value3 = [0..64512],    default=0
++ */
++
++#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
++#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
++#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
++#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
++
++#define E1000_PSRCTL_BSIZE0_SHIFT  7            /* Shift _right_ 7 */
++#define E1000_PSRCTL_BSIZE1_SHIFT  2            /* Shift _right_ 2 */
++#define E1000_PSRCTL_BSIZE2_SHIFT  6            /* Shift _left_ 6 */
++#define E1000_PSRCTL_BSIZE3_SHIFT 14            /* Shift _left_ 14 */
++
++/* SWFW_SYNC Definitions */
++#define E1000_SWFW_EEP_SM   0x1
++#define E1000_SWFW_PHY0_SM  0x2
++#define E1000_SWFW_PHY1_SM  0x4
++
++/* Device Control */
++#define E1000_CTRL_FD       0x00000001  /* Full duplex.0=half; 1=full */
++#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
++#define E1000_CTRL_LRST     0x00000008  /* Link reset. 0=normal,1=reset */
++#define E1000_CTRL_ASDE     0x00000020  /* Auto-speed detect enable */
++#define E1000_CTRL_SLU      0x00000040  /* Set link up (Force Link) */
++#define E1000_CTRL_ILOS     0x00000080  /* Invert Loss-Of Signal */
++#define E1000_CTRL_SPD_SEL  0x00000300  /* Speed Select Mask */
++#define E1000_CTRL_SPD_10   0x00000000  /* Force 10Mb */
++#define E1000_CTRL_SPD_100  0x00000100  /* Force 100Mb */
++#define E1000_CTRL_SPD_1000 0x00000200  /* Force 1Gb */
++#define E1000_CTRL_FRCSPD   0x00000800  /* Force Speed */
++#define E1000_CTRL_FRCDPX   0x00001000  /* Force Duplex */
++#define E1000_CTRL_SWDPIN0  0x00040000  /* SWDPIN 0 value */
++#define E1000_CTRL_SWDPIN1  0x00080000  /* SWDPIN 1 value */
++#define E1000_CTRL_SWDPIO0  0x00400000  /* SWDPIN 0 Input or output */
++#define E1000_CTRL_RST      0x04000000  /* Global reset */
++#define E1000_CTRL_RFCE     0x08000000  /* Receive Flow Control enable */
++#define E1000_CTRL_TFCE     0x10000000  /* Transmit flow control enable */
++#define E1000_CTRL_VME      0x40000000  /* IEEE VLAN mode enable */
++#define E1000_CTRL_PHY_RST  0x80000000  /* PHY Reset */
++
++/* Bit definitions for the Management Data IO (MDIO) and Management Data
++ * Clock (MDC) pins in the Device Control Register.
++ */
++
++/* Device Status */
++#define E1000_STATUS_FD         0x00000001      /* Full duplex.0=half,1=full */
++#define E1000_STATUS_LU         0x00000002      /* Link up.0=no,1=link */
++#define E1000_STATUS_FUNC_MASK  0x0000000C      /* PCI Function Mask */
++#define E1000_STATUS_FUNC_SHIFT 2
++#define E1000_STATUS_FUNC_1     0x00000004      /* Function 1 */
++#define E1000_STATUS_TXOFF      0x00000010      /* transmission paused */
++#define E1000_STATUS_SPEED_10   0x00000000      /* Speed 10Mb/s */
++#define E1000_STATUS_SPEED_100  0x00000040      /* Speed 100Mb/s */
++#define E1000_STATUS_SPEED_1000 0x00000080      /* Speed 1000Mb/s */
++#define E1000_STATUS_LAN_INIT_DONE 0x00000200   /* Lan Init Completion by NVM */
++#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
++
++/* Constants used to intrepret the masked PCI-X bus speed. */
++
++#define HALF_DUPLEX 1
++#define FULL_DUPLEX 2
++
++
++#define ADVERTISE_10_HALF                 0x0001
++#define ADVERTISE_10_FULL                 0x0002
++#define ADVERTISE_100_HALF                0x0004
++#define ADVERTISE_100_FULL                0x0008
++#define ADVERTISE_1000_HALF               0x0010 /* Not used, just FYI */
++#define ADVERTISE_1000_FULL               0x0020
++
++/* 1000/H is not supported, nor spec-compliant. */
++#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF |   ADVERTISE_10_FULL | \
++				ADVERTISE_100_HALF |  ADVERTISE_100_FULL | \
++						     ADVERTISE_1000_FULL)
++#define E1000_ALL_NOT_GIG      ( ADVERTISE_10_HALF |   ADVERTISE_10_FULL | \
++				ADVERTISE_100_HALF |  ADVERTISE_100_FULL)
++#define E1000_ALL_100_SPEED    (ADVERTISE_100_HALF |  ADVERTISE_100_FULL)
++#define E1000_ALL_10_SPEED      (ADVERTISE_10_HALF |   ADVERTISE_10_FULL)
++#define E1000_ALL_HALF_DUPLEX   (ADVERTISE_10_HALF |  ADVERTISE_100_HALF)
++
++#define AUTONEG_ADVERTISE_SPEED_DEFAULT   E1000_ALL_SPEED_DUPLEX
++
++/* LED Control */
++#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
++#define E1000_LEDCTL_LED0_MODE_SHIFT      0
++#define E1000_LEDCTL_LED0_IVRT            0x00000040
++#define E1000_LEDCTL_LED0_BLINK           0x00000080
++
++#define E1000_LEDCTL_MODE_LED_ON        0xE
++#define E1000_LEDCTL_MODE_LED_OFF       0xF
++
++/* Transmit Descriptor bit definitions */
++#define E1000_TXD_DTYP_D     0x00100000 /* Data Descriptor */
++#define E1000_TXD_POPTS_IXSM 0x01       /* Insert IP checksum */
++#define E1000_TXD_POPTS_TXSM 0x02       /* Insert TCP/UDP checksum */
++#define E1000_TXD_CMD_EOP    0x01000000 /* End of Packet */
++#define E1000_TXD_CMD_IFCS   0x02000000 /* Insert FCS (Ethernet CRC) */
++#define E1000_TXD_CMD_IC     0x04000000 /* Insert Checksum */
++#define E1000_TXD_CMD_RS     0x08000000 /* Report Status */
++#define E1000_TXD_CMD_RPS    0x10000000 /* Report Packet Sent */
++#define E1000_TXD_CMD_DEXT   0x20000000 /* Descriptor extension (0 = legacy) */
++#define E1000_TXD_CMD_VLE    0x40000000 /* Add VLAN tag */
++#define E1000_TXD_CMD_IDE    0x80000000 /* Enable Tidv register */
++#define E1000_TXD_STAT_DD    0x00000001 /* Descriptor Done */
++#define E1000_TXD_STAT_EC    0x00000002 /* Excess Collisions */
++#define E1000_TXD_STAT_LC    0x00000004 /* Late Collisions */
++#define E1000_TXD_STAT_TU    0x00000008 /* Transmit underrun */
++#define E1000_TXD_CMD_TCP    0x01000000 /* TCP packet */
++#define E1000_TXD_CMD_IP     0x02000000 /* IP packet */
++#define E1000_TXD_CMD_TSE    0x04000000 /* TCP Seg enable */
++#define E1000_TXD_STAT_TC    0x00000004 /* Tx Underrun */
++
++/* Transmit Control */
++#define E1000_TCTL_EN     0x00000002    /* enable tx */
++#define E1000_TCTL_PSP    0x00000008    /* pad short packets */
++#define E1000_TCTL_CT     0x00000ff0    /* collision threshold */
++#define E1000_TCTL_COLD   0x003ff000    /* collision distance */
++#define E1000_TCTL_RTLC   0x01000000    /* Re-transmit on late collision */
++#define E1000_TCTL_MULR   0x10000000    /* Multiple request support */
++
++/* Transmit Arbitration Count */
++
++/* SerDes Control */
++#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
++
++/* Receive Checksum Control */
++#define E1000_RXCSUM_TUOFL     0x00000200   /* TCP / UDP checksum offload */
++#define E1000_RXCSUM_IPPCSE    0x00001000   /* IP payload checksum enable */
++
++/* Header split receive */
++#define E1000_RFCTL_EXTEN               0x00008000
++#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
++#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
++
++/* Collision related configuration parameters */
++#define E1000_COLLISION_THRESHOLD       15
++#define E1000_CT_SHIFT                  4
++#define E1000_COLLISION_DISTANCE        63
++#define E1000_COLD_SHIFT                12
++
++/* Default values for the transmit IPG register */
++#define DEFAULT_82543_TIPG_IPGT_COPPER 8
++
++#define E1000_TIPG_IPGT_MASK  0x000003FF
++
++#define DEFAULT_82543_TIPG_IPGR1 8
++#define E1000_TIPG_IPGR1_SHIFT  10
++
++#define DEFAULT_82543_TIPG_IPGR2 6
++#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
++#define E1000_TIPG_IPGR2_SHIFT  20
++
++#define MAX_JUMBO_FRAME_SIZE    0x3F00
++
++/* Extended Configuration Control and Size */
++#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP      0x00000020
++#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE       0x00000001
++#define E1000_EXTCNF_CTRL_SWFLAG                 0x00000020
++#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK   0x00FF0000
++#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT          16
++#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK   0x0FFF0000
++#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT          16
++
++#define E1000_PHY_CTRL_D0A_LPLU           0x00000002
++#define E1000_PHY_CTRL_NOND0A_LPLU        0x00000004
++#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
++#define E1000_PHY_CTRL_GBE_DISABLE        0x00000040
++
++#define E1000_KABGTXD_BGSQLBIAS           0x00050000
++
++/* PBA constants */
++#define E1000_PBA_8K  0x0008    /* 8KB, default Rx allocation */
++#define E1000_PBA_16K 0x0010    /* 16KB, default TX allocation */
++
++#define E1000_PBS_16K E1000_PBA_16K
++
++#define IFS_MAX       80
++#define IFS_MIN       40
++#define IFS_RATIO     4
++#define IFS_STEP      10
++#define MIN_NUM_XMITS 1000
++
++/* SW Semaphore Register */
++#define E1000_SWSM_SMBI         0x00000001 /* Driver Semaphore bit */
++#define E1000_SWSM_SWESMBI      0x00000002 /* FW Semaphore bit */
++#define E1000_SWSM_DRV_LOAD     0x00000008 /* Driver Loaded Bit */
++
++/* Interrupt Cause Read */
++#define E1000_ICR_TXDW          0x00000001 /* Transmit desc written back */
++#define E1000_ICR_LSC           0x00000004 /* Link Status Change */
++#define E1000_ICR_RXSEQ         0x00000008 /* rx sequence error */
++#define E1000_ICR_RXDMT0        0x00000010 /* rx desc min. threshold (0) */
++#define E1000_ICR_RXT0          0x00000080 /* rx timer intr (ring 0) */
++#define E1000_ICR_INT_ASSERTED  0x80000000 /* If this bit asserted, the driver should claim the interrupt */
++
++/* This defines the bits that are set in the Interrupt Mask
++ * Set/Read Register.  Each bit is documented below:
++ *   o RXT0   = Receiver Timer Interrupt (ring 0)
++ *   o TXDW   = Transmit Descriptor Written Back
++ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
++ *   o RXSEQ  = Receive Sequence Error
++ *   o LSC    = Link Status Change
++ */
++#define IMS_ENABLE_MASK ( \
++    E1000_IMS_RXT0   |    \
++    E1000_IMS_TXDW   |    \
++    E1000_IMS_RXDMT0 |    \
++    E1000_IMS_RXSEQ  |    \
++    E1000_IMS_LSC)
++
++/* Interrupt Mask Set */
++#define E1000_IMS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
++#define E1000_IMS_LSC       E1000_ICR_LSC       /* Link Status Change */
++#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ     /* rx sequence error */
++#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
++#define E1000_IMS_RXT0      E1000_ICR_RXT0      /* rx timer intr */
++
++/* Interrupt Cause Set */
++#define E1000_ICS_LSC       E1000_ICR_LSC       /* Link Status Change */
++#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
++
++/* Transmit Descriptor Control */
++#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
++#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
++#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
++#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
++#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
++					      still to be processed. */
++
++/* Flow Control Constants */
++#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
++#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
++#define FLOW_CONTROL_TYPE         0x8808
++
++/* 802.1q VLAN Packet Size */
++#define E1000_VLAN_FILTER_TBL_SIZE 128  /* VLAN Filter Table (4096 bits) */
++
++/* Receive Address */
++/* Number of high/low register pairs in the RAR. The RAR (Receive Address
++ * Registers) holds the directed and multicast addresses that we monitor.
++ * Technically, we have 16 spots.  However, we reserve one of these spots
++ * (RAR[15]) for our directed address used by controllers with
++ * manageability enabled, allowing us room for 15 multicast addresses.
++ */
++#define E1000_RAR_ENTRIES     15
++#define E1000_RAH_AV  0x80000000        /* Receive descriptor valid */
++
++/* Error Codes */
++#define E1000_SUCCESS      0
++#define E1000_ERR_NVM      1
++#define E1000_ERR_PHY      2
++#define E1000_ERR_CONFIG   3
++#define E1000_ERR_PARAM    4
++#define E1000_ERR_MAC_INIT 5
++#define E1000_ERR_PHY_TYPE 6
++#define E1000_ERR_RESET   9
++#define E1000_ERR_MASTER_REQUESTS_PENDING 10
++#define E1000_ERR_HOST_INTERFACE_COMMAND 11
++#define E1000_BLK_PHY_RESET   12
++#define E1000_ERR_SWFW_SYNC 13
++#define E1000_NOT_IMPLEMENTED 14
++
++/* Loop limit on how long we wait for auto-negotiation to complete */
++#define FIBER_LINK_UP_LIMIT               50
++#define COPPER_LINK_UP_LIMIT              10
++#define PHY_AUTO_NEG_LIMIT                45
++#define PHY_FORCE_LIMIT                   20
++/* Number of 100 microseconds we wait for PCI Express master disable */
++#define MASTER_DISABLE_TIMEOUT      800
++/* Number of milliseconds we wait for PHY configuration done after MAC reset */
++#define PHY_CFG_TIMEOUT             100
++/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
++#define MDIO_OWNERSHIP_TIMEOUT      10
++/* Number of milliseconds for NVM auto read done after MAC reset. */
++#define AUTO_READ_DONE_TIMEOUT      10
++
++/* Flow Control */
++#define E1000_FCRTL_XONE 0x80000000     /* Enable XON frame transmission */
++
++/* Transmit Configuration Word */
++#define E1000_TXCW_FD         0x00000020        /* TXCW full duplex */
++#define E1000_TXCW_PAUSE      0x00000080        /* TXCW sym pause request */
++#define E1000_TXCW_ASM_DIR    0x00000100        /* TXCW astm pause direction */
++#define E1000_TXCW_PAUSE_MASK 0x00000180        /* TXCW pause request mask */
++#define E1000_TXCW_ANE        0x80000000        /* Auto-neg enable */
++
++/* Receive Configuration Word */
++#define E1000_RXCW_IV         0x08000000        /* Receive config invalid */
++#define E1000_RXCW_C          0x20000000        /* Receive config */
++#define E1000_RXCW_SYNCH      0x40000000        /* Receive config synch */
++
++/* PCI Express Control */
++#define E1000_GCR_RXD_NO_SNOOP          0x00000001
++#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
++#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
++#define E1000_GCR_TXD_NO_SNOOP          0x00000008
++#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
++#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
++
++#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
++			   E1000_GCR_RXDSCW_NO_SNOOP      | \
++			   E1000_GCR_RXDSCR_NO_SNOOP      | \
++			   E1000_GCR_TXD_NO_SNOOP         | \
++			   E1000_GCR_TXDSCW_NO_SNOOP      | \
++			   E1000_GCR_TXDSCR_NO_SNOOP)
++
++/* PHY Control Register */
++#define MII_CR_FULL_DUPLEX      0x0100  /* FDX =1, half duplex =0 */
++#define MII_CR_RESTART_AUTO_NEG 0x0200  /* Restart auto negotiation */
++#define MII_CR_POWER_DOWN       0x0800  /* Power down */
++#define MII_CR_AUTO_NEG_EN      0x1000  /* Auto Neg Enable */
++#define MII_CR_LOOPBACK         0x4000  /* 0 = normal, 1 = loopback */
++#define MII_CR_RESET            0x8000  /* 0 = normal, 1 = PHY reset */
++#define MII_CR_SPEED_1000       0x0040
++#define MII_CR_SPEED_100        0x2000
++#define MII_CR_SPEED_10         0x0000
++
++/* PHY Status Register */
++#define MII_SR_LINK_STATUS       0x0004 /* Link Status 1 = link */
++#define MII_SR_AUTONEG_COMPLETE  0x0020 /* Auto Neg Complete */
++
++/* Autoneg Advertisement Register */
++#define NWAY_AR_10T_HD_CAPS      0x0020   /* 10T   Half Duplex Capable */
++#define NWAY_AR_10T_FD_CAPS      0x0040   /* 10T   Full Duplex Capable */
++#define NWAY_AR_100TX_HD_CAPS    0x0080   /* 100TX Half Duplex Capable */
++#define NWAY_AR_100TX_FD_CAPS    0x0100   /* 100TX Full Duplex Capable */
++#define NWAY_AR_PAUSE            0x0400   /* Pause operation desired */
++#define NWAY_AR_ASM_DIR          0x0800   /* Asymmetric Pause Direction bit */
++
++/* Link Partner Ability Register (Base Page) */
++#define NWAY_LPAR_PAUSE          0x0400 /* LP Pause operation desired */
++#define NWAY_LPAR_ASM_DIR        0x0800 /* LP Asymmetric Pause Direction bit */
++
++/* Autoneg Expansion Register */
++
++/* 1000BASE-T Control Register */
++#define CR_1000T_HD_CAPS         0x0100 /* Advertise 1000T HD capability */
++#define CR_1000T_FD_CAPS         0x0200 /* Advertise 1000T FD capability  */
++					/* 0=DTE device */
++#define CR_1000T_MS_VALUE        0x0800 /* 1=Configure PHY as Master */
++					/* 0=Configure PHY as Slave */
++#define CR_1000T_MS_ENABLE       0x1000 /* 1=Master/Slave manual config value */
++					/* 0=Automatic Master/Slave config */
++
++/* 1000BASE-T Status Register */
++#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
++#define SR_1000T_LOCAL_RX_STATUS  0x2000 /* Local receiver OK */
++
++
++/* PHY 1000 MII Register/Bit Definitions */
++/* PHY Registers defined by IEEE */
++#define PHY_CONTROL      0x00 /* Control Register */
++#define PHY_STATUS       0x01 /* Status Regiser */
++#define PHY_ID1          0x02 /* Phy Id Reg (word 1) */
++#define PHY_ID2          0x03 /* Phy Id Reg (word 2) */
++#define PHY_AUTONEG_ADV  0x04 /* Autoneg Advertisement */
++#define PHY_LP_ABILITY   0x05 /* Link Partner Ability (Base Page) */
++#define PHY_1000T_CTRL   0x09 /* 1000Base-T Control Reg */
++#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
++
++/* NVM Control */
++#define E1000_EECD_SK        0x00000001 /* NVM Clock */
++#define E1000_EECD_CS        0x00000002 /* NVM Chip Select */
++#define E1000_EECD_DI        0x00000004 /* NVM Data In */
++#define E1000_EECD_DO        0x00000008 /* NVM Data Out */
++#define E1000_EECD_REQ       0x00000040 /* NVM Access Request */
++#define E1000_EECD_GNT       0x00000080 /* NVM Access Grant */
++#define E1000_EECD_SIZE      0x00000200 /* NVM Size (0=64 word 1=256 word) */
++#define E1000_EECD_ADDR_BITS 0x00000400 /* NVM Addressing bits based on type
++					 * (0-small, 1-large) */
++#define E1000_NVM_GRANT_ATTEMPTS   1000 /* NVM # attempts to gain grant */
++#define E1000_EECD_AUTO_RD          0x00000200  /* NVM Auto Read done */
++#define E1000_EECD_SIZE_EX_MASK     0x00007800  /* NVM Size */
++#define E1000_EECD_SIZE_EX_SHIFT     11
++#define E1000_EECD_FLUPD     0x00080000 /* Update FLASH */
++#define E1000_EECD_AUPDEN    0x00100000 /* Enable Autonomous FLASH update */
++#define E1000_EECD_SEC1VAL   0x00400000 /* Sector One Valid */
++
++#define E1000_NVM_RW_REG_DATA   16   /* Offset to data in NVM read/write registers */
++#define E1000_NVM_RW_REG_DONE   2    /* Offset to READ/WRITE done bit */
++#define E1000_NVM_RW_REG_START  1    /* Start operation */
++#define E1000_NVM_RW_ADDR_SHIFT 2    /* Shift to the address bits */
++#define E1000_NVM_POLL_WRITE    1    /* Flag for polling for write complete */
++#define E1000_NVM_POLL_READ     0    /* Flag for polling for read complete */
++#define E1000_FLASH_UPDATES  2000
++
++/* NVM Word Offsets */
++#define NVM_ID_LED_SETTINGS        0x0004
++#define NVM_INIT_CONTROL2_REG      0x000F
++#define NVM_INIT_CONTROL3_PORT_B   0x0014
++#define NVM_INIT_3GIO_3            0x001A
++#define NVM_INIT_CONTROL3_PORT_A   0x0024
++#define NVM_CFG                    0x0012
++#define NVM_CHECKSUM_REG           0x003F
++
++#define E1000_NVM_CFG_DONE_PORT_0  0x40000 /* MNG config cycle done */
++#define E1000_NVM_CFG_DONE_PORT_1  0x80000 /* ...for second port */
++
++/* Mask bits for fields in Word 0x0f of the NVM */
++#define NVM_WORD0F_PAUSE_MASK       0x3000
++#define NVM_WORD0F_PAUSE            0x1000
++#define NVM_WORD0F_ASM_DIR          0x2000
++
++/* Mask bits for fields in Word 0x1a of the NVM */
++#define NVM_WORD1A_ASPM_MASK  0x000C
++
++/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
++#define NVM_SUM                    0xBABA
++
++#define NVM_WORD_SIZE_BASE_SHIFT   6
++
++/* NVM Commands - Microwire */
++
++/* NVM Commands - SPI */
++#define NVM_MAX_RETRY_SPI          5000 /* Max wait of 5ms, for RDY signal */
++#define NVM_READ_OPCODE_SPI        0x03 /* NVM read opcode */
++#define NVM_WRITE_OPCODE_SPI       0x02 /* NVM write opcode */
++#define NVM_A8_OPCODE_SPI          0x08 /* opcode bit-3 = address bit-8 */
++#define NVM_WREN_OPCODE_SPI        0x06 /* NVM set Write Enable latch */
++#define NVM_RDSR_OPCODE_SPI        0x05 /* NVM read Status register */
++
++/* SPI NVM Status Register */
++#define NVM_STATUS_RDY_SPI         0x01
++
++/* Word definitions for ID LED Settings */
++#define ID_LED_RESERVED_0000 0x0000
++#define ID_LED_RESERVED_FFFF 0xFFFF
++#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2  << 12) | \
++			      (ID_LED_OFF1_OFF2 <<  8) | \
++			      (ID_LED_DEF1_DEF2 <<  4) | \
++			      (ID_LED_DEF1_DEF2))
++#define ID_LED_DEF1_DEF2     0x1
++#define ID_LED_DEF1_ON2      0x2
++#define ID_LED_DEF1_OFF2     0x3
++#define ID_LED_ON1_DEF2      0x4
++#define ID_LED_ON1_ON2       0x5
++#define ID_LED_ON1_OFF2      0x6
++#define ID_LED_OFF1_DEF2     0x7
++#define ID_LED_OFF1_ON2      0x8
++#define ID_LED_OFF1_OFF2     0x9
++
++#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
++#define IGP_ACTIVITY_LED_ENABLE 0x0300
++#define IGP_LED3_MODE           0x07000000
++
++/* PCI/PCI-X/PCI-EX Config space */
++#define PCI_HEADER_TYPE_REGISTER     0x0E
++#define PCIE_LINK_STATUS             0x12
++
++#define PCI_HEADER_TYPE_MULTIFUNC    0x80
++#define PCIE_LINK_WIDTH_MASK         0x3F0
++#define PCIE_LINK_WIDTH_SHIFT        4
++
++#define PHY_REVISION_MASK      0xFFFFFFF0
++#define MAX_PHY_REG_ADDRESS    0x1F  /* 5 bit address bus (0-0x1F) */
++#define MAX_PHY_MULTI_PAGE_REG 0xF
++
++/* Bit definitions for valid PHY IDs. */
++/* I = Integrated
++ * E = External
++ */
++#define M88E1000_E_PHY_ID    0x01410C50
++#define M88E1000_I_PHY_ID    0x01410C30
++#define M88E1011_I_PHY_ID    0x01410C20
++#define IGP01E1000_I_PHY_ID  0x02A80380
++#define M88E1111_I_PHY_ID    0x01410CC0
++#define GG82563_E_PHY_ID     0x01410CA0
++#define IGP03E1000_E_PHY_ID  0x02A80390
++#define IFE_E_PHY_ID         0x02A80330
++#define IFE_PLUS_E_PHY_ID    0x02A80320
++#define IFE_C_E_PHY_ID       0x02A80310
++
++/* M88E1000 Specific Registers */
++#define M88E1000_PHY_SPEC_CTRL     0x10  /* PHY Specific Control Register */
++#define M88E1000_PHY_SPEC_STATUS   0x11  /* PHY Specific Status Register */
++#define M88E1000_EXT_PHY_SPEC_CTRL 0x14  /* Extended PHY Specific Control */
++
++#define M88E1000_PHY_PAGE_SELECT   0x1D  /* Reg 29 for page number setting */
++#define M88E1000_PHY_GEN_CONTROL   0x1E  /* Its meaning depends on reg 29 */
++
++/* M88E1000 PHY Specific Control Register */
++#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
++#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000  /* MDI Crossover Mode bits 6:5 */
++					       /* Manual MDI configuration */
++#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020  /* Manual MDIX configuration */
++#define M88E1000_PSCR_AUTO_X_1000T     0x0040  /* 1000BASE-T: Auto crossover,
++						*  100BASE-TX/10BASE-T:
++						*  MDI Mode
++						*/
++#define M88E1000_PSCR_AUTO_X_MODE      0x0060  /* Auto crossover enabled
++						* all speeds.
++						*/
++					/* 1=Enable Extended 10BASE-T distance
++					 * (Lower 10BASE-T RX Threshold)
++					 * 0=Normal 10BASE-T RX Threshold */
++					/* 1=5-Bit interface in 100BASE-TX
++					 * 0=MII interface in 100BASE-TX */
++#define M88E1000_PSCR_ASSERT_CRS_ON_TX     0x0800 /* 1=Assert CRS on Transmit */
++
++/* M88E1000 PHY Specific Status Register */
++#define M88E1000_PSSR_REV_POLARITY       0x0002 /* 1=Polarity reversed */
++#define M88E1000_PSSR_DOWNSHIFT          0x0020 /* 1=Downshifted */
++#define M88E1000_PSSR_MDIX               0x0040 /* 1=MDIX; 0=MDI */
++#define M88E1000_PSSR_CABLE_LENGTH       0x0380 /* 0=<50M;1=50-80M;2=80-110M;
++					    * 3=110-140M;4=>140M */
++#define M88E1000_PSSR_SPEED              0xC000 /* Speed, bits 14:15 */
++#define M88E1000_PSSR_1000MBS            0x8000 /* 10=1000Mbs */
++
++#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
++
++/* Number of times we will attempt to autonegotiate before downshifting if we
++ * are the master */
++#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
++#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
++/* Number of times we will attempt to autonegotiate before downshifting if we
++ * are the slave */
++#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
++#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
++#define M88E1000_EPSCR_TX_CLK_25      0x0070 /* 25  MHz TX_CLK */
++
++/* M88EC018 Rev 2 specific DownShift settings */
++#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
++#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
++
++/* Bits...
++ * 15-5: page
++ * 4-0: register offset
++ */
++#define GG82563_PAGE_SHIFT        5
++#define GG82563_REG(page, reg)    \
++	(((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
++#define GG82563_MIN_ALT_REG       30
++
++/* GG82563 Specific Registers */
++#define GG82563_PHY_SPEC_CTRL           \
++	GG82563_REG(0, 16) /* PHY Specific Control */
++#define GG82563_PHY_PAGE_SELECT         \
++	GG82563_REG(0, 22) /* Page Select */
++#define GG82563_PHY_SPEC_CTRL_2         \
++	GG82563_REG(0, 26) /* PHY Specific Control 2 */
++#define GG82563_PHY_PAGE_SELECT_ALT     \
++	GG82563_REG(0, 29) /* Alternate Page Select */
++
++#define GG82563_PHY_MAC_SPEC_CTRL       \
++	GG82563_REG(2, 21) /* MAC Specific Control Register */
++
++#define GG82563_PHY_DSP_DISTANCE    \
++	GG82563_REG(5, 26) /* DSP Distance */
++
++/* Page 193 - Port Control Registers */
++#define GG82563_PHY_KMRN_MODE_CTRL   \
++	GG82563_REG(193, 16) /* Kumeran Mode Control */
++#define GG82563_PHY_PWR_MGMT_CTRL       \
++	GG82563_REG(193, 20) /* Power Management Control */
++
++/* Page 194 - KMRN Registers */
++#define GG82563_PHY_INBAND_CTRL         \
++	GG82563_REG(194, 18) /* Inband Control */
++
++/* MDI Control */
++#define E1000_MDIC_REG_SHIFT 16
++#define E1000_MDIC_PHY_SHIFT 21
++#define E1000_MDIC_OP_WRITE  0x04000000
++#define E1000_MDIC_OP_READ   0x08000000
++#define E1000_MDIC_READY     0x10000000
++#define E1000_MDIC_ERROR     0x40000000
++
++/* SerDes Control */
++#define E1000_GEN_POLL_TIMEOUT          640
++
++#endif /* _E1000_DEFINES_H_ */
+diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h
+new file mode 100644
+index 0000000..65c31d3
+--- /dev/null
++++ b/drivers/net/e1000e/e1000.h
+@@ -0,0 +1,518 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/* Linux PRO/1000 Ethernet Driver main header file */
++
++#ifndef _E1000_H_
++#define _E1000_H_
++
++#include <linux/netdevice.h>
++#include <linux/ethtool.h>
++#include <linux/pci.h>
++#include <asm/io.h>
++
++#include "hw.h"
++
++struct e1000_info;
++
++#define ndev_printk(level, netdev, format, arg...) \
++	printk(level "%s: %s: " format, (netdev)->dev.parent->bus_id, \
++	       (netdev)->name, ## arg)
++
++#ifdef DEBUG
++#define ndev_dbg(netdev, format, arg...) \
++	ndev_printk(KERN_DEBUG , netdev, format, ## arg)
++#else
++#define ndev_dbg(netdev, format, arg...) do { (void)(netdev); } while (0)
++#endif
++
++#define ndev_err(netdev, format, arg...) \
++	ndev_printk(KERN_ERR , netdev, format, ## arg)
++#define ndev_info(netdev, format, arg...) \
++	ndev_printk(KERN_INFO , netdev, format, ## arg)
++#define ndev_warn(netdev, format, arg...) \
++	ndev_printk(KERN_WARNING , netdev, format, ## arg)
++#define ndev_notice(netdev, format, arg...) \
++	ndev_printk(KERN_NOTICE , netdev, format, ## arg)
++
++
++/* TX/RX descriptor defines */
++#define E1000_DEFAULT_TXD		256
++#define E1000_MAX_TXD			4096
++#define E1000_MIN_TXD			80
++
++#define E1000_DEFAULT_RXD		256
++#define E1000_MAX_RXD			4096
++#define E1000_MIN_RXD			80
++
++/* Early Receive defines */
++#define E1000_ERT_2048			0x100
++
++#define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
++
++/* How many Tx Descriptors do we need to call netif_wake_queue ? */
++/* How many Rx Buffers do we bundle into one write to the hardware ? */
++#define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
++
++#define AUTO_ALL_MODES			0
++#define E1000_EEPROM_APME		0x0400
++
++#define E1000_MNG_VLAN_NONE		(-1)
++
++/* Number of packet split data buffers (not including the header buffer) */
++#define PS_PAGE_BUFFERS			(MAX_PS_BUFFERS - 1)
++
++enum e1000_boards {
++	board_82571,
++	board_82572,
++	board_82573,
++	board_80003es2lan,
++	board_ich8lan,
++	board_ich9lan,
++};
++
++struct e1000_queue_stats {
++	u64 packets;
++	u64 bytes;
++};
++
++struct e1000_ps_page {
++	struct page *page;
++	u64 dma; /* must be u64 - written to hw */
++};
++
++/*
++ * wrappers around a pointer to a socket buffer,
++ * so a DMA handle can be stored along with the buffer
++ */
++struct e1000_buffer {
++	dma_addr_t dma;
++	struct sk_buff *skb;
++	union {
++		/* TX */
++		struct {
++			unsigned long time_stamp;
++			u16 length;
++			u16 next_to_watch;
++		};
++		/* RX */
++		struct page *page;
++	};
++
++};
++
++struct e1000_ring {
++	void *desc;			/* pointer to ring memory  */
++	dma_addr_t dma;			/* phys address of ring    */
++	unsigned int size;		/* length of ring in bytes */
++	unsigned int count;		/* number of desc. in ring */
++
++	u16 next_to_use;
++	u16 next_to_clean;
++
++	u16 head;
++	u16 tail;
++
++	/* array of buffer information structs */
++	struct e1000_buffer *buffer_info;
++
++	union {
++		/* for TX */
++		struct {
++			bool last_tx_tso; /* used to mark tso desc.  */
++		};
++		/* for RX */
++		struct {
++			/* arrays of page information for packet split */
++			struct e1000_ps_page *ps_pages;
++			struct sk_buff *rx_skb_top;
++		};
++	};
++
++	struct e1000_queue_stats stats;
++};
++
++/* board specific private data structure */
++struct e1000_adapter {
++	struct timer_list watchdog_timer;
++	struct timer_list phy_info_timer;
++	struct timer_list blink_timer;
++
++	struct work_struct reset_task;
++	struct work_struct watchdog_task;
++
++	const struct e1000_info *ei;
++
++	struct vlan_group *vlgrp;
++	u32 bd_number;
++	u32 rx_buffer_len;
++	u16 mng_vlan_id;
++	u16 link_speed;
++	u16 link_duplex;
++
++	spinlock_t tx_queue_lock; /* prevent concurrent tail updates */
++
++	/* this is still needed for 82571 and above */
++	atomic_t irq_sem;
++
++	/* track device up/down/testing state */
++	unsigned long state;
++
++	/* Interrupt Throttle Rate */
++	u32 itr;
++	u32 itr_setting;
++	u16 tx_itr;
++	u16 rx_itr;
++
++	/*
++	 * TX
++	 */
++	struct e1000_ring *tx_ring /* One per active queue */
++						____cacheline_aligned_in_smp;
++
++	unsigned long tx_queue_len;
++	unsigned int restart_queue;
++	u32 txd_cmd;
++
++	bool detect_tx_hung;
++	u8 tx_timeout_factor;
++
++	u32 tx_int_delay;
++	u32 tx_abs_int_delay;
++
++	unsigned int total_tx_bytes;
++	unsigned int total_tx_packets;
++	unsigned int total_rx_bytes;
++	unsigned int total_rx_packets;
++
++	/* TX stats */
++	u64 tpt_old;
++	u64 colc_old;
++	u64 gotcl_old;
++	u32 gotcl;
++	u32 tx_timeout_count;
++	u32 tx_fifo_head;
++	u32 tx_head_addr;
++	u32 tx_fifo_size;
++
++	/*
++	 * RX
++	 */
++	bool (*clean_rx) (struct e1000_adapter *adapter,
++			  int *work_done, int work_to_do)
++						____cacheline_aligned_in_smp;
++	void (*alloc_rx_buf) (struct e1000_adapter *adapter,
++			      int cleaned_count);
++	struct e1000_ring *rx_ring;
++
++	u32 rx_int_delay;
++	u32 rx_abs_int_delay;
++
++	/* RX stats */
++	u64 hw_csum_err;
++	u64 hw_csum_good;
++	u64 rx_hdr_split;
++	u64 gorcl_old;
++	u32 gorcl;
++	u32 alloc_rx_buff_failed;
++
++	unsigned int rx_ps_pages;
++	u16 rx_ps_bsize0;
++
++	/* OS defined structs */
++	struct net_device *netdev;
++	struct pci_dev *pdev;
++	struct net_device_stats net_stats;
++	spinlock_t stats_lock;      /* prevent concurrent stats updates */
++
++	/* structs defined in e1000_hw.h */
++	struct e1000_hw hw;
++
++	struct e1000_hw_stats stats;
++	struct e1000_phy_info phy_info;
++	struct e1000_phy_stats phy_stats;
++
++	struct e1000_ring test_tx_ring;
++	struct e1000_ring test_rx_ring;
++	u32 test_icr;
++
++	u32 msg_enable;
++
++	u32 eeprom_wol;
++	u32 wol;
++	u32 pba;
++
++	u8 fc_autoneg;
++
++	unsigned long led_status;
++
++	unsigned int flags;
++};
++
++struct e1000_info {
++	enum e1000_mac_type	mac;
++	unsigned int		flags;
++	u32			pba;
++	s32			(*get_invariants)(struct e1000_adapter *);
++	struct e1000_mac_operations *mac_ops;
++	struct e1000_phy_operations *phy_ops;
++	struct e1000_nvm_operations *nvm_ops;
++};
++
++/* hardware capability, feature, and workaround flags */
++#define FLAG_HAS_AMT                      (1 << 0)
++#define FLAG_HAS_FLASH                    (1 << 1)
++#define FLAG_HAS_HW_VLAN_FILTER           (1 << 2)
++#define FLAG_HAS_WOL                      (1 << 3)
++#define FLAG_HAS_ERT                      (1 << 4)
++#define FLAG_HAS_CTRLEXT_ON_LOAD          (1 << 5)
++#define FLAG_HAS_SWSM_ON_LOAD             (1 << 6)
++#define FLAG_HAS_JUMBO_FRAMES             (1 << 7)
++#define FLAG_HAS_ASPM                     (1 << 8)
++#define FLAG_HAS_STATS_ICR_ICT            (1 << 9)
++#define FLAG_HAS_STATS_PTC_PRC            (1 << 10)
++#define FLAG_HAS_SMART_POWER_DOWN         (1 << 11)
++#define FLAG_IS_QUAD_PORT_A               (1 << 12)
++#define FLAG_IS_QUAD_PORT                 (1 << 13)
++#define FLAG_TIPG_MEDIUM_FOR_80003ESLAN   (1 << 14)
++#define FLAG_APME_IN_WUC                  (1 << 15)
++#define FLAG_APME_IN_CTRL3                (1 << 16)
++#define FLAG_APME_CHECK_PORT_B            (1 << 17)
++#define FLAG_DISABLE_FC_PAUSE_TIME        (1 << 18)
++#define FLAG_NO_WAKE_UCAST                (1 << 19)
++#define FLAG_MNG_PT_ENABLED               (1 << 20)
++#define FLAG_RESET_OVERWRITES_LAA         (1 << 21)
++#define FLAG_TARC_SPEED_MODE_BIT          (1 << 22)
++#define FLAG_TARC_SET_BIT_ZERO            (1 << 23)
++#define FLAG_RX_NEEDS_RESTART             (1 << 24)
++#define FLAG_LSC_GIG_SPEED_DROP           (1 << 25)
++#define FLAG_SMART_POWER_DOWN             (1 << 26)
++#define FLAG_MSI_ENABLED                  (1 << 27)
++#define FLAG_RX_CSUM_ENABLED              (1 << 28)
++#define FLAG_TSO_FORCE                    (1 << 29)
++
++#define E1000_RX_DESC_PS(R, i)	    \
++	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
++#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
++#define E1000_RX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_rx_desc)
++#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
++#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
++
++enum e1000_state_t {
++	__E1000_TESTING,
++	__E1000_RESETTING,
++	__E1000_DOWN
++};
++
++enum latency_range {
++	lowest_latency = 0,
++	low_latency = 1,
++	bulk_latency = 2,
++	latency_invalid = 255
++};
++
++extern char e1000_driver_name[];
++extern const char e1000_driver_version[];
++
++extern void e1000_check_options(struct e1000_adapter *adapter);
++extern void e1000_set_ethtool_ops(struct net_device *netdev);
++
++extern int e1000_up(struct e1000_adapter *adapter);
++extern void e1000_down(struct e1000_adapter *adapter);
++extern void e1000_reinit_locked(struct e1000_adapter *adapter);
++extern void e1000_reset(struct e1000_adapter *adapter);
++extern void e1000_power_up_phy(struct e1000_adapter *adapter);
++extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
++extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
++extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
++extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
++extern void e1000_update_stats(struct e1000_adapter *adapter);
++
++extern unsigned int copybreak;
++
++extern char *e1000_get_hw_dev_name(struct e1000_hw *hw);
++
++extern struct e1000_info e1000_82571_info;
++extern struct e1000_info e1000_82572_info;
++extern struct e1000_info e1000_82573_info;
++extern struct e1000_info e1000_ich8_info;
++extern struct e1000_info e1000_ich9_info;
++extern struct e1000_info e1000_es2_info;
++
++extern s32  e1000_commit_phy(struct e1000_hw *hw);
++extern s32  e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
++
++extern bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
++
++extern bool e1000_get_laa_state_82571(struct e1000_hw *hw);
++extern void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
++
++extern void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
++						 bool state);
++extern void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
++extern void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
++
++extern s32 e1000_check_for_copper_link(struct e1000_hw *hw);
++extern s32 e1000_check_for_fiber_link(struct e1000_hw *hw);
++extern s32 e1000_check_for_serdes_link(struct e1000_hw *hw);
++extern s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
++extern s32 e1000_led_on_generic(struct e1000_hw *hw);
++extern s32 e1000_led_off_generic(struct e1000_hw *hw);
++extern s32 e1000_get_bus_info_pcie(struct e1000_hw *hw);
++extern s32 e1000_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
++extern s32 e1000_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
++extern s32 e1000_disable_pcie_master(struct e1000_hw *hw);
++extern s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
++extern s32 e1000_id_led_init(struct e1000_hw *hw);
++extern void e1000_clear_hw_cntrs_base(struct e1000_hw *hw);
++extern s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
++extern s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
++extern s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
++extern s32 e1000_setup_link(struct e1000_hw *hw);
++extern void e1000_clear_vfta(struct e1000_hw *hw);
++extern void e1000_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
++extern void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
++				       u8 *mc_addr_list, u32 mc_addr_count,
++				       u32 rar_used_count, u32 rar_count);
++extern void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
++extern s32 e1000_set_fc_watermarks(struct e1000_hw *hw);
++extern void e1000_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
++extern s32 e1000_get_hw_semaphore(struct e1000_hw *hw);
++extern s32 e1000_valid_led_default(struct e1000_hw *hw, u16 *data);
++extern void e1000_config_collision_dist(struct e1000_hw *hw);
++extern s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
++extern s32 e1000_force_mac_fc(struct e1000_hw *hw);
++extern s32 e1000_blink_led(struct e1000_hw *hw);
++extern void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
++extern void e1000_reset_adaptive(struct e1000_hw *hw);
++extern void e1000_update_adaptive(struct e1000_hw *hw);
++
++extern s32 e1000_setup_copper_link(struct e1000_hw *hw);
++extern s32 e1000_get_phy_id(struct e1000_hw *hw);
++extern void e1000_put_hw_semaphore(struct e1000_hw *hw);
++extern s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
++extern s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
++extern s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
++extern s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
++extern s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
++extern s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
++extern s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
++extern s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
++extern s32 e1000_phy_sw_reset(struct e1000_hw *hw);
++extern s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
++extern s32 e1000_get_cfg_done(struct e1000_hw *hw);
++extern s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
++extern s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
++extern s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
++extern s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
++extern enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
++extern void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
++extern s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
++extern s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
++extern s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
++			       u32 usec_interval, bool *success);
++extern s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
++extern s32 e1000_check_downshift(struct e1000_hw *hw);
++extern s32 e1000_wait_autoneg(struct e1000_hw *hw);
++
++static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
++{
++	return hw->phy.ops.reset_phy(hw);
++}
++
++static inline s32 e1000_check_reset_block(struct e1000_hw *hw)
++{
++	return hw->phy.ops.check_reset_block(hw);
++}
++
++static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++	return hw->phy.ops.read_phy_reg(hw, offset, data);
++}
++
++static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
++{
++	return hw->phy.ops.write_phy_reg(hw, offset, data);
++}
++
++static inline s32 e1000_get_cable_length(struct e1000_hw *hw)
++{
++	return hw->phy.ops.get_cable_length(hw);
++}
++
++extern s32 e1000_acquire_nvm(struct e1000_hw *hw);
++extern s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
++extern s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
++extern s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
++extern s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
++extern s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
++extern s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
++extern void e1000_release_nvm(struct e1000_hw *hw);
++extern void e1000_reload_nvm(struct e1000_hw *hw);
++extern s32 e1000_read_mac_addr(struct e1000_hw *hw);
++
++static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
++{
++	return hw->nvm.ops.validate_nvm(hw);
++}
++
++static inline s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
++{
++	return hw->nvm.ops.update_nvm(hw);
++}
++
++static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++	return hw->nvm.ops.read_nvm(hw, offset, words, data);
++}
++
++static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++	return hw->nvm.ops.write_nvm(hw, offset, words, data);
++}
++
++static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
++{
++	return hw->phy.ops.get_phy_info(hw);
++}
++
++extern bool e1000_check_mng_mode(struct e1000_hw *hw);
++extern bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
++extern s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
++
++static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
++{
++	return readl(hw->hw_addr + reg);
++}
++
++static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
++{
++	writel(val, hw->hw_addr + reg);
++}
++
++#endif /* _E1000_H_ */
+diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c
+new file mode 100644
+index 0000000..b5143e9
+--- /dev/null
++++ b/drivers/net/e1000e/es2lan.c
+@@ -0,0 +1,1255 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/*
++ * 80003ES2LAN Gigabit Ethernet Controller (Copper)
++ * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
++ */
++
++#include "e1000.h"
++
++#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
++#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
++#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10
++
++#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
++#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
++#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010
++
++#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
++#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000
++
++#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
++#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000
++
++#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
++#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9
++
++/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
++#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
++#define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
++#define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
++#define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
++#define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */
++
++/* PHY Specific Control Register 2 (Page 0, Register 26) */
++#define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
++						/* 1=Reverse Auto-Negotiation */
++
++/* MAC Specific Control Register (Page 2, Register 21) */
++/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
++#define GG82563_MSCR_TX_CLK_MASK		 0x0007
++#define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
++#define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
++#define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007
++
++#define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */
++
++/* DSP Distance Register (Page 5, Register 26) */
++#define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
++							   1 = 50-80M
++							   2 = 80-110M
++							   3 = 110-140M
++							   4 = >140M */
++
++/* Kumeran Mode Control Register (Page 193, Register 16) */
++#define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800
++
++/* Power Management Control Register (Page 193, Register 20) */
++#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
++					   /* 1=Enable SERDES Electrical Idle */
++
++/* In-Band Control Register (Page 194, Register 18) */
++#define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */
++
++/* A table for the GG82563 cable length where the range is defined
++ * with a lower bound at "index" and the upper bound at
++ * "index + 5".
++ */
++static const u16 e1000_gg82563_cable_length_table[] =
++	 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
++
++static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
++static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
++static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
++static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
++static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
++static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
++static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
++
++/**
++ *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
++ *  @hw: pointer to the HW structure
++ *
++ *  This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val = E1000_SUCCESS;
++
++	if (hw->media_type != e1000_media_type_copper) {
++		phy->type	= e1000_phy_none;
++		goto out;
++	}
++
++	phy->addr		= 1;
++	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
++	phy->reset_delay_us      = 100;
++	phy->type		= e1000_phy_gg82563;
++
++	/* This can only be done after all function pointers are setup. */
++	ret_val = e1000_get_phy_id(hw);
++
++	/* Verify phy id */
++	if (phy->id != GG82563_E_PHY_ID) {
++		ret_val = -E1000_ERR_PHY;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
++ *  @hw: pointer to the HW structure
++ *
++ *  This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	u32 eecd = er32(EECD);
++	u16 size;
++
++	nvm->opcode_bits	= 8;
++	nvm->delay_usec	 = 1;
++	switch (nvm->override) {
++	case e1000_nvm_override_spi_large:
++		nvm->page_size    = 32;
++		nvm->address_bits = 16;
++		break;
++	case e1000_nvm_override_spi_small:
++		nvm->page_size    = 8;
++		nvm->address_bits = 8;
++		break;
++	default:
++		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
++		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
++		break;
++	}
++
++	nvm->type	       = e1000_nvm_eeprom_spi;
++
++	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
++			  E1000_EECD_SIZE_EX_SHIFT);
++
++	/* Added to a constant, "size" becomes the left-shift value
++	 * for setting word_size.
++	 */
++	size += NVM_WORD_SIZE_BASE_SHIFT;
++	nvm->word_size	= 1 << size;
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
++ *  @hw: pointer to the HW structure
++ *
++ *  This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct e1000_mac_info *mac = &hw->mac;
++	struct e1000_mac_operations *func = &mac->ops;
++	s32 ret_val = E1000_SUCCESS;
++
++	/* Set media type */
++	switch (adapter->pdev->device) {
++	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
++		hw->media_type = e1000_media_type_internal_serdes;
++		break;
++	default:
++		hw->media_type = e1000_media_type_copper;
++		break;
++	}
++
++	/* Set mta register count */
++	mac->mta_reg_count = 128;
++	/* Set rar entry count */
++	mac->rar_entry_count = E1000_RAR_ENTRIES;
++	/* Set if manageability features are enabled. */
++	mac->arc_subsystem_valid =
++		(er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
++
++	/* check for link */
++	switch (hw->media_type) {
++	case e1000_media_type_copper:
++		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
++		func->check_for_link = e1000_check_for_copper_link;
++		break;
++	case e1000_media_type_fiber:
++		func->setup_physical_interface = e1000_setup_fiber_serdes_link;
++		func->check_for_link = e1000_check_for_fiber_link;
++		break;
++	case e1000_media_type_internal_serdes:
++		func->setup_physical_interface = e1000_setup_fiber_serdes_link;
++		func->check_for_link = e1000_check_for_serdes_link;
++		break;
++	default:
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++		break;
++	}
++
++out:
++	return ret_val;
++}
++
++static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	s32 rc;
++
++	rc = e1000_init_mac_params_80003es2lan(adapter);
++	if (rc)
++		return rc;
++
++	rc = e1000_init_nvm_params_80003es2lan(hw);
++	if (rc)
++		return rc;
++
++	rc = e1000_init_phy_params_80003es2lan(hw);
++	if (rc)
++		return rc;
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
++ *  @hw: pointer to the HW structure
++ *
++ *  A wrapper to acquire access rights to the correct PHY.  This is a
++ *  function pointer entry point called by the api module.
++ **/
++static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
++{
++	u16 mask;
++
++	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
++
++	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
++}
++
++/**
++ *  e1000_release_phy_80003es2lan - Release rights to access PHY
++ *  @hw: pointer to the HW structure
++ *
++ *  A wrapper to release access rights to the correct PHY.  This is a
++ *  function pointer entry point called by the api module.
++ **/
++static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
++{
++	u16 mask;
++
++	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
++	e1000_release_swfw_sync_80003es2lan(hw, mask);
++}
++
++/**
++ *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
++ *  @hw: pointer to the HW structure
++ *
++ *  Acquire the semaphore to access the EEPROM.  This is a function
++ *  pointer entry point called by the api module.
++ **/
++static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
++{
++	s32 ret_val;
++
++	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1000_acquire_nvm(hw);
++
++	if (ret_val)
++		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
++ *  @hw: pointer to the HW structure
++ *
++ *  Release the semaphore used to access the EEPROM.  This is a
++ *  function pointer entry point called by the api module.
++ **/
++static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
++{
++	e1000_release_nvm(hw);
++	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
++}
++
++/**
++ *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
++ *  @hw: pointer to the HW structure
++ *  @mask: specifies which semaphore to acquire
++ *
++ *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
++ *  will also specify which port we're acquiring the lock for.
++ **/
++static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
++{
++	u32 swfw_sync;
++	u32 swmask = mask;
++	u32 fwmask = mask << 16;
++	s32 ret_val = E1000_SUCCESS;
++	s32 i = 0;
++	s32 timeout = 200;
++
++	while (i < timeout) {
++		if (e1000_get_hw_semaphore(hw)) {
++			ret_val = -E1000_ERR_SWFW_SYNC;
++			goto out;
++		}
++
++		swfw_sync = er32(SW_FW_SYNC);
++		if (!(swfw_sync & (fwmask | swmask)))
++			break;
++
++		/* Firmware currently using resource (fwmask)
++		 * or other software thread using resource (swmask) */
++		e1000_put_hw_semaphore(hw);
++		mdelay(5);
++		i++;
++	}
++
++	if (i == timeout) {
++		hw_dbg(hw,
++		       "Driver can't access resource, SW_FW_SYNC timeout.\n");
++		ret_val = -E1000_ERR_SWFW_SYNC;
++		goto out;
++	}
++
++	swfw_sync |= swmask;
++	ew32(SW_FW_SYNC, swfw_sync);
++
++	e1000_put_hw_semaphore(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
++ *  @hw: pointer to the HW structure
++ *  @mask: specifies which semaphore to acquire
++ *
++ *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
++ *  will also specify which port we're releasing the lock for.
++ **/
++static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
++{
++	u32 swfw_sync;
++
++	while (e1000_get_hw_semaphore(hw) != E1000_SUCCESS);
++	/* Empty */
++
++	swfw_sync = er32(SW_FW_SYNC);
++	swfw_sync &= ~mask;
++	ew32(SW_FW_SYNC, swfw_sync);
++
++	e1000_put_hw_semaphore(hw);
++}
++
++/**
++ *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
++ *  @hw: pointer to the HW structure
++ *  @offset: offset of the register to read
++ *  @data: pointer to the data returned from the operation
++ *
++ *  Read the GG82563 PHY register.  This is a function pointer entry
++ *  point called by the api module.
++ **/
++static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
++						  u32 offset, u16 *data)
++{
++	s32 ret_val;
++	u32 page_select;
++	u16 temp;
++
++	/* Select Configuration Page */
++	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
++		page_select = GG82563_PHY_PAGE_SELECT;
++	else
++		/* Use Alternative Page Select register to access
++		 * registers 30 and 31
++		 */
++		page_select = GG82563_PHY_PAGE_SELECT_ALT;
++
++	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
++	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
++	if (ret_val)
++		goto out;
++
++	/* The "ready" bit in the MDIC register may be incorrectly set
++	 * before the device has completed the "Page Select" MDI
++	 * transaction.  So we wait 200us after each MDI command...
++	 */
++	udelay(200);
++
++	/* ...and verify the command was successful. */
++	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
++
++	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
++		ret_val = -E1000_ERR_PHY;
++		goto out;
++	}
++
++	udelay(200);
++
++	ret_val = e1000_read_phy_reg_m88(hw,
++					 MAX_PHY_REG_ADDRESS & offset,
++					 data);
++
++	udelay(200);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
++ *  @hw: pointer to the HW structure
++ *  @offset: offset of the register to read
++ *  @data: value to write to the register
++ *
++ *  Write to the GG82563 PHY register.  This is a function pointer entry
++ *  point called by the api module.
++ **/
++static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
++						   u32 offset, u16 data)
++{
++	s32 ret_val;
++	u32 page_select;
++	u16 temp;
++
++	/* Select Configuration Page */
++	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
++		page_select = GG82563_PHY_PAGE_SELECT;
++	else
++		/* Use Alternative Page Select register to access
++		 * registers 30 and 31
++		 */
++		page_select = GG82563_PHY_PAGE_SELECT_ALT;
++
++	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
++	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
++	if (ret_val)
++		goto out;
++
++
++	/* The "ready" bit in the MDIC register may be incorrectly set
++	 * before the device has completed the "Page Select" MDI
++	 * transaction.  So we wait 200us after each MDI command...
++	 */
++	udelay(200);
++
++	/* ...and verify the command was successful. */
++	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
++
++	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
++		ret_val = -E1000_ERR_PHY;
++		goto out;
++	}
++
++	udelay(200);
++
++	ret_val = e1000_write_phy_reg_m88(hw,
++					  MAX_PHY_REG_ADDRESS & offset,
++					  data);
++
++	udelay(200);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
++ *  @hw: pointer to the HW structure
++ *  @offset: offset of the register to read
++ *  @words: number of words to write
++ *  @data: buffer of data to write to the NVM
++ *
++ *  Write "words" of data to the ESB2 NVM.  This is a function
++ *  pointer entry point called by the api module.
++ **/
++static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
++				       u16 words, u16 *data)
++{
++	return e1000_write_nvm_spi(hw, offset, words, data);
++}
++
++/**
++ *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
++ *  @hw: pointer to the HW structure
++ *
++ *  Wait a specific amount of time for manageability processes to complete.
++ *  This is a function pointer entry point called by the phy module.
++ **/
++static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
++{
++	s32 timeout = PHY_CFG_TIMEOUT;
++	s32 ret_val = E1000_SUCCESS;
++	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
++
++	if (hw->bus.func == 1)
++		mask = E1000_NVM_CFG_DONE_PORT_1;
++
++	while (timeout) {
++		if (er32(EEMNGCTL) & mask)
++			break;
++		msleep(1);
++		timeout--;
++	}
++	if (!timeout) {
++		hw_dbg(hw, "MNG configuration cycle has not completed.\n");
++		ret_val = -E1000_ERR_RESET;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
++ *  @hw: pointer to the HW structure
++ *
++ *  Force the speed and duplex settings onto the PHY.  This is a
++ *  function pointer entry point called by the phy module.
++ **/
++static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
++{
++	s32 ret_val;
++	u16 phy_data;
++	bool link;
++
++	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
++	 * forced whenever speed and duplex are forced.
++	 */
++	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
++	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
++	if (ret_val)
++		goto out;
++
++	hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
++
++	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
++
++	/* Reset the phy to commit changes. */
++	phy_data |= MII_CR_RESET;
++
++	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
++	if (ret_val)
++		goto out;
++
++	udelay(1);
++
++	if (hw->phy.wait_for_link) {
++		hw_dbg(hw, "Waiting for forced speed/duplex link "
++			 "on GG82563 phy.\n");
++
++		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++						     100000, &link);
++		if (ret_val)
++			goto out;
++
++		if (!link) {
++			/* We didn't get link.
++			 * Reset the DSP and cross our fingers.
++			 */
++			ret_val = e1000_phy_reset_dsp(hw);
++			if (ret_val)
++				goto out;
++		}
++
++		/* Try once more */
++		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++						     100000, &link);
++		if (ret_val)
++			goto out;
++	}
++
++	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	/* Resetting the phy means we need to verify the TX_CLK corresponds
++	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
++	 */
++	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
++	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
++		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
++	else
++		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
++
++	/* In addition, we must re-enable CRS on Tx for both half and full
++	 * duplex.
++	 */
++	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
++	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_cable_length_80003es2lan - Set approximate cable length
++ *  @hw: pointer to the HW structure
++ *
++ *  Find the approximate cable length as measured by the GG82563 PHY.
++ *  This is a function pointer entry point called by the phy module.
++ **/
++static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 phy_data;
++	u16 index;
++
++	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
++	if (ret_val)
++		goto out;
++
++	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
++	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
++	phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
++
++	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
++ *  @hw: pointer to the HW structure
++ *  @speed: pointer to speed buffer
++ *  @duplex: pointer to duplex buffer
++ *
++ *  Retrieve the current speed and duplex configuration.
++ *  This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
++					      u16 *duplex)
++{
++	s32 ret_val;
++
++	if (hw->media_type == e1000_media_type_copper) {
++		ret_val = e1000_get_speed_and_duplex_copper(hw,
++								    speed,
++								    duplex);
++		if (ret_val)
++			goto out;
++		if (*speed == SPEED_1000)
++			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
++		else
++			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
++							      *duplex);
++	} else {
++		ret_val = e1000_get_speed_and_duplex_fiber_serdes(hw,
++								  speed,
++								  duplex);
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
++ *  @hw: pointer to the HW structure
++ *
++ *  Perform a global reset to the ESB2 controller.
++ *  This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
++{
++	u32 ctrl;
++	u32 icr;
++	s32 ret_val;
++
++	/* Prevent the PCI-E bus from sticking if there is no TLP connection
++	 * on the last TLP read/write transaction when MAC is reset.
++	 */
++	ret_val = e1000_disable_pcie_master(hw);
++	if (ret_val)
++		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
++
++	hw_dbg(hw, "Masking off all interrupts\n");
++	ew32(IMC, 0xffffffff);
++
++	ew32(RCTL, 0);
++	ew32(TCTL, E1000_TCTL_PSP);
++	e1e_flush();
++
++	msleep(10);
++
++	ctrl = er32(CTRL);
++
++	hw_dbg(hw, "Issuing a global reset to MAC\n");
++	ew32(CTRL, ctrl | E1000_CTRL_RST);
++
++	ret_val = e1000_get_auto_rd_done(hw);
++	if (ret_val)
++		/* We don't want to continue accessing MAC registers. */
++		goto out;
++
++	/* Clear any pending interrupt events. */
++	ew32(IMC, 0xffffffff);
++	icr = er32(ICR);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
++ *  @hw: pointer to the HW structure
++ *
++ *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
++ *  This is a function pointer entry point called by the api module.
++ **/
++static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	u32 reg_data;
++	s32 ret_val;
++	u16 i;
++
++	e1000_initialize_hw_bits_80003es2lan(hw);
++
++	/* Initialize identification LED */
++	ret_val = e1000_id_led_init(hw);
++	if (ret_val) {
++		hw_dbg(hw, "Error initializing identification LED\n");
++		goto out;
++	}
++
++	/* Disabling VLAN filtering */
++	hw_dbg(hw, "Initializing the IEEE VLAN\n");
++	e1000_clear_vfta(hw);
++
++	/* Setup the receive address. */
++	e1000_init_rx_addrs(hw, mac->rar_entry_count);
++
++	/* Zero out the Multicast HASH table */
++	hw_dbg(hw, "Zeroing the MTA\n");
++	for (i = 0; i < mac->mta_reg_count; i++)
++		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
++
++	/* Setup link and flow control */
++	ret_val = e1000_setup_link(hw);
++
++	/* Set the transmit descriptor write-back policy */
++	reg_data = er32(TXDCTL);
++	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
++		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
++	ew32(TXDCTL, reg_data);
++
++	/* ...for both queues. */
++	reg_data = er32(TXDCTL1);
++	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
++		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
++	ew32(TXDCTL1, reg_data);
++
++	/* Enable retransmit on late collisions */
++	reg_data = er32(TCTL);
++	reg_data |= E1000_TCTL_RTLC;
++	ew32(TCTL, reg_data);
++
++	/* Configure Gigabit Carry Extend Padding */
++	reg_data = er32(TCTL_EXT);
++	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
++	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
++	ew32(TCTL_EXT, reg_data);
++
++	/* Configure Transmit Inter-Packet Gap */
++	reg_data = er32(TIPG);
++	reg_data &= ~E1000_TIPG_IPGT_MASK;
++	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
++	ew32(TIPG, reg_data);
++
++	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
++	reg_data &= ~0x00100000;
++	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
++
++	/* Clear all of the statistics registers (clear on read).  It is
++	 * important that we do this after we have tried to establish link
++	 * because the symbol error count will increment wildly if there
++	 * is no link.
++	 */
++	e1000_clear_hw_cntrs_80003es2lan(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
++ *  @hw: pointer to the HW structure
++ *
++ *  Initializes required hardware-dependent bits needed for normal operation.
++ **/
++static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
++{
++	u32 reg;
++
++	/* Transmit Descriptor Control 0 */
++	reg = er32(TXDCTL);
++	reg |= (1 << 22);
++	ew32(TXDCTL, reg);
++
++	/* Transmit Descriptor Control 1 */
++	reg = er32(TXDCTL1);
++	reg |= (1 << 22);
++	ew32(TXDCTL1, reg);
++
++	/* Transmit Arbitration Control 0 */
++	reg = er32(TARC0);
++	reg &= ~(0xF << 27); /* 30:27 */
++	if (hw->media_type != e1000_media_type_copper)
++		reg &= ~(1 << 20);
++	ew32(TARC0, reg);
++
++	/* Transmit Arbitration Control 1 */
++	reg = er32(TARC1);
++	if (er32(TCTL) & E1000_TCTL_MULR)
++		reg &= ~(1 << 28);
++	else
++		reg |= (1 << 28);
++	ew32(TARC1, reg);
++}
++
++/**
++ *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
++ *  @hw: pointer to the HW structure
++ *
++ *  Setup some GG82563 PHY registers for obtaining link
++ **/
++static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
++{
++	struct   e1000_phy_info *phy = &hw->phy;
++	s32  ret_val;
++	u32 ctrl_ext;
++	u16 data;
++
++	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
++				     &data);
++	if (ret_val)
++		goto out;
++
++	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
++	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
++	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
++
++	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
++				      data);
++	if (ret_val)
++		goto out;
++
++	/* Options:
++	 *   MDI/MDI-X = 0 (default)
++	 *   0 - Auto for all speeds
++	 *   1 - MDI mode
++	 *   2 - MDI-X mode
++	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
++	 */
++	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
++	if (ret_val)
++		goto out;
++
++	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
++
++	switch (phy->mdix) {
++	case 1:
++		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
++		break;
++	case 2:
++		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
++		break;
++	case 0:
++	default:
++		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
++		break;
++	}
++
++	/* Options:
++	 *   disable_polarity_correction = 0 (default)
++	 *       Automatic Correction for Reversed Cable Polarity
++	 *   0 - Disabled
++	 *   1 - Enabled
++	 */
++	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
++	if (phy->disable_polarity_correction)
++		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
++
++	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
++	if (ret_val)
++		goto out;
++
++	/* SW Reset the PHY so all changes take effect */
++	ret_val = e1000_commit_phy(hw);
++	if (ret_val) {
++		hw_dbg(hw, "Error Resetting the PHY\n");
++		goto out;
++	}
++
++	/* Bypass RX and TX FIFO's */
++	ret_val = e1000_write_kmrn_reg(hw,
++				E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
++				E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
++					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
++	if (ret_val)
++		goto out;
++
++	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
++	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
++	if (ret_val)
++		goto out;
++
++	ctrl_ext = er32(CTRL_EXT);
++	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
++	ew32(CTRL_EXT, ctrl_ext);
++
++	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
++	if (ret_val)
++		goto out;
++
++	/* Do not init these registers when the HW is in IAMT mode, since the
++	 * firmware will have already initialized them.  We only initialize
++	 * them if the HW is not in IAMT mode.
++	 */
++	if (!e1000_check_mng_mode(hw)) {
++		/* Enable Electrical Idle on the PHY */
++		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
++		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
++		if (ret_val)
++			goto out;
++
++		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
++		if (ret_val)
++			goto out;
++
++		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
++		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
++		if (ret_val)
++			goto out;
++	}
++
++	/* Workaround: Disable padding in Kumeran interface in the MAC
++	 * and in the PHY to avoid CRC errors.
++	 */
++	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
++	if (ret_val)
++		goto out;
++
++	data |= GG82563_ICR_DIS_PADDING;
++	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
++	if (ret_val)
++		goto out;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
++ *  @hw: pointer to the HW structure
++ *
++ *  Essentially a wrapper for setting up all things "copper" related.
++ *  This is a function pointer entry point called by the mac module.
++ **/
++static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
++{
++	u32 ctrl;
++	s32  ret_val;
++	u16 reg_data;
++
++	ctrl = er32(CTRL);
++	ctrl |= E1000_CTRL_SLU;
++	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++	ew32(CTRL, ctrl);
++
++	/* Set the mac to wait the maximum time between each
++	 * iteration and increase the max iterations when
++	 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
++	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
++	if (ret_val)
++		goto out;
++	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
++	if (ret_val)
++		goto out;
++	reg_data |= 0x3F;
++	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
++	if (ret_val)
++		goto out;
++	ret_val = e1000_read_kmrn_reg(hw,
++				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
++				      &reg_data);
++	if (ret_val)
++		goto out;
++	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
++	ret_val = e1000_write_kmrn_reg(hw,
++				       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
++				       reg_data);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1000_setup_copper_link(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
++ *  @hw: pointer to the HW structure
++ *  @duplex: current duplex setting
++ *
++ *  Configure the KMRN interface by applying last minute quirks for
++ *  10/100 operation.
++ **/
++static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
++{
++	s32 ret_val = E1000_SUCCESS;
++	u32 tipg;
++	u16 reg_data;
++
++	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
++	ret_val = e1000_write_kmrn_reg(hw,
++				       E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
++				       reg_data);
++	if (ret_val)
++		goto out;
++
++	/* Configure Transmit Inter-Packet Gap */
++	tipg = er32(TIPG);
++	tipg &= ~E1000_TIPG_IPGT_MASK;
++	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
++	ew32(TIPG, tipg);
++
++	ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
++	if (ret_val)
++		goto out;
++
++	if (duplex == HALF_DUPLEX)
++		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
++	else
++		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
++
++	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
++ *  @hw: pointer to the HW structure
++ *
++ *  Configure the KMRN interface by applying last minute quirks for
++ *  gigabit operation.
++ **/
++static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
++{
++	s32 ret_val = E1000_SUCCESS;
++	u16 reg_data;
++	u32 tipg;
++
++	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
++	ret_val = e1000_write_kmrn_reg(hw,
++				       E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
++				       reg_data);
++	if (ret_val)
++		goto out;
++
++	/* Configure Transmit Inter-Packet Gap */
++	tipg = er32(TIPG);
++	tipg &= ~E1000_TIPG_IPGT_MASK;
++	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
++	ew32(TIPG, tipg);
++
++	ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
++	if (ret_val)
++		goto out;
++
++	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
++	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
++ *  @hw: pointer to the HW structure
++ *
++ *  Clears the hardware counters by reading the counter registers.
++ **/
++static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
++{
++	u32 temp;
++
++	e1000_clear_hw_cntrs_base(hw);
++
++	temp = er32(PRC64);
++	temp = er32(PRC127);
++	temp = er32(PRC255);
++	temp = er32(PRC511);
++	temp = er32(PRC1023);
++	temp = er32(PRC1522);
++	temp = er32(PTC64);
++	temp = er32(PTC127);
++	temp = er32(PTC255);
++	temp = er32(PTC511);
++	temp = er32(PTC1023);
++	temp = er32(PTC1522);
++
++	temp = er32(ALGNERRC);
++	temp = er32(RXERRC);
++	temp = er32(TNCRS);
++	temp = er32(CEXTERR);
++	temp = er32(TSCTC);
++	temp = er32(TSCTFC);
++
++	temp = er32(MGTPRC);
++	temp = er32(MGTPDC);
++	temp = er32(MGTPTC);
++
++	temp = er32(IAC);
++	temp = er32(ICRXOC);
++
++	temp = er32(ICRXPTC);
++	temp = er32(ICRXATC);
++	temp = er32(ICTXPTC);
++	temp = er32(ICTXATC);
++	temp = er32(ICTXQEC);
++	temp = er32(ICTXQMTC);
++	temp = er32(ICRXDMTC);
++}
++
++static struct e1000_mac_operations es2_mac_ops = {
++	.mng_mode_enab		= E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
++	/* check_for_link dependent on media type */
++	.cleanup_led		= e1000_cleanup_led_generic,
++	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
++	.get_bus_info		= e1000_get_bus_info_pcie,
++	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
++	.led_on			= e1000_led_on_generic,
++	.led_off		= e1000_led_off_generic,
++	.mc_addr_list_update	= e1000_mc_addr_list_update_generic,
++	.reset_hw		= e1000_reset_hw_80003es2lan,
++	.init_hw		= e1000_init_hw_80003es2lan,
++	.setup_link		= e1000_setup_link,
++	/* setup_physical_interface dependent on media type */
++};
++
++static struct e1000_phy_operations es2_phy_ops = {
++	.acquire_phy		= e1000_acquire_phy_80003es2lan,
++	.check_reset_block	= e1000_check_reset_block_generic,
++	.commit_phy	 	= e1000_phy_sw_reset,
++	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
++	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
++	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
++	.get_phy_info       	= e1000_get_phy_info_m88,
++	.read_phy_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
++	.release_phy		= e1000_release_phy_80003es2lan,
++	.reset_phy	  	= e1000_phy_hw_reset_generic,
++	.set_d0_lplu_state  	= NULL,
++	.set_d3_lplu_state  	= e1000_set_d3_lplu_state,
++	.write_phy_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
++};
++
++static struct e1000_nvm_operations es2_nvm_ops = {
++	.acquire_nvm		= e1000_acquire_nvm_80003es2lan,
++	.read_nvm		= e1000_read_nvm_eerd,
++	.release_nvm		= e1000_release_nvm_80003es2lan,
++	.update_nvm		= e1000_update_nvm_checksum_generic,
++	.valid_led_default	= e1000_valid_led_default,
++	.validate_nvm		= e1000_validate_nvm_checksum_generic,
++	.write_nvm		= e1000_write_nvm_80003es2lan,
++};
++
++struct e1000_info e1000_es2_info = {
++	.mac			= e1000_80003es2lan,
++	.flags			= FLAG_HAS_HW_VLAN_FILTER
++				  | FLAG_HAS_JUMBO_FRAMES
++				  | FLAG_HAS_STATS_PTC_PRC
++				  | FLAG_HAS_WOL
++				  | FLAG_APME_IN_CTRL3
++				  | FLAG_RX_CSUM_ENABLED
++				  | FLAG_HAS_CTRLEXT_ON_LOAD
++				  | FLAG_HAS_STATS_ICR_ICT
++				  | FLAG_RX_NEEDS_RESTART /* errata */
++				  | FLAG_TARC_SET_BIT_ZERO /* errata */
++				  | FLAG_APME_CHECK_PORT_B
++				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
++				  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
++	.pba			= 38,
++	.get_invariants		= e1000_get_invariants_80003es2lan,
++	.mac_ops		= &es2_mac_ops,
++	.phy_ops		= &es2_phy_ops,
++	.nvm_ops		= &es2_nvm_ops,
++};
++
+diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
+new file mode 100644
+index 0000000..6c417ea
+--- /dev/null
++++ b/drivers/net/e1000e/ethtool.c
+@@ -0,0 +1,1763 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/* ethtool support for e1000 */
++
++#include <linux/netdevice.h>
++
++#include <linux/ethtool.h>
++
++#include "e1000.h"
++
++struct e1000_stats {
++	char stat_string[ETH_GSTRING_LEN];
++	int sizeof_stat;
++	int stat_offset;
++};
++
++#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
++		      offsetof(struct e1000_adapter, m)
++static const struct e1000_stats e1000_gstrings_stats[] = {
++	{ "rx_packets", E1000_STAT(stats.gprc) },
++	{ "tx_packets", E1000_STAT(stats.gptc) },
++	{ "rx_bytes", E1000_STAT(stats.gorcl) },
++	{ "tx_bytes", E1000_STAT(stats.gotcl) },
++	{ "rx_broadcast", E1000_STAT(stats.bprc) },
++	{ "tx_broadcast", E1000_STAT(stats.bptc) },
++	{ "rx_multicast", E1000_STAT(stats.mprc) },
++	{ "tx_multicast", E1000_STAT(stats.mptc) },
++	{ "rx_errors", E1000_STAT(net_stats.rx_errors) },
++	{ "tx_errors", E1000_STAT(net_stats.tx_errors) },
++	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
++	{ "multicast", E1000_STAT(stats.mprc) },
++	{ "collisions", E1000_STAT(stats.colc) },
++	{ "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
++	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
++	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
++	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
++	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
++	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
++	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
++	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
++	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
++	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
++	{ "tx_window_errors", E1000_STAT(stats.latecol) },
++	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
++	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
++	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
++	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
++	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
++	{ "tx_restart_queue", E1000_STAT(restart_queue) },
++	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
++	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
++	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
++	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
++	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
++	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
++	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
++	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
++	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
++	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
++	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
++	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
++	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
++	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
++	{ "tx_smbus", E1000_STAT(stats.mgptc) },
++	{ "rx_smbus", E1000_STAT(stats.mgprc) },
++	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
++};
++
++#define E1000_GLOBAL_STATS_LEN	\
++	sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
++#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
++static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
++	"Register test  (offline)", "Eeprom test    (offline)",
++	"Interrupt test (offline)", "Loopback test  (offline)",
++	"Link test   (on/offline)"
++};
++#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
++
++static int e1000_get_settings(struct net_device *netdev,
++			      struct ethtool_cmd *ecmd)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++
++	if (hw->media_type == e1000_media_type_copper) {
++
++		ecmd->supported = (SUPPORTED_10baseT_Half |
++				   SUPPORTED_10baseT_Full |
++				   SUPPORTED_100baseT_Half |
++				   SUPPORTED_100baseT_Full |
++				   SUPPORTED_1000baseT_Full |
++				   SUPPORTED_Autoneg |
++				   SUPPORTED_TP);
++		if (hw->phy.type == e1000_phy_ife)
++			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
++		ecmd->advertising = ADVERTISED_TP;
++
++		if (hw->mac.autoneg == 1) {
++			ecmd->advertising |= ADVERTISED_Autoneg;
++			/* the e1000 autoneg seems to match ethtool nicely */
++			ecmd->advertising |= hw->phy.autoneg_advertised;
++		}
++
++		ecmd->port = PORT_TP;
++		ecmd->phy_address = hw->phy.addr;
++		ecmd->transceiver = XCVR_INTERNAL;
++
++	} else {
++		ecmd->supported   = (SUPPORTED_1000baseT_Full |
++				     SUPPORTED_FIBRE |
++				     SUPPORTED_Autoneg);
++
++		ecmd->advertising = (ADVERTISED_1000baseT_Full |
++				     ADVERTISED_FIBRE |
++				     ADVERTISED_Autoneg);
++
++		ecmd->port = PORT_FIBRE;
++		ecmd->transceiver = XCVR_EXTERNAL;
++	}
++
++	if (er32(STATUS) & E1000_STATUS_LU) {
++
++		adapter->hw.mac.ops.get_link_up_info(hw, &adapter->link_speed,
++						  &adapter->link_duplex);
++		ecmd->speed = adapter->link_speed;
++
++		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
++		 *	  and HALF_DUPLEX != DUPLEX_HALF */
++
++		if (adapter->link_duplex == FULL_DUPLEX)
++			ecmd->duplex = DUPLEX_FULL;
++		else
++			ecmd->duplex = DUPLEX_HALF;
++	} else {
++		ecmd->speed = -1;
++		ecmd->duplex = -1;
++	}
++
++	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
++			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
++	return 0;
++}
++
++static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
++{
++	struct e1000_mac_info *mac = &adapter->hw.mac;
++
++	mac->autoneg = 0;
++
++	/* Fiber NICs only allow 1000 gbps Full duplex */
++	if ((adapter->hw.media_type == e1000_media_type_fiber) &&
++		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
++		ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
++			 "configuration\n");
++		return -EINVAL;
++	}
++
++	switch (spddplx) {
++	case SPEED_10 + DUPLEX_HALF:
++		mac->forced_speed_duplex = ADVERTISE_10_HALF;
++		break;
++	case SPEED_10 + DUPLEX_FULL:
++		mac->forced_speed_duplex = ADVERTISE_10_FULL;
++		break;
++	case SPEED_100 + DUPLEX_HALF:
++		mac->forced_speed_duplex = ADVERTISE_100_HALF;
++		break;
++	case SPEED_100 + DUPLEX_FULL:
++		mac->forced_speed_duplex = ADVERTISE_100_FULL;
++		break;
++	case SPEED_1000 + DUPLEX_FULL:
++		mac->autoneg = 1;
++		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
++		break;
++	case SPEED_1000 + DUPLEX_HALF: /* not supported */
++	default:
++		ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
++			 "configuration\n");
++		return -EINVAL;
++	}
++	return 0;
++}
++
++static int e1000_set_settings(struct net_device *netdev,
++			      struct ethtool_cmd *ecmd)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++
++	/* When SoL/IDER sessions are active, autoneg/speed/duplex
++	 * cannot be changed */
++	if (e1000_check_reset_block(hw)) {
++		ndev_err(netdev, "Cannot change link "
++			 "characteristics when SoL/IDER is active.\n");
++		return -EINVAL;
++	}
++
++	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++		msleep(1);
++
++	if (ecmd->autoneg == AUTONEG_ENABLE) {
++		hw->mac.autoneg = 1;
++		if (hw->media_type == e1000_media_type_fiber)
++			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
++						     ADVERTISED_FIBRE |
++						     ADVERTISED_Autoneg;
++		else
++			hw->phy.autoneg_advertised = ecmd->advertising |
++						     ADVERTISED_TP |
++						     ADVERTISED_Autoneg;
++		ecmd->advertising = hw->phy.autoneg_advertised;
++	} else {
++		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
++			clear_bit(__E1000_RESETTING, &adapter->state);
++			return -EINVAL;
++		}
++	}
++
++	/* reset the link */
++
++	if (netif_running(adapter->netdev)) {
++		e1000_down(adapter);
++		e1000_up(adapter);
++	} else {
++		e1000_reset(adapter);
++	}
++
++	clear_bit(__E1000_RESETTING, &adapter->state);
++	return 0;
++}
++
++static void e1000_get_pauseparam(struct net_device *netdev,
++				 struct ethtool_pauseparam *pause)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++
++	pause->autoneg =
++		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
++
++	if (hw->mac.fc == e1000_fc_rx_pause) {
++		pause->rx_pause = 1;
++	} else if (hw->mac.fc == e1000_fc_tx_pause) {
++		pause->tx_pause = 1;
++	} else if (hw->mac.fc == e1000_fc_full) {
++		pause->rx_pause = 1;
++		pause->tx_pause = 1;
++	}
++}
++
++static int e1000_set_pauseparam(struct net_device *netdev,
++				struct ethtool_pauseparam *pause)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	int retval = 0;
++
++	adapter->fc_autoneg = pause->autoneg;
++
++	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++		msleep(1);
++
++	if (pause->rx_pause && pause->tx_pause)
++		hw->mac.fc = e1000_fc_full;
++	else if (pause->rx_pause && !pause->tx_pause)
++		hw->mac.fc = e1000_fc_rx_pause;
++	else if (!pause->rx_pause && pause->tx_pause)
++		hw->mac.fc = e1000_fc_tx_pause;
++	else if (!pause->rx_pause && !pause->tx_pause)
++		hw->mac.fc = e1000_fc_none;
++
++	hw->mac.original_fc = hw->mac.fc;
++
++	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
++		if (netif_running(adapter->netdev)) {
++			e1000_down(adapter);
++			e1000_up(adapter);
++		} else {
++			e1000_reset(adapter);
++		}
++	} else {
++		retval = ((hw->media_type == e1000_media_type_fiber) ?
++			  hw->mac.ops.setup_link(hw) : e1000_force_mac_fc(hw));
++	}
++
++	clear_bit(__E1000_RESETTING, &adapter->state);
++	return retval;
++}
++
++static u32 e1000_get_rx_csum(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	return (adapter->flags & FLAG_RX_CSUM_ENABLED);
++}
++
++static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	if (data)
++		adapter->flags |= FLAG_RX_CSUM_ENABLED;
++	else
++		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
++
++	if (netif_running(netdev))
++		e1000_reinit_locked(adapter);
++	else
++		e1000_reset(adapter);
++	return 0;
++}
++
++static u32 e1000_get_tx_csum(struct net_device *netdev)
++{
++	return ((netdev->features & NETIF_F_HW_CSUM) != 0);
++}
++
++static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
++{
++	if (data)
++		netdev->features |= NETIF_F_HW_CSUM;
++	else
++		netdev->features &= ~NETIF_F_HW_CSUM;
++
++	return 0;
++}
++
++static int e1000_set_tso(struct net_device *netdev, u32 data)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	if (data) {
++		netdev->features |= NETIF_F_TSO;
++		netdev->features |= NETIF_F_TSO6;
++	} else {
++		netdev->features &= ~NETIF_F_TSO;
++		netdev->features &= ~NETIF_F_TSO6;
++	}
++
++	ndev_info(netdev, "TSO is %s\n",
++		  data ? "Enabled" : "Disabled");
++	adapter->flags |= FLAG_TSO_FORCE;
++	return 0;
++}
++
++static u32 e1000_get_msglevel(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	return adapter->msg_enable;
++}
++
++static void e1000_set_msglevel(struct net_device *netdev, u32 data)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	adapter->msg_enable = data;
++}
++
++static int e1000_get_regs_len(struct net_device *netdev)
++{
++#define E1000_REGS_LEN 32 /* overestimate */
++	return E1000_REGS_LEN * sizeof(u32);
++}
++
++static void e1000_get_regs(struct net_device *netdev,
++			   struct ethtool_regs *regs, void *p)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	u32 *regs_buff = p;
++	u16 phy_data;
++	u8 revision_id;
++
++	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
++
++	pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
++
++	regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
++
++	regs_buff[0]  = er32(CTRL);
++	regs_buff[1]  = er32(STATUS);
++
++	regs_buff[2]  = er32(RCTL);
++	regs_buff[3]  = er32(RDLEN);
++	regs_buff[4]  = er32(RDH);
++	regs_buff[5]  = er32(RDT);
++	regs_buff[6]  = er32(RDTR);
++
++	regs_buff[7]  = er32(TCTL);
++	regs_buff[8]  = er32(TDLEN);
++	regs_buff[9]  = er32(TDH);
++	regs_buff[10] = er32(TDT);
++	regs_buff[11] = er32(TIDV);
++
++	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
++	if (hw->phy.type == e1000_phy_m88) {
++		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
++		regs_buff[13] = (u32)phy_data; /* cable length */
++		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
++		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
++		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
++		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
++		regs_buff[18] = regs_buff[13]; /* cable polarity */
++		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
++		regs_buff[20] = regs_buff[17]; /* polarity correction */
++		/* phy receive errors */
++		regs_buff[22] = adapter->phy_stats.receive_errors;
++		regs_buff[23] = regs_buff[13]; /* mdix mode */
++	}
++	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
++	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
++	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
++	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
++}
++
++static int e1000_get_eeprom_len(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	return adapter->hw.nvm.word_size * 2;
++}
++
++static int e1000_get_eeprom(struct net_device *netdev,
++			    struct ethtool_eeprom *eeprom, u8 *bytes)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	u16 *eeprom_buff;
++	int first_word;
++	int last_word;
++	int ret_val = 0;
++	u16 i;
++
++	if (eeprom->len == 0)
++		return -EINVAL;
++
++	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
++
++	first_word = eeprom->offset >> 1;
++	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
++
++	eeprom_buff = kmalloc(sizeof(u16) *
++			(last_word - first_word + 1), GFP_KERNEL);
++	if (!eeprom_buff)
++		return -ENOMEM;
++
++	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
++		ret_val = e1000_read_nvm(hw, first_word,
++					 last_word - first_word + 1,
++					 eeprom_buff);
++	} else {
++		for (i = 0; i < last_word - first_word + 1; i++) {
++			ret_val = e1000_read_nvm(hw, first_word + i, 1,
++						      &eeprom_buff[i]);
++			if (ret_val)
++				break;
++		}
++	}
++
++	/* Device's eeprom is always little-endian, word addressable */
++	for (i = 0; i < last_word - first_word + 1; i++)
++		le16_to_cpus(&eeprom_buff[i]);
++
++	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
++	kfree(eeprom_buff);
++
++	return ret_val;
++}
++
++static int e1000_set_eeprom(struct net_device *netdev,
++			    struct ethtool_eeprom *eeprom, u8 *bytes)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	u16 *eeprom_buff;
++	void *ptr;
++	int max_len;
++	int first_word;
++	int last_word;
++	int ret_val = 0;
++	u16 i;
++
++	if (eeprom->len == 0)
++		return -EOPNOTSUPP;
++
++	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
++		return -EFAULT;
++
++	max_len = hw->nvm.word_size * 2;
++
++	first_word = eeprom->offset >> 1;
++	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
++	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
++	if (!eeprom_buff)
++		return -ENOMEM;
++
++	ptr = (void *)eeprom_buff;
++
++	if (eeprom->offset & 1) {
++		/* need read/modify/write of first changed EEPROM word */
++		/* only the second byte of the word is being modified */
++		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
++		ptr++;
++	}
++	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
++		/* need read/modify/write of last changed EEPROM word */
++		/* only the first byte of the word is being modified */
++		ret_val = e1000_read_nvm(hw, last_word, 1,
++				  &eeprom_buff[last_word - first_word]);
++
++	/* Device's eeprom is always little-endian, word addressable */
++	for (i = 0; i < last_word - first_word + 1; i++)
++		le16_to_cpus(&eeprom_buff[i]);
++
++	memcpy(ptr, bytes, eeprom->len);
++
++	for (i = 0; i < last_word - first_word + 1; i++)
++		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
++
++	ret_val = e1000_write_nvm(hw, first_word,
++				  last_word - first_word + 1, eeprom_buff);
++
++	/* Update the checksum over the first part of the EEPROM if needed
++	 * and flush shadow RAM for 82573 controllers */
++	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
++			       (hw->mac.type == e1000_82573)))
++		e1000_update_nvm_checksum(hw);
++
++	kfree(eeprom_buff);
++	return ret_val;
++}
++
++static void e1000_get_drvinfo(struct net_device *netdev,
++			      struct ethtool_drvinfo *drvinfo)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	char firmware_version[32];
++	u16 eeprom_data;
++
++	strncpy(drvinfo->driver,  e1000_driver_name, 32);
++	strncpy(drvinfo->version, e1000_driver_version, 32);
++
++	/* EEPROM image version # is reported as firmware version # for
++	 * PCI-E controllers */
++	e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
++	sprintf(firmware_version, "%d.%d-%d",
++		(eeprom_data & 0xF000) >> 12,
++		(eeprom_data & 0x0FF0) >> 4,
++		eeprom_data & 0x000F);
++
++	strncpy(drvinfo->fw_version, firmware_version, 32);
++	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
++	drvinfo->n_stats = E1000_STATS_LEN;
++	drvinfo->testinfo_len = E1000_TEST_LEN;
++	drvinfo->regdump_len = e1000_get_regs_len(netdev);
++	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
++}
++
++static void e1000_get_ringparam(struct net_device *netdev,
++				struct ethtool_ringparam *ring)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++
++	ring->rx_max_pending = E1000_MAX_RXD;
++	ring->tx_max_pending = E1000_MAX_TXD;
++	ring->rx_mini_max_pending = 0;
++	ring->rx_jumbo_max_pending = 0;
++	ring->rx_pending = rx_ring->count;
++	ring->tx_pending = tx_ring->count;
++	ring->rx_mini_pending = 0;
++	ring->rx_jumbo_pending = 0;
++}
++
++static int e1000_set_ringparam(struct net_device *netdev,
++			       struct ethtool_ringparam *ring)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_ring *tx_ring, *tx_old;
++	struct e1000_ring *rx_ring, *rx_old;
++	int err;
++
++	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
++		return -EINVAL;
++
++	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++		msleep(1);
++
++	if (netif_running(adapter->netdev))
++		e1000_down(adapter);
++
++	tx_old = adapter->tx_ring;
++	rx_old = adapter->rx_ring;
++
++	err = -ENOMEM;
++	tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
++	if (!tx_ring)
++		goto err_alloc_tx;
++
++	rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
++	if (!rx_ring)
++		goto err_alloc_rx;
++
++	adapter->tx_ring = tx_ring;
++	adapter->rx_ring = rx_ring;
++
++	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
++	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
++	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
++
++	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
++	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
++	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
++
++	if (netif_running(adapter->netdev)) {
++		/* Try to get new resources before deleting old */
++		err = e1000_setup_rx_resources(adapter);
++		if (err)
++			goto err_setup_rx;
++		err = e1000_setup_tx_resources(adapter);
++		if (err)
++			goto err_setup_tx;
++
++		/* save the new, restore the old in order to free it,
++		 * then restore the new back again */
++		adapter->rx_ring = rx_old;
++		adapter->tx_ring = tx_old;
++		e1000_free_rx_resources(adapter);
++		e1000_free_tx_resources(adapter);
++		kfree(tx_old);
++		kfree(rx_old);
++		adapter->rx_ring = rx_ring;
++		adapter->tx_ring = tx_ring;
++		err = e1000_up(adapter);
++		if (err)
++			goto err_setup;
++	}
++
++	clear_bit(__E1000_RESETTING, &adapter->state);
++	return 0;
++err_setup_tx:
++	e1000_free_rx_resources(adapter);
++err_setup_rx:
++	adapter->rx_ring = rx_old;
++	adapter->tx_ring = tx_old;
++	kfree(rx_ring);
++err_alloc_rx:
++	kfree(tx_ring);
++err_alloc_tx:
++	e1000_up(adapter);
++err_setup:
++	clear_bit(__E1000_RESETTING, &adapter->state);
++	return err;
++}
++
++#define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
++#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable)		      \
++{									      \
++	u32 _pat;							      \
++	u32 _value;							      \
++	u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};	      \
++	for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) {		      \
++		E1000_WRITE_REG_ARRAY(hw, reg, offset,	      \
++				      (_test[_pat] & writeable));	      \
++		_value = E1000_READ_REG_ARRAY(hw, reg, offset);     \
++		if (_value != (_test[_pat] & writeable & mask)) {	      \
++			ndev_err(netdev, "pattern test reg %04X "             \
++				 "failed: got 0x%08X expected 0x%08X\n",      \
++				 reg + offset,  \
++				 value, (_test[_pat] & writeable & mask));    \
++			*data = reg;					      \
++			return 1;					      \
++		}							      \
++	}								      \
++}
++
++#define REG_SET_AND_CHECK(R, M, W)					      \
++{									      \
++	u32 _value;							      \
++	__ew32(hw, R, W & M);						\
++	_value = __er32(hw, R);						\
++	if ((W & M) != (_value & M)) {					      \
++		ndev_err(netdev, "set/check reg %04X test failed: "           \
++			 "got 0x%08X expected 0x%08X\n", R, (_value & M),     \
++			 (W & M));					      \
++		*data = R;						      \
++		return 1;						      \
++	}								      \
++}
++
++static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct e1000_mac_info *mac = &adapter->hw.mac;
++	struct net_device *netdev = adapter->netdev;
++	u32 value;
++	u32 before;
++	u32 after;
++	u32 i;
++	u32 toggle;
++
++	/* The status register is Read Only, so a write should fail.
++	 * Some bits that get toggled are ignored.
++	 */
++	switch (mac->type) {
++	/* there are several bits on newer hardware that are r/w */
++	case e1000_82571:
++	case e1000_82572:
++	case e1000_80003es2lan:
++		toggle = 0x7FFFF3FF;
++		break;
++	case e1000_82573:
++	case e1000_ich8lan:
++	case e1000_ich9lan:
++		toggle = 0x7FFFF033;
++		break;
++	default:
++		toggle = 0xFFFFF833;
++		break;
++	}
++
++	before = er32(STATUS);
++	value = (er32(STATUS) & toggle);
++	ew32(STATUS, toggle);
++	after = er32(STATUS) & toggle;
++	if (value != after) {
++		ndev_err(netdev, "failed STATUS register test got: "
++			 "0x%08X expected: 0x%08X\n", after, value);
++		*data = 1;
++		return 1;
++	}
++	/* restore previous status */
++	ew32(STATUS, before);
++
++	if ((mac->type != e1000_ich8lan) &&
++	    (mac->type != e1000_ich9lan)) {
++		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
++		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
++		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
++		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
++	}
++
++	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
++	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
++	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
++	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
++	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
++	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
++	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
++	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
++	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
++	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
++
++	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
++
++	before = (((mac->type == e1000_ich8lan) ||
++		   (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
++	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
++	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
++
++	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x01FFFFFF);
++	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFF000, 0xFFFFFFFF);
++	REG_PATTERN_TEST(E1000_TXCW, 0x0000FFFF, 0x0000FFFF);
++	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFF000, 0xFFFFFFFF);
++
++	for (i = 0; i < mac->mta_reg_count; i++)
++		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
++
++	*data = 0;
++	return 0;
++}
++
++static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
++{
++	u16 temp;
++	u16 checksum = 0;
++	u16 i;
++
++	*data = 0;
++	/* Read and add up the contents of the EEPROM */
++	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
++		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
++			*data = 1;
++			break;
++		}
++		checksum += temp;
++	}
++
++	/* If Checksum is not Correct return error else test passed */
++	if ((checksum != (u16) NVM_SUM) && !(*data))
++		*data = 2;
++
++	return *data;
++}
++
++static irqreturn_t e1000_test_intr(int irq, void *data)
++{
++	struct net_device *netdev = (struct net_device *) data;
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++
++	adapter->test_icr |= er32(ICR);
++
++	return IRQ_HANDLED;
++}
++
++static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
++{
++	struct net_device *netdev = adapter->netdev;
++	struct e1000_hw *hw = &adapter->hw;
++	u32 mask;
++	u32 shared_int = 1;
++	u32 irq = adapter->pdev->irq;
++	int i;
++
++	*data = 0;
++
++	/* NOTE: we don't test MSI interrupts here, yet */
++	/* Hook up test interrupt handler just for this test */
++	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
++			 netdev)) {
++		shared_int = 0;
++	} else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
++		 netdev->name, netdev)) {
++		*data = 1;
++		return -1;
++	}
++	ndev_info(netdev, "testing %s interrupt\n",
++		  (shared_int ? "shared" : "unshared"));
++
++	/* Disable all the interrupts */
++	ew32(IMC, 0xFFFFFFFF);
++	msleep(10);
++
++	/* Test each interrupt */
++	for (i = 0; i < 10; i++) {
++
++		if (((adapter->hw.mac.type == e1000_ich8lan) ||
++		     (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
++			continue;
++
++		/* Interrupt to test */
++		mask = 1 << i;
++
++		if (!shared_int) {
++			/* Disable the interrupt to be reported in
++			 * the cause register and then force the same
++			 * interrupt and see if one gets posted.  If
++			 * an interrupt was posted to the bus, the
++			 * test failed.
++			 */
++			adapter->test_icr = 0;
++			ew32(IMC, mask);
++			ew32(ICS, mask);
++			msleep(10);
++
++			if (adapter->test_icr & mask) {
++				*data = 3;
++				break;
++			}
++		}
++
++		/* Enable the interrupt to be reported in
++		 * the cause register and then force the same
++		 * interrupt and see if one gets posted.  If
++		 * an interrupt was not posted to the bus, the
++		 * test failed.
++		 */
++		adapter->test_icr = 0;
++		ew32(IMS, mask);
++		ew32(ICS, mask);
++		msleep(10);
++
++		if (!(adapter->test_icr & mask)) {
++			*data = 4;
++			break;
++		}
++
++		if (!shared_int) {
++			/* Disable the other interrupts to be reported in
++			 * the cause register and then force the other
++			 * interrupts and see if any get posted.  If
++			 * an interrupt was posted to the bus, the
++			 * test failed.
++			 */
++			adapter->test_icr = 0;
++			ew32(IMC, ~mask & 0x00007FFF);
++			ew32(ICS, ~mask & 0x00007FFF);
++			msleep(10);
++
++			if (adapter->test_icr) {
++				*data = 5;
++				break;
++			}
++		}
++	}
++
++	/* Disable all the interrupts */
++	ew32(IMC, 0xFFFFFFFF);
++	msleep(10);
++
++	/* Unhook test interrupt handler */
++	free_irq(irq, netdev);
++
++	return *data;
++}
++
++static void e1000_free_desc_rings(struct e1000_adapter *adapter)
++{
++	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
++	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
++	struct pci_dev *pdev = adapter->pdev;
++	int i;
++
++	if (tx_ring->desc && tx_ring->buffer_info) {
++		for (i = 0; i < tx_ring->count; i++) {
++			if (tx_ring->buffer_info[i].dma)
++				pci_unmap_single(pdev,
++					tx_ring->buffer_info[i].dma,
++					tx_ring->buffer_info[i].length,
++					PCI_DMA_TODEVICE);
++			if (tx_ring->buffer_info[i].skb)
++				dev_kfree_skb(tx_ring->buffer_info[i].skb);
++		}
++	}
++
++	if (rx_ring->desc && rx_ring->buffer_info) {
++		for (i = 0; i < rx_ring->count; i++) {
++			if (rx_ring->buffer_info[i].dma)
++				pci_unmap_single(pdev,
++					rx_ring->buffer_info[i].dma,
++					2048, PCI_DMA_FROMDEVICE);
++			if (rx_ring->buffer_info[i].skb)
++				dev_kfree_skb(rx_ring->buffer_info[i].skb);
++		}
++	}
++
++	if (tx_ring->desc) {
++		pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
++				    tx_ring->dma);
++		tx_ring->desc = NULL;
++	}
++	if (rx_ring->desc) {
++		pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
++				    rx_ring->dma);
++		rx_ring->desc = NULL;
++	}
++
++	kfree(tx_ring->buffer_info);
++	tx_ring->buffer_info = NULL;
++	kfree(rx_ring->buffer_info);
++	rx_ring->buffer_info = NULL;
++}
++
++static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
++{
++	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
++	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
++	struct pci_dev *pdev = adapter->pdev;
++	struct e1000_hw *hw = &adapter->hw;
++	u32 rctl;
++	int size;
++	int i;
++	int ret_val;
++
++	/* Setup Tx descriptor ring and Tx buffers */
++
++	if (!tx_ring->count)
++		tx_ring->count = E1000_DEFAULT_TXD;
++
++	size = tx_ring->count * sizeof(struct e1000_buffer);
++	tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
++	if (!tx_ring->buffer_info) {
++		ret_val = 1;
++		goto err_nomem;
++	}
++	memset(tx_ring->buffer_info, 0, size);
++
++	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
++	tx_ring->size = ALIGN(tx_ring->size, 4096);
++	tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
++			&tx_ring->dma);
++	if (!tx_ring->desc) {
++		ret_val = 2;
++		goto err_nomem;
++	}
++	memset(tx_ring->desc, 0, tx_ring->size);
++	tx_ring->next_to_use = 0;
++	tx_ring->next_to_clean = 0;
++
++	ew32(TDBAL,
++			((u64) tx_ring->dma & 0x00000000FFFFFFFF));
++	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
++	ew32(TDLEN,
++			tx_ring->count * sizeof(struct e1000_tx_desc));
++	ew32(TDH, 0);
++	ew32(TDT, 0);
++	ew32(TCTL,
++			E1000_TCTL_PSP | E1000_TCTL_EN |
++			E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
++			E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
++
++	for (i = 0; i < tx_ring->count; i++) {
++		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
++		struct sk_buff *skb;
++		unsigned int skb_size = 1024;
++
++		skb = alloc_skb(skb_size, GFP_KERNEL);
++		if (!skb) {
++			ret_val = 3;
++			goto err_nomem;
++		}
++		skb_put(skb, skb_size);
++		tx_ring->buffer_info[i].skb = skb;
++		tx_ring->buffer_info[i].length = skb->len;
++		tx_ring->buffer_info[i].dma =
++			pci_map_single(pdev, skb->data, skb->len,
++				       PCI_DMA_TODEVICE);
++		tx_desc->buffer_addr = cpu_to_le64(
++					 tx_ring->buffer_info[i].dma);
++		tx_desc->lower.data = cpu_to_le32(skb->len);
++		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
++						   E1000_TXD_CMD_IFCS |
++						   E1000_TXD_CMD_RPS);
++		tx_desc->upper.data = 0;
++	}
++
++	/* Setup Rx descriptor ring and Rx buffers */
++
++	if (!rx_ring->count)
++		rx_ring->count = E1000_DEFAULT_RXD;
++
++	size = rx_ring->count * sizeof(struct e1000_buffer);
++	rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
++	if (!rx_ring->buffer_info) {
++		ret_val = 4;
++		goto err_nomem;
++	}
++	memset(rx_ring->buffer_info, 0, size);
++
++	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
++	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
++					     &rx_ring->dma);
++	if (!rx_ring->desc) {
++		ret_val = 5;
++		goto err_nomem;
++	}
++	memset(rx_ring->desc, 0, rx_ring->size);
++	rx_ring->next_to_use = 0;
++	rx_ring->next_to_clean = 0;
++
++	rctl = er32(RCTL);
++	ew32(RCTL, rctl & ~E1000_RCTL_EN);
++	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
++	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
++	ew32(RDLEN, rx_ring->size);
++	ew32(RDH, 0);
++	ew32(RDT, 0);
++	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
++		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
++		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
++	ew32(RCTL, rctl);
++
++	for (i = 0; i < rx_ring->count; i++) {
++		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
++		struct sk_buff *skb;
++
++		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
++		if (!skb) {
++			ret_val = 6;
++			goto err_nomem;
++		}
++		skb_reserve(skb, NET_IP_ALIGN);
++		rx_ring->buffer_info[i].skb = skb;
++		rx_ring->buffer_info[i].dma =
++			pci_map_single(pdev, skb->data, 2048,
++				       PCI_DMA_FROMDEVICE);
++		rx_desc->buffer_addr =
++			cpu_to_le64(rx_ring->buffer_info[i].dma);
++		memset(skb->data, 0x00, skb->len);
++	}
++
++	return 0;
++
++err_nomem:
++	e1000_free_desc_rings(adapter);
++	return ret_val;
++}
++
++static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
++{
++	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
++	e1e_wphy(&adapter->hw, 29, 0x001F);
++	e1e_wphy(&adapter->hw, 30, 0x8FFC);
++	e1e_wphy(&adapter->hw, 29, 0x001A);
++	e1e_wphy(&adapter->hw, 30, 0x8FF0);
++}
++
++static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u32 ctrl_reg = 0;
++	u32 stat_reg = 0;
++
++	adapter->hw.mac.autoneg = 0;
++
++	if (adapter->hw.phy.type == e1000_phy_m88) {
++		/* Auto-MDI/MDIX Off */
++		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
++		/* reset to update Auto-MDI/MDIX */
++		e1e_wphy(hw, PHY_CONTROL, 0x9140);
++		/* autoneg off */
++		e1e_wphy(hw, PHY_CONTROL, 0x8140);
++	} else if (adapter->hw.phy.type == e1000_phy_gg82563)
++		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
++
++	ctrl_reg = er32(CTRL);
++
++	if (adapter->hw.phy.type == e1000_phy_ife) {
++		/* force 100, set loopback */
++		e1e_wphy(hw, PHY_CONTROL, 0x6100);
++
++		/* Now set up the MAC to the same speed/duplex as the PHY. */
++		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
++		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
++			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
++			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
++			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
++	} else {
++		/* force 1000, set loopback */
++		e1e_wphy(hw, PHY_CONTROL, 0x4140);
++
++		/* Now set up the MAC to the same speed/duplex as the PHY. */
++		ctrl_reg = er32(CTRL);
++		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
++		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
++			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
++			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
++			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
++	}
++
++	if (adapter->hw.media_type == e1000_media_type_copper &&
++	   adapter->hw.phy.type == e1000_phy_m88) {
++		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
++	} else {
++		/* Set the ILOS bit on the fiber Nic if half duplex link is
++		 * detected. */
++		stat_reg = er32(STATUS);
++		if ((stat_reg & E1000_STATUS_FD) == 0)
++			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
++	}
++
++	ew32(CTRL, ctrl_reg);
++
++	/* Disable the receiver on the PHY so when a cable is plugged in, the
++	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
++	 */
++	if (adapter->hw.phy.type == e1000_phy_m88)
++		e1000_phy_disable_receiver(adapter);
++
++	udelay(500);
++
++	return 0;
++}
++
++static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u32 ctrl = er32(CTRL);
++	int link = 0;
++
++	/* special requirements for 82571/82572 fiber adapters */
++
++	/* jump through hoops to make sure link is up because serdes
++	 * link is hardwired up */
++	ctrl |= E1000_CTRL_SLU;
++	ew32(CTRL, ctrl);
++
++	/* disable autoneg */
++	ctrl = er32(TXCW);
++	ctrl &= ~(1 << 31);
++	ew32(TXCW, ctrl);
++
++	link = (er32(STATUS) & E1000_STATUS_LU);
++
++	if (!link) {
++		/* set invert loss of signal */
++		ctrl = er32(CTRL);
++		ctrl |= E1000_CTRL_ILOS;
++		ew32(CTRL, ctrl);
++	}
++
++	/* special write to serdes control register to enable SerDes analog
++	 * loopback */
++#define E1000_SERDES_LB_ON 0x410
++	ew32(SCTL, E1000_SERDES_LB_ON);
++	msleep(10);
++
++	return 0;
++}
++
++/* only call this for fiber/serdes connections to es2lan */
++static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u32 ctrlext = er32(CTRL_EXT);
++	u32 ctrl = er32(CTRL);
++
++	/* save CTRL_EXT to restore later, reuse an empty variable (unused
++	   on mac_type 80003es2lan) */
++	adapter->tx_fifo_head = ctrlext;
++
++	/* clear the serdes mode bits, putting the device into mac loopback */
++	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
++	ew32(CTRL_EXT, ctrlext);
++
++	/* force speed to 1000/FD, link up */
++	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
++	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
++		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
++	ew32(CTRL, ctrl);
++
++	/* set mac loopback */
++	ctrl = er32(RCTL);
++	ctrl |= E1000_RCTL_LBM_MAC;
++	ew32(RCTL, ctrl);
++
++	/* set testing mode parameters (no need to reset later) */
++#define KMRNCTRLSTA_OPMODE (0x1F << 16)
++#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
++	ew32(KMRNCTRLSTA,
++		(KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
++
++	return 0;
++}
++
++static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u32 rctl;
++
++	if (hw->media_type == e1000_media_type_fiber ||
++	    hw->media_type == e1000_media_type_internal_serdes) {
++		switch (hw->mac.type) {
++		case e1000_80003es2lan:
++			return e1000_set_es2lan_mac_loopback(adapter);
++			break;
++		case e1000_82571:
++		case e1000_82572:
++			return e1000_set_82571_fiber_loopback(adapter);
++			break;
++		default:
++			rctl = er32(RCTL);
++			rctl |= E1000_RCTL_LBM_TCVR;
++			ew32(RCTL, rctl);
++			return 0;
++		}
++	} else if (hw->media_type == e1000_media_type_copper) {
++		return e1000_integrated_phy_loopback(adapter);
++	}
++
++	return 7;
++}
++
++static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u32 rctl;
++	u16 phy_reg;
++
++	rctl = er32(RCTL);
++	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
++	ew32(RCTL, rctl);
++
++	switch (hw->mac.type) {
++	case e1000_80003es2lan:
++		if (hw->media_type == e1000_media_type_fiber ||
++		    hw->media_type == e1000_media_type_internal_serdes) {
++			/* restore CTRL_EXT, stealing space from tx_fifo_head */
++			ew32(CTRL_EXT,
++					adapter->tx_fifo_head);
++			adapter->tx_fifo_head = 0;
++		}
++		/* fall through */
++	case e1000_82571:
++	case e1000_82572:
++		if (hw->media_type == e1000_media_type_fiber ||
++		    hw->media_type == e1000_media_type_internal_serdes) {
++#define E1000_SERDES_LB_OFF 0x400
++			ew32(SCTL, E1000_SERDES_LB_OFF);
++			msleep(10);
++			break;
++		}
++		/* Fall Through */
++	default:
++		hw->mac.autoneg = 1;
++		if (hw->phy.type == e1000_phy_gg82563)
++			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
++		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
++		if (phy_reg & MII_CR_LOOPBACK) {
++			phy_reg &= ~MII_CR_LOOPBACK;
++			e1e_wphy(hw, PHY_CONTROL, phy_reg);
++			e1000_commit_phy(hw);
++		}
++		break;
++	}
++}
++
++static void e1000_create_lbtest_frame(struct sk_buff *skb,
++				      unsigned int frame_size)
++{
++	memset(skb->data, 0xFF, frame_size);
++	frame_size &= ~1;
++	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
++	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
++	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
++}
++
++static int e1000_check_lbtest_frame(struct sk_buff *skb,
++				    unsigned int frame_size)
++{
++	frame_size &= ~1;
++	if (*(skb->data + 3) == 0xFF)
++		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
++		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
++			return 0;
++	return 13;
++}
++
++static int e1000_run_loopback_test(struct e1000_adapter *adapter)
++{
++	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
++	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
++	struct pci_dev *pdev = adapter->pdev;
++	struct e1000_hw *hw = &adapter->hw;
++	int i, j, k, l;
++	int lc;
++	int good_cnt;
++	int ret_val = 0;
++	unsigned long time;
++
++	ew32(RDT, rx_ring->count - 1);
++
++	/* Calculate the loop count based on the largest descriptor ring
++	 * The idea is to wrap the largest ring a number of times using 64
++	 * send/receive pairs during each loop
++	 */
++
++	if (rx_ring->count <= tx_ring->count)
++		lc = ((tx_ring->count / 64) * 2) + 1;
++	else
++		lc = ((rx_ring->count / 64) * 2) + 1;
++
++	k = 0;
++	l = 0;
++	for (j = 0; j <= lc; j++) { /* loop count loop */
++		for (i = 0; i < 64; i++) { /* send the packets */
++			e1000_create_lbtest_frame(
++				tx_ring->buffer_info[i].skb, 1024);
++			pci_dma_sync_single_for_device(pdev,
++					tx_ring->buffer_info[k].dma,
++					tx_ring->buffer_info[k].length,
++					PCI_DMA_TODEVICE);
++			k++;
++			if (k == tx_ring->count)
++				k = 0;
++		}
++		ew32(TDT, k);
++		msleep(200);
++		time = jiffies; /* set the start time for the receive */
++		good_cnt = 0;
++		do { /* receive the sent packets */
++			pci_dma_sync_single_for_cpu(pdev,
++					rx_ring->buffer_info[l].dma, 2048,
++					PCI_DMA_FROMDEVICE);
++
++			ret_val = e1000_check_lbtest_frame(
++					rx_ring->buffer_info[l].skb, 1024);
++			if (!ret_val)
++				good_cnt++;
++			l++;
++			if (l == rx_ring->count)
++				l = 0;
++			/* time + 20 msecs (200 msecs on 2.4) is more than
++			 * enough time to complete the receives, if it's
++			 * exceeded, break and error off
++			 */
++		} while (good_cnt < 64 && jiffies < (time + 20));
++		if (good_cnt != 64) {
++			ret_val = 13; /* ret_val is the same as mis-compare */
++			break;
++		}
++		if (jiffies >= (time + 2)) {
++			ret_val = 14; /* error code for time out error */
++			break;
++		}
++	} /* end loop count loop */
++	return ret_val;
++}
++
++static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
++{
++	/* PHY loopback cannot be performed if SoL/IDER
++	 * sessions are active */
++	if (e1000_check_reset_block(&adapter->hw)) {
++		ndev_err(adapter->netdev, "Cannot do PHY loopback test "
++			 "when SoL/IDER is active.\n");
++		*data = 0;
++		goto out;
++	}
++
++	*data = e1000_setup_desc_rings(adapter);
++	if (data)
++		goto out;
++
++	*data = e1000_setup_loopback_test(adapter);
++	if (data)
++		goto err_loopback;
++
++	*data = e1000_run_loopback_test(adapter);
++	e1000_loopback_cleanup(adapter);
++
++err_loopback:
++	e1000_free_desc_rings(adapter);
++out:
++	return *data;
++}
++
++static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
++{
++	struct e1000_hw *hw = &adapter->hw;
++
++	*data = 0;
++	if (hw->media_type == e1000_media_type_internal_serdes) {
++		int i = 0;
++		hw->mac.serdes_has_link = 0;
++
++		/* On some blade server designs, link establishment
++		 * could take as long as 2-3 minutes */
++		do {
++			hw->mac.ops.check_for_link(hw);
++			if (hw->mac.serdes_has_link)
++				return *data;
++			msleep(20);
++		} while (i++ < 3750);
++
++		*data = 1;
++	} else {
++		hw->mac.ops.check_for_link(hw);
++		if (hw->mac.autoneg)
++			msleep(4000);
++
++		if (!(er32(STATUS) &
++		      E1000_STATUS_LU))
++			*data = 1;
++	}
++	return *data;
++}
++
++static int e1000_diag_test_count(struct net_device *netdev)
++{
++	return E1000_TEST_LEN;
++}
++
++static void e1000_diag_test(struct net_device *netdev,
++			    struct ethtool_test *eth_test, u64 *data)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	u16 autoneg_advertised;
++	u8 forced_speed_duplex;
++	u8 autoneg;
++	bool if_running = netif_running(netdev);
++
++	set_bit(__E1000_TESTING, &adapter->state);
++	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
++		/* Offline tests */
++
++		/* save speed, duplex, autoneg settings */
++		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
++		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
++		autoneg = adapter->hw.mac.autoneg;
++
++		ndev_info(netdev, "offline testing starting\n");
++
++		/* Link test performed before hardware reset so autoneg doesn't
++		 * interfere with test result */
++		if (e1000_link_test(adapter, &data[4]))
++			eth_test->flags |= ETH_TEST_FL_FAILED;
++
++		if (if_running)
++			/* indicate we're in test mode */
++			dev_close(netdev);
++		else
++			e1000_reset(adapter);
++
++		if (e1000_reg_test(adapter, &data[0]))
++			eth_test->flags |= ETH_TEST_FL_FAILED;
++
++		e1000_reset(adapter);
++		if (e1000_eeprom_test(adapter, &data[1]))
++			eth_test->flags |= ETH_TEST_FL_FAILED;
++
++		e1000_reset(adapter);
++		if (e1000_intr_test(adapter, &data[2]))
++			eth_test->flags |= ETH_TEST_FL_FAILED;
++
++		e1000_reset(adapter);
++		/* make sure the phy is powered up */
++		e1000_power_up_phy(adapter);
++		if (e1000_loopback_test(adapter, &data[3]))
++			eth_test->flags |= ETH_TEST_FL_FAILED;
++
++		/* restore speed, duplex, autoneg settings */
++		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
++		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
++		adapter->hw.mac.autoneg = autoneg;
++
++		/* force this routine to wait until autoneg complete/timeout */
++		adapter->hw.phy.wait_for_link = 1;
++		e1000_reset(adapter);
++		adapter->hw.phy.wait_for_link = 0;
++
++		clear_bit(__E1000_TESTING, &adapter->state);
++		if (if_running)
++			dev_open(netdev);
++	} else {
++		ndev_info(netdev, "online testing starting\n");
++		/* Online tests */
++		if (e1000_link_test(adapter, &data[4]))
++			eth_test->flags |= ETH_TEST_FL_FAILED;
++
++		/* Online tests aren't run; pass by default */
++		data[0] = 0;
++		data[1] = 0;
++		data[2] = 0;
++		data[3] = 0;
++
++		clear_bit(__E1000_TESTING, &adapter->state);
++	}
++	msleep_interruptible(4 * 1000);
++}
++
++static void e1000_get_wol(struct net_device *netdev,
++			  struct ethtool_wolinfo *wol)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	wol->supported = 0;
++	wol->wolopts = 0;
++
++	if (!(adapter->flags & FLAG_HAS_WOL))
++		return;
++
++	wol->supported = WAKE_UCAST | WAKE_MCAST |
++			 WAKE_BCAST | WAKE_MAGIC;
++
++	/* apply any specific unsupported masks here */
++	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
++		wol->supported &= ~WAKE_UCAST;
++
++		if (adapter->wol & E1000_WUFC_EX)
++			ndev_err(netdev, "Interface does not support "
++				 "directed (unicast) frame wake-up packets\n");
++	}
++
++	if (adapter->wol & E1000_WUFC_EX)
++		wol->wolopts |= WAKE_UCAST;
++	if (adapter->wol & E1000_WUFC_MC)
++		wol->wolopts |= WAKE_MCAST;
++	if (adapter->wol & E1000_WUFC_BC)
++		wol->wolopts |= WAKE_BCAST;
++	if (adapter->wol & E1000_WUFC_MAG)
++		wol->wolopts |= WAKE_MAGIC;
++}
++
++static int e1000_set_wol(struct net_device *netdev,
++			 struct ethtool_wolinfo *wol)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
++		return -EOPNOTSUPP;
++
++	if (!(adapter->flags & FLAG_HAS_WOL))
++		return wol->wolopts ? -EOPNOTSUPP : 0;
++
++	/* these settings will always override what we currently have */
++	adapter->wol = 0;
++
++	if (wol->wolopts & WAKE_UCAST)
++		adapter->wol |= E1000_WUFC_EX;
++	if (wol->wolopts & WAKE_MCAST)
++		adapter->wol |= E1000_WUFC_MC;
++	if (wol->wolopts & WAKE_BCAST)
++		adapter->wol |= E1000_WUFC_BC;
++	if (wol->wolopts & WAKE_MAGIC)
++		adapter->wol |= E1000_WUFC_MAG;
++
++	return 0;
++}
++
++/* toggle LED 4 times per second = 2 "blinks" per second */
++#define E1000_ID_INTERVAL	(HZ/4)
++
++/* bit defines for adapter->led_status */
++#define E1000_LED_ON		0
++
++static void e1000_led_blink_callback(unsigned long data)
++{
++	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
++
++	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
++		adapter->hw.mac.ops.led_off(&adapter->hw);
++	else
++		adapter->hw.mac.ops.led_on(&adapter->hw);
++
++	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
++}
++
++static int e1000_phys_id(struct net_device *netdev, u32 data)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
++		data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
++
++	if (adapter->hw.phy.type == e1000_phy_ife) {
++		if (!adapter->blink_timer.function) {
++			init_timer(&adapter->blink_timer);
++			adapter->blink_timer.function =
++				e1000_led_blink_callback;
++			adapter->blink_timer.data = (unsigned long) adapter;
++		}
++		mod_timer(&adapter->blink_timer, jiffies);
++		msleep_interruptible(data * 1000);
++		del_timer_sync(&adapter->blink_timer);
++		e1e_wphy(&adapter->hw,
++				    IFE_PHY_SPECIAL_CONTROL_LED, 0);
++	} else {
++		e1000_blink_led(&adapter->hw);
++		msleep_interruptible(data * 1000);
++	}
++
++	adapter->hw.mac.ops.led_off(&adapter->hw);
++	clear_bit(E1000_LED_ON, &adapter->led_status);
++	adapter->hw.mac.ops.cleanup_led(&adapter->hw);
++
++	return 0;
++}
++
++static int e1000_nway_reset(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	if (netif_running(netdev))
++		e1000_reinit_locked(adapter);
++	return 0;
++}
++
++static int e1000_get_stats_count(struct net_device *netdev)
++{
++	return E1000_STATS_LEN;
++}
++
++static void e1000_get_ethtool_stats(struct net_device *netdev,
++				    struct ethtool_stats *stats,
++				    u64 *data)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	int i;
++
++	e1000_update_stats(adapter);
++	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
++		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
++		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
++			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
++	}
++}
++
++static void e1000_get_strings(struct net_device *netdev, u32 stringset,
++			      u8 *data)
++{
++	u8 *p = data;
++	int i;
++
++	switch (stringset) {
++	case ETH_SS_TEST:
++		memcpy(data, *e1000_gstrings_test,
++			E1000_TEST_LEN*ETH_GSTRING_LEN);
++		break;
++	case ETH_SS_STATS:
++		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
++			memcpy(p, e1000_gstrings_stats[i].stat_string,
++			       ETH_GSTRING_LEN);
++			p += ETH_GSTRING_LEN;
++		}
++		break;
++	}
++}
++
++static const struct ethtool_ops e1000_ethtool_ops = {
++	.get_settings		= e1000_get_settings,
++	.set_settings		= e1000_set_settings,
++	.get_drvinfo		= e1000_get_drvinfo,
++	.get_regs_len		= e1000_get_regs_len,
++	.get_regs		= e1000_get_regs,
++	.get_wol		= e1000_get_wol,
++	.set_wol		= e1000_set_wol,
++	.get_msglevel		= e1000_get_msglevel,
++	.set_msglevel		= e1000_set_msglevel,
++	.nway_reset		= e1000_nway_reset,
++	.get_link		= ethtool_op_get_link,
++	.get_eeprom_len		= e1000_get_eeprom_len,
++	.get_eeprom		= e1000_get_eeprom,
++	.set_eeprom		= e1000_set_eeprom,
++	.get_ringparam		= e1000_get_ringparam,
++	.set_ringparam		= e1000_set_ringparam,
++	.get_pauseparam		= e1000_get_pauseparam,
++	.set_pauseparam		= e1000_set_pauseparam,
++	.get_rx_csum		= e1000_get_rx_csum,
++	.set_rx_csum		= e1000_set_rx_csum,
++	.get_tx_csum		= e1000_get_tx_csum,
++	.set_tx_csum		= e1000_set_tx_csum,
++	.get_sg			= ethtool_op_get_sg,
++	.set_sg			= ethtool_op_set_sg,
++	.get_tso		= ethtool_op_get_tso,
++	.set_tso		= e1000_set_tso,
++	.self_test_count	= e1000_diag_test_count,
++	.self_test		= e1000_diag_test,
++	.get_strings		= e1000_get_strings,
++	.phys_id		= e1000_phys_id,
++	.get_stats_count	= e1000_get_stats_count,
++	.get_ethtool_stats	= e1000_get_ethtool_stats,
++};
++
++void e1000_set_ethtool_ops(struct net_device *netdev)
++{
++	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
++}
+diff --git a/drivers/net/e1000e/hw.h b/drivers/net/e1000e/hw.h
+new file mode 100644
+index 0000000..4d562c4
+--- /dev/null
++++ b/drivers/net/e1000e/hw.h
+@@ -0,0 +1,862 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#ifndef _E1000_HW_H_
++#define _E1000_HW_H_
++
++struct e1000_hw;
++struct e1000_adapter;
++
++#include "defines.h"
++
++#define er32(reg)	__er32(hw, E1000_##reg)
++#define ew32(reg,val)	__ew32(hw, E1000_##reg, (val))
++#define e1e_flush()	er32(STATUS)
++
++#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
++	(writel((value), ((a)->hw_addr + reg + ((offset) << 2))))
++
++#define E1000_READ_REG_ARRAY(a, reg, offset) \
++	(readl((a)->hw_addr + reg + ((offset) << 2)))
++
++enum e1e_registers {
++	E1000_CTRL     = 0x00000, /* Device Control - RW */
++	E1000_STATUS   = 0x00008, /* Device Status - RO */
++	E1000_EECD     = 0x00010, /* EEPROM/Flash Control - RW */
++	E1000_EERD     = 0x00014, /* EEPROM Read - RW */
++	E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */
++	E1000_FLA      = 0x0001C, /* Flash Access - RW */
++	E1000_MDIC     = 0x00020, /* MDI Control - RW */
++	E1000_SCTL     = 0x00024, /* SerDes Control - RW */
++	E1000_FCAL     = 0x00028, /* Flow Control Address Low - RW */
++	E1000_FCAH     = 0x0002C, /* Flow Control Address High -RW */
++	E1000_FEXTNVM  = 0x00028, /* Future Extended NVM - RW */
++	E1000_FCT      = 0x00030, /* Flow Control Type - RW */
++	E1000_VET      = 0x00038, /* VLAN Ether Type - RW */
++	E1000_ICR      = 0x000C0, /* Interrupt Cause Read - R/clr */
++	E1000_ITR      = 0x000C4, /* Interrupt Throttling Rate - RW */
++	E1000_ICS      = 0x000C8, /* Interrupt Cause Set - WO */
++	E1000_IMS      = 0x000D0, /* Interrupt Mask Set - RW */
++	E1000_IMC      = 0x000D8, /* Interrupt Mask Clear - WO */
++	E1000_IAM      = 0x000E0, /* Interrupt Acknowledge Auto Mask */
++	E1000_RCTL     = 0x00100, /* RX Control - RW */
++	E1000_FCTTV    = 0x00170, /* Flow Control Transmit Timer Value - RW */
++	E1000_TXCW     = 0x00178, /* TX Configuration Word - RW */
++	E1000_RXCW     = 0x00180, /* RX Configuration Word - RO */
++	E1000_TCTL     = 0x00400, /* TX Control - RW */
++	E1000_TCTL_EXT = 0x00404, /* Extended TX Control - RW */
++	E1000_TIPG     = 0x00410, /* TX Inter-packet gap -RW */
++	E1000_AIT      = 0x00458, /* Adaptive Interframe Spacing Throttle - RW */
++	E1000_LEDCTL   = 0x00E00, /* LED Control - RW */
++	E1000_EXTCNF_CTRL  = 0x00F00, /* Extended Configuration Control */
++	E1000_EXTCNF_SIZE  = 0x00F08, /* Extended Configuration Size */
++	E1000_PHY_CTRL     = 0x00F10, /* PHY Control Register in CSR */
++	E1000_PBA      = 0x01000, /* Packet Buffer Allocation - RW */
++	E1000_PBS      = 0x01008, /* Packet Buffer Size */
++	E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */
++	E1000_EEWR     = 0x0102C, /* EEPROM Write Register - RW */
++	E1000_FLOP     = 0x0103C, /* FLASH Opcode Register */
++	E1000_ERT      = 0x02008, /* Early Rx Threshold - RW */
++	E1000_FCRTL    = 0x02160, /* Flow Control Receive Threshold Low - RW */
++	E1000_FCRTH    = 0x02168, /* Flow Control Receive Threshold High - RW */
++	E1000_PSRCTL   = 0x02170, /* Packet Split Receive Control - RW */
++	E1000_RDBAL    = 0x02800, /* RX Descriptor Base Address Low - RW */
++	E1000_RDBAH    = 0x02804, /* RX Descriptor Base Address High - RW */
++	E1000_RDLEN    = 0x02808, /* RX Descriptor Length - RW */
++	E1000_RDH      = 0x02810, /* RX Descriptor Head - RW */
++	E1000_RDT      = 0x02818, /* RX Descriptor Tail - RW */
++	E1000_RDTR     = 0x02820, /* RX Delay Timer - RW */
++	E1000_RADV     = 0x0282C, /* RX Interrupt Absolute Delay Timer - RW */
++
++/* Convenience macros
++ *
++ * Note: "_n" is the queue number of the register to be written to.
++ *
++ * Example usage:
++ * E1000_RDBAL_REG(current_rx_queue)
++ *
++ */
++#define E1000_RDBAL_REG(_n)   (E1000_RDBAL + (_n << 8))
++	E1000_KABGTXD  = 0x03004, /* AFE Band Gap Transmit Ref Data */
++	E1000_TDBAL    = 0x03800, /* TX Descriptor Base Address Low - RW */
++	E1000_TDBAH    = 0x03804, /* TX Descriptor Base Address High - RW */
++	E1000_TDLEN    = 0x03808, /* TX Descriptor Length - RW */
++	E1000_TDH      = 0x03810, /* TX Descriptor Head - RW */
++	E1000_TDT      = 0x03818, /* TX Descriptor Tail - RW */
++	E1000_TIDV     = 0x03820, /* TX Interrupt Delay Value - RW */
++	E1000_TXDCTL   = 0x03828, /* TX Descriptor Control - RW */
++	E1000_TADV     = 0x0382C, /* TX Interrupt Absolute Delay Val - RW */
++	E1000_TARC0    = 0x03840, /* TX Arbitration Count (0) */
++	E1000_TXDCTL1  = 0x03928, /* TX Descriptor Control (1) - RW */
++	E1000_TARC1    = 0x03940, /* TX Arbitration Count (1) */
++	E1000_CRCERRS  = 0x04000, /* CRC Error Count - R/clr */
++	E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
++	E1000_SYMERRS  = 0x04008, /* Symbol Error Count - R/clr */
++	E1000_RXERRC   = 0x0400C, /* Receive Error Count - R/clr */
++	E1000_MPC      = 0x04010, /* Missed Packet Count - R/clr */
++	E1000_SCC      = 0x04014, /* Single Collision Count - R/clr */
++	E1000_ECOL     = 0x04018, /* Excessive Collision Count - R/clr */
++	E1000_MCC      = 0x0401C, /* Multiple Collision Count - R/clr */
++	E1000_LATECOL  = 0x04020, /* Late Collision Count - R/clr */
++	E1000_COLC     = 0x04028, /* Collision Count - R/clr */
++	E1000_DC       = 0x04030, /* Defer Count - R/clr */
++	E1000_TNCRS    = 0x04034, /* TX-No CRS - R/clr */
++	E1000_SEC      = 0x04038, /* Sequence Error Count - R/clr */
++	E1000_CEXTERR  = 0x0403C, /* Carrier Extension Error Count - R/clr */
++	E1000_RLEC     = 0x04040, /* Receive Length Error Count - R/clr */
++	E1000_XONRXC   = 0x04048, /* XON RX Count - R/clr */
++	E1000_XONTXC   = 0x0404C, /* XON TX Count - R/clr */
++	E1000_XOFFRXC  = 0x04050, /* XOFF RX Count - R/clr */
++	E1000_XOFFTXC  = 0x04054, /* XOFF TX Count - R/clr */
++	E1000_FCRUC    = 0x04058, /* Flow Control RX Unsupported Count- R/clr */
++	E1000_PRC64    = 0x0405C, /* Packets RX (64 bytes) - R/clr */
++	E1000_PRC127   = 0x04060, /* Packets RX (65-127 bytes) - R/clr */
++	E1000_PRC255   = 0x04064, /* Packets RX (128-255 bytes) - R/clr */
++	E1000_PRC511   = 0x04068, /* Packets RX (255-511 bytes) - R/clr */
++	E1000_PRC1023  = 0x0406C, /* Packets RX (512-1023 bytes) - R/clr */
++	E1000_PRC1522  = 0x04070, /* Packets RX (1024-1522 bytes) - R/clr */
++	E1000_GPRC     = 0x04074, /* Good Packets RX Count - R/clr */
++	E1000_BPRC     = 0x04078, /* Broadcast Packets RX Count - R/clr */
++	E1000_MPRC     = 0x0407C, /* Multicast Packets RX Count - R/clr */
++	E1000_GPTC     = 0x04080, /* Good Packets TX Count - R/clr */
++	E1000_GORCL    = 0x04088, /* Good Octets RX Count Low - R/clr */
++	E1000_GORCH    = 0x0408C, /* Good Octets RX Count High - R/clr */
++	E1000_GOTCL    = 0x04090, /* Good Octets TX Count Low - R/clr */
++	E1000_GOTCH    = 0x04094, /* Good Octets TX Count High - R/clr */
++	E1000_RNBC     = 0x040A0, /* RX No Buffers Count - R/clr */
++	E1000_RUC      = 0x040A4, /* RX Undersize Count - R/clr */
++	E1000_RFC      = 0x040A8, /* RX Fragment Count - R/clr */
++	E1000_ROC      = 0x040AC, /* RX Oversize Count - R/clr */
++	E1000_RJC      = 0x040B0, /* RX Jabber Count - R/clr */
++	E1000_MGTPRC   = 0x040B4, /* Management Packets RX Count - R/clr */
++	E1000_MGTPDC   = 0x040B8, /* Management Packets Dropped Count - R/clr */
++	E1000_MGTPTC   = 0x040BC, /* Management Packets TX Count - R/clr */
++	E1000_TORL     = 0x040C0, /* Total Octets RX Low - R/clr */
++	E1000_TORH     = 0x040C4, /* Total Octets RX High - R/clr */
++	E1000_TOTL     = 0x040C8, /* Total Octets TX Low - R/clr */
++	E1000_TOTH     = 0x040CC, /* Total Octets TX High - R/clr */
++	E1000_TPR      = 0x040D0, /* Total Packets RX - R/clr */
++	E1000_TPT      = 0x040D4, /* Total Packets TX - R/clr */
++	E1000_PTC64    = 0x040D8, /* Packets TX (64 bytes) - R/clr */
++	E1000_PTC127   = 0x040DC, /* Packets TX (65-127 bytes) - R/clr */
++	E1000_PTC255   = 0x040E0, /* Packets TX (128-255 bytes) - R/clr */
++	E1000_PTC511   = 0x040E4, /* Packets TX (256-511 bytes) - R/clr */
++	E1000_PTC1023  = 0x040E8, /* Packets TX (512-1023 bytes) - R/clr */
++	E1000_PTC1522  = 0x040EC, /* Packets TX (1024-1522 Bytes) - R/clr */
++	E1000_MPTC     = 0x040F0, /* Multicast Packets TX Count - R/clr */
++	E1000_BPTC     = 0x040F4, /* Broadcast Packets TX Count - R/clr */
++	E1000_TSCTC    = 0x040F8, /* TCP Segmentation Context TX - R/clr */
++	E1000_TSCTFC   = 0x040FC, /* TCP Segmentation Context TX Fail - R/clr */
++	E1000_IAC      = 0x04100, /* Interrupt Assertion Count */
++	E1000_ICRXPTC  = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
++	E1000_ICRXATC  = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
++	E1000_ICTXPTC  = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */
++	E1000_ICTXATC  = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */
++	E1000_ICTXQEC  = 0x04118, /* Irq Cause Tx Queue Empty Count */
++	E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
++	E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
++	E1000_ICRXOC   = 0x04124, /* Irq Cause Receiver Overrun Count */
++	E1000_RXCSUM   = 0x05000, /* RX Checksum Control - RW */
++	E1000_RFCTL    = 0x05008, /* Receive Filter Control*/
++	E1000_MTA      = 0x05200, /* Multicast Table Array - RW Array */
++	E1000_RA       = 0x05400, /* Receive Address - RW Array */
++	E1000_VFTA     = 0x05600, /* VLAN Filter Table Array - RW Array */
++	E1000_WUC      = 0x05800, /* Wakeup Control - RW */
++	E1000_WUFC     = 0x05808, /* Wakeup Filter Control - RW */
++	E1000_WUS      = 0x05810, /* Wakeup Status - RO */
++	E1000_MANC     = 0x05820, /* Management Control - RW */
++	E1000_FFLT     = 0x05F00, /* Flexible Filter Length Table - RW Array */
++	E1000_HOST_IF  = 0x08800, /* Host Interface */
++
++	E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */
++	E1000_MANC2H    = 0x05860, /* Management Control To Host - RW */
++	E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */
++	E1000_GCR	= 0x05B00, /* PCI-Ex Control */
++	E1000_FACTPS    = 0x05B30, /* Function Active and Power State to MNG */
++	E1000_SWSM      = 0x05B50, /* SW Semaphore */
++	E1000_FWSM      = 0x05B54, /* FW Semaphore */
++	E1000_HICR      = 0x08F00, /* Host Inteface Control */
++};
++
++/* RSS registers */
++
++/* IGP01E1000 Specific Registers */
++#define IGP01E1000_PHY_PORT_CONFIG	0x10 /* Port Config */
++#define IGP01E1000_PHY_PORT_STATUS	0x11 /* Status */
++#define IGP01E1000_PHY_PORT_CTRL	0x12 /* Control */
++#define IGP01E1000_PHY_LINK_HEALTH	0x13 /* PHY Link Health */
++#define IGP02E1000_PHY_POWER_MGMT	0x19 /* Power Management */
++#define IGP01E1000_PHY_PAGE_SELECT	0x1F /* Page Select */
++
++#define IGP01E1000_PHY_PCS_INIT_REG	0x00B4
++#define IGP01E1000_PHY_POLARITY_MASK	0x0078
++
++#define IGP01E1000_PSCR_AUTO_MDIX	0x1000
++#define IGP01E1000_PSCR_FORCE_MDI_MDIX	0x2000 /* 0=MDI, 1=MDIX */
++
++#define IGP01E1000_PSCFR_SMART_SPEED	0x0080
++
++#define IGP02E1000_PM_SPD		0x0001 /* Smart Power Down */
++#define IGP02E1000_PM_D0_LPLU		0x0002 /* For D0a states */
++#define IGP02E1000_PM_D3_LPLU		0x0004 /* For all other states */
++
++#define IGP01E1000_PLHR_SS_DOWNGRADE	0x8000
++
++#define IGP01E1000_PSSR_POLARITY_REVERSED	0x0002
++#define IGP01E1000_PSSR_MDIX			0x0008
++#define IGP01E1000_PSSR_SPEED_MASK		0xC000
++#define IGP01E1000_PSSR_SPEED_1000MBPS		0xC000
++
++#define IGP02E1000_PHY_CHANNEL_NUM		4
++#define IGP02E1000_PHY_AGC_A			0x11B1
++#define IGP02E1000_PHY_AGC_B			0x12B1
++#define IGP02E1000_PHY_AGC_C			0x14B1
++#define IGP02E1000_PHY_AGC_D			0x18B1
++
++#define IGP02E1000_AGC_LENGTH_SHIFT	9 /* Course - 15:13, Fine - 12:9 */
++#define IGP02E1000_AGC_LENGTH_MASK	0x7F
++#define IGP02E1000_AGC_RANGE		15
++
++/* manage.c */
++#define E1000_VFTA_ENTRY_SHIFT		5
++#define E1000_VFTA_ENTRY_MASK		0x7F
++#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK	0x1F
++
++#define E1000_HICR_EN			0x01  /* Enable bit - RO */
++#define E1000_HICR_C			0x02  /* Driver sets this bit when done
++					       * to put command in RAM */
++#define E1000_HICR_FW_RESET_ENABLE	0x40
++#define E1000_HICR_FW_RESET		0x80
++
++#define E1000_FWSM_MODE_MASK		0xE
++#define E1000_FWSM_MODE_SHIFT		1
++
++#define E1000_MNG_IAMT_MODE		0x3
++#define E1000_MNG_DHCP_COOKIE_LENGTH	0x10
++#define E1000_MNG_DHCP_COOKIE_OFFSET	0x6F0
++#define E1000_MNG_DHCP_COMMAND_TIMEOUT	10
++#define E1000_MNG_DHCP_TX_PAYLOAD_CMD	64
++#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING	0x1
++#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN	0x2
++
++/* nvm.c */
++#define E1000_STM_OPCODE  0xDB00
++
++#define E1000_KMRNCTRLSTA_OFFSET	0x001F0000
++#define E1000_KMRNCTRLSTA_OFFSET_SHIFT	16
++#define E1000_KMRNCTRLSTA_REN		0x00200000
++#define E1000_KMRNCTRLSTA_DIAG_OFFSET	0x3    /* Kumeran Diagnostic */
++#define E1000_KMRNCTRLSTA_DIAG_NELPBK	0x1000 /* Nearend Loopback mode */
++
++#define IFE_PHY_EXTENDED_STATUS_CONTROL	0x10
++#define IFE_PHY_SPECIAL_CONTROL		0x11 /* 100BaseTx PHY Special Control */
++#define IFE_PHY_SPECIAL_CONTROL_LED	0x1B /* PHY Special and LED Control */
++#define IFE_PHY_MDIX_CONTROL		0x1C /* MDI/MDI-X Control */
++
++/* IFE PHY Extended Status Control */
++#define IFE_PESC_POLARITY_REVERSED	0x0100
++
++/* IFE PHY Special Control */
++#define IFE_PSC_AUTO_POLARITY_DISABLE		0x0010
++#define IFE_PSC_FORCE_POLARITY			0x0020
++
++/* IFE PHY Special Control and LED Control */
++#define IFE_PSCL_PROBE_MODE		0x0020
++#define IFE_PSCL_PROBE_LEDS_OFF		0x0006 /* Force LEDs 0 and 2 off */
++#define IFE_PSCL_PROBE_LEDS_ON		0x0007 /* Force LEDs 0 and 2 on */
++
++/* IFE PHY MDIX Control */
++#define IFE_PMC_MDIX_STATUS	0x0020 /* 1=MDI-X, 0=MDI */
++#define IFE_PMC_FORCE_MDIX	0x0040 /* 1=force MDI-X, 0=force MDI */
++#define IFE_PMC_AUTO_MDIX	0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
++
++#define E1000_CABLE_LENGTH_UNDEFINED	0xFF
++
++#define E1000_DEV_ID_82571EB_COPPER		0x105E
++#define E1000_DEV_ID_82571EB_FIBER		0x105F
++#define E1000_DEV_ID_82571EB_SERDES		0x1060
++#define E1000_DEV_ID_82571EB_QUAD_COPPER	0x10A4
++#define E1000_DEV_ID_82571EB_QUAD_FIBER		0x10A5
++#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP	0x10BC
++#define E1000_DEV_ID_82572EI_COPPER		0x107D
++#define E1000_DEV_ID_82572EI_FIBER		0x107E
++#define E1000_DEV_ID_82572EI_SERDES		0x107F
++#define E1000_DEV_ID_82572EI			0x10B9
++#define E1000_DEV_ID_82573E			0x108B
++#define E1000_DEV_ID_82573E_IAMT		0x108C
++#define E1000_DEV_ID_82573L			0x109A
++
++#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT	0x1096
++#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT	0x1098
++#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT	0x10BA
++#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT	0x10BB
++
++#define E1000_DEV_ID_ICH8_IGP_M_AMT		0x1049
++#define E1000_DEV_ID_ICH8_IGP_AMT		0x104A
++#define E1000_DEV_ID_ICH8_IGP_C			0x104B
++#define E1000_DEV_ID_ICH8_IFE			0x104C
++#define E1000_DEV_ID_ICH8_IFE_GT		0x10C4
++#define E1000_DEV_ID_ICH8_IFE_G			0x10C5
++#define E1000_DEV_ID_ICH8_IGP_M			0x104D
++#define E1000_DEV_ID_ICH9_IGP_AMT		0x10BD
++#define E1000_DEV_ID_ICH9_IGP_C			0x294C
++#define E1000_DEV_ID_ICH9_IFE			0x10C0
++#define E1000_DEV_ID_ICH9_IFE_GT		0x10C3
++#define E1000_DEV_ID_ICH9_IFE_G			0x10C2
++
++#define E1000_FUNC_1 1
++
++enum e1000_mac_type {
++	e1000_82571,
++	e1000_82572,
++	e1000_82573,
++	e1000_80003es2lan,
++	e1000_ich8lan,
++	e1000_ich9lan,
++};
++
++enum e1000_media_type {
++	e1000_media_type_unknown = 0,
++	e1000_media_type_copper = 1,
++	e1000_media_type_fiber = 2,
++	e1000_media_type_internal_serdes = 3,
++	e1000_num_media_types
++};
++
++enum e1000_nvm_type {
++	e1000_nvm_unknown = 0,
++	e1000_nvm_none,
++	e1000_nvm_eeprom_spi,
++	e1000_nvm_flash_hw,
++	e1000_nvm_flash_sw
++};
++
++enum e1000_nvm_override {
++	e1000_nvm_override_none = 0,
++	e1000_nvm_override_spi_small,
++	e1000_nvm_override_spi_large
++};
++
++enum e1000_phy_type {
++	e1000_phy_unknown = 0,
++	e1000_phy_none,
++	e1000_phy_m88,
++	e1000_phy_igp,
++	e1000_phy_igp_2,
++	e1000_phy_gg82563,
++	e1000_phy_igp_3,
++	e1000_phy_ife,
++};
++
++enum e1000_bus_width {
++	e1000_bus_width_unknown = 0,
++	e1000_bus_width_pcie_x1,
++	e1000_bus_width_pcie_x2,
++	e1000_bus_width_pcie_x4 = 4,
++	e1000_bus_width_32,
++	e1000_bus_width_64,
++	e1000_bus_width_reserved
++};
++
++enum e1000_1000t_rx_status {
++	e1000_1000t_rx_status_not_ok = 0,
++	e1000_1000t_rx_status_ok,
++	e1000_1000t_rx_status_undefined = 0xFF
++};
++
++enum e1000_rev_polarity{
++	e1000_rev_polarity_normal = 0,
++	e1000_rev_polarity_reversed,
++	e1000_rev_polarity_undefined = 0xFF
++};
++
++enum e1000_fc_mode {
++	e1000_fc_none = 0,
++	e1000_fc_rx_pause,
++	e1000_fc_tx_pause,
++	e1000_fc_full,
++	e1000_fc_default = 0xFF
++};
++
++enum e1000_ms_type {
++	e1000_ms_hw_default = 0,
++	e1000_ms_force_master,
++	e1000_ms_force_slave,
++	e1000_ms_auto
++};
++
++enum e1000_smart_speed {
++	e1000_smart_speed_default = 0,
++	e1000_smart_speed_on,
++	e1000_smart_speed_off
++};
++
++/* Receive Descriptor */
++struct e1000_rx_desc {
++	u64 buffer_addr; /* Address of the descriptor's data buffer */
++	u16 length;      /* Length of data DMAed into data buffer */
++	u16 csum;	/* Packet checksum */
++	u8  status;      /* Descriptor status */
++	u8  errors;      /* Descriptor Errors */
++	u16 special;
++};
++
++/* Receive Descriptor - Extended */
++union e1000_rx_desc_extended {
++	struct {
++		u64 buffer_addr;
++		u64 reserved;
++	} read;
++	struct {
++		struct {
++			u32 mrq;	      /* Multiple Rx Queues */
++			union {
++				u32 rss;	    /* RSS Hash */
++				struct {
++					u16 ip_id;  /* IP id */
++					u16 csum;   /* Packet Checksum */
++				} csum_ip;
++			} hi_dword;
++		} lower;
++		struct {
++			u32 status_error;     /* ext status/error */
++			u16 length;
++			u16 vlan;	     /* VLAN tag */
++		} upper;
++	} wb;  /* writeback */
++};
++
++#define MAX_PS_BUFFERS 4
++/* Receive Descriptor - Packet Split */
++union e1000_rx_desc_packet_split {
++	struct {
++		/* one buffer for protocol header(s), three data buffers */
++		u64 buffer_addr[MAX_PS_BUFFERS];
++	} read;
++	struct {
++		struct {
++			u32 mrq;	      /* Multiple Rx Queues */
++			union {
++				u32 rss;	      /* RSS Hash */
++				struct {
++					u16 ip_id;    /* IP id */
++					u16 csum;     /* Packet Checksum */
++				} csum_ip;
++			} hi_dword;
++		} lower;
++		struct {
++			u32 status_error;     /* ext status/error */
++			u16 length0;	  /* length of buffer 0 */
++			u16 vlan;	     /* VLAN tag */
++		} middle;
++		struct {
++			u16 header_status;
++			u16 length[3];	/* length of buffers 1-3 */
++		} upper;
++		u64 reserved;
++	} wb; /* writeback */
++};
++
++/* Transmit Descriptor */
++struct e1000_tx_desc {
++	u64 buffer_addr;      /* Address of the descriptor's data buffer */
++	union {
++		u32 data;
++		struct {
++			u16 length;    /* Data buffer length */
++			u8 cso;	/* Checksum offset */
++			u8 cmd;	/* Descriptor control */
++		} flags;
++	} lower;
++	union {
++		u32 data;
++		struct {
++			u8 status;     /* Descriptor status */
++			u8 css;	/* Checksum start */
++			u16 special;
++		} fields;
++	} upper;
++};
++
++/* Offload Context Descriptor */
++struct e1000_context_desc {
++	union {
++		u32 ip_config;
++		struct {
++			u8 ipcss;      /* IP checksum start */
++			u8 ipcso;      /* IP checksum offset */
++			u16 ipcse;     /* IP checksum end */
++		} ip_fields;
++	} lower_setup;
++	union {
++		u32 tcp_config;
++		struct {
++			u8 tucss;      /* TCP checksum start */
++			u8 tucso;      /* TCP checksum offset */
++			u16 tucse;     /* TCP checksum end */
++		} tcp_fields;
++	} upper_setup;
++	u32 cmd_and_length;
++	union {
++		u32 data;
++		struct {
++			u8 status;     /* Descriptor status */
++			u8 hdr_len;    /* Header length */
++			u16 mss;       /* Maximum segment size */
++		} fields;
++	} tcp_seg_setup;
++};
++
++/* Offload data descriptor */
++struct e1000_data_desc {
++	u64 buffer_addr;   /* Address of the descriptor's buffer address */
++	union {
++		u32 data;
++		struct {
++			u16 length;    /* Data buffer length */
++			u8 typ_len_ext;
++			u8 cmd;
++		} flags;
++	} lower;
++	union {
++		u32 data;
++		struct {
++			u8 status;     /* Descriptor status */
++			u8 popts;      /* Packet Options */
++			u16 special;   /* */
++		} fields;
++	} upper;
++};
++
++/* Statistics counters collected by the MAC */
++struct e1000_hw_stats {
++	u64 crcerrs;
++	u64 algnerrc;
++	u64 symerrs;
++	u64 rxerrc;
++	u64 mpc;
++	u64 scc;
++	u64 ecol;
++	u64 mcc;
++	u64 latecol;
++	u64 colc;
++	u64 dc;
++	u64 tncrs;
++	u64 sec;
++	u64 cexterr;
++	u64 rlec;
++	u64 xonrxc;
++	u64 xontxc;
++	u64 xoffrxc;
++	u64 xofftxc;
++	u64 fcruc;
++	u64 prc64;
++	u64 prc127;
++	u64 prc255;
++	u64 prc511;
++	u64 prc1023;
++	u64 prc1522;
++	u64 gprc;
++	u64 bprc;
++	u64 mprc;
++	u64 gptc;
++	u64 gorcl;
++	u64 gorch;
++	u64 gotcl;
++	u64 gotch;
++	u64 rnbc;
++	u64 ruc;
++	u64 rfc;
++	u64 roc;
++	u64 rjc;
++	u64 mgprc;
++	u64 mgpdc;
++	u64 mgptc;
++	u64 torl;
++	u64 torh;
++	u64 totl;
++	u64 toth;
++	u64 tpr;
++	u64 tpt;
++	u64 ptc64;
++	u64 ptc127;
++	u64 ptc255;
++	u64 ptc511;
++	u64 ptc1023;
++	u64 ptc1522;
++	u64 mptc;
++	u64 bptc;
++	u64 tsctc;
++	u64 tsctfc;
++	u64 iac;
++	u64 icrxptc;
++	u64 icrxatc;
++	u64 ictxptc;
++	u64 ictxatc;
++	u64 ictxqec;
++	u64 ictxqmtc;
++	u64 icrxdmtc;
++	u64 icrxoc;
++};
++
++struct e1000_phy_stats {
++	u32 idle_errors;
++	u32 receive_errors;
++};
++
++struct e1000_host_mng_dhcp_cookie {
++	u32 signature;
++	u8  status;
++	u8  reserved0;
++	u16 vlan_id;
++	u32 reserved1;
++	u16 reserved2;
++	u8  reserved3;
++	u8  checksum;
++};
++
++/* Host Interface "Rev 1" */
++struct e1000_host_command_header {
++	u8 command_id;
++	u8 command_length;
++	u8 command_options;
++	u8 checksum;
++};
++
++#define E1000_HI_MAX_DATA_LENGTH     252
++struct e1000_host_command_info {
++	struct e1000_host_command_header command_header;
++	u8 command_data[E1000_HI_MAX_DATA_LENGTH];
++};
++
++/* Host Interface "Rev 2" */
++struct e1000_host_mng_command_header {
++	u8  command_id;
++	u8  checksum;
++	u16 reserved1;
++	u16 reserved2;
++	u16 command_length;
++};
++
++#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
++struct e1000_host_mng_command_info {
++	struct e1000_host_mng_command_header command_header;
++	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
++};
++
++/* Function pointers and static data for the MAC. */
++struct e1000_mac_operations {
++	u32			mng_mode_enab;
++
++	s32  (*check_for_link)(struct e1000_hw *);
++	s32  (*cleanup_led)(struct e1000_hw *);
++	void (*clear_hw_cntrs)(struct e1000_hw *);
++	s32  (*get_bus_info)(struct e1000_hw *);
++	s32  (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
++	s32  (*led_on)(struct e1000_hw *);
++	s32  (*led_off)(struct e1000_hw *);
++	void (*mc_addr_list_update)(struct e1000_hw *, u8 *, u32, u32,
++					 u32);
++	s32  (*reset_hw)(struct e1000_hw *);
++	s32  (*init_hw)(struct e1000_hw *);
++	s32  (*setup_link)(struct e1000_hw *);
++	s32  (*setup_physical_interface)(struct e1000_hw *);
++};
++
++/* Function pointers for the PHY. */
++struct e1000_phy_operations {
++	s32  (*acquire_phy)(struct e1000_hw *);
++	s32  (*check_reset_block)(struct e1000_hw *);
++	s32  (*commit_phy)(struct e1000_hw *);
++	s32  (*force_speed_duplex)(struct e1000_hw *);
++	s32  (*get_cfg_done)(struct e1000_hw *hw);
++	s32  (*get_cable_length)(struct e1000_hw *);
++	s32  (*get_phy_info)(struct e1000_hw *);
++	s32  (*read_phy_reg)(struct e1000_hw *, u32, u16 *);
++	void (*release_phy)(struct e1000_hw *);
++	s32  (*reset_phy)(struct e1000_hw *);
++	s32  (*set_d0_lplu_state)(struct e1000_hw *, bool);
++	s32  (*set_d3_lplu_state)(struct e1000_hw *, bool);
++	s32  (*write_phy_reg)(struct e1000_hw *, u32, u16);
++};
++
++/* Function pointers for the NVM. */
++struct e1000_nvm_operations {
++	s32  (*acquire_nvm)(struct e1000_hw *);
++	s32  (*read_nvm)(struct e1000_hw *, u16, u16, u16 *);
++	void (*release_nvm)(struct e1000_hw *);
++	s32  (*update_nvm)(struct e1000_hw *);
++	s32  (*valid_led_default)(struct e1000_hw *, u16 *);
++	s32  (*validate_nvm)(struct e1000_hw *);
++	s32  (*write_nvm)(struct e1000_hw *, u16, u16, u16 *);
++};
++
++struct e1000_mac_info {
++	struct e1000_mac_operations ops;
++
++	u8 addr[6];
++	u8 perm_addr[6];
++
++	enum e1000_mac_type type;
++	enum e1000_fc_mode  fc;
++	enum e1000_fc_mode  original_fc;
++
++	u32 collision_delta;
++	u32 ledctl_default;
++	u32 ledctl_mode1;
++	u32 ledctl_mode2;
++	u32 max_frame_size;
++	u32 mc_filter_type;
++	u32 min_frame_size;
++	u32 tx_packet_delta;
++	u32 txcw;
++
++	u16 current_ifs_val;
++	u16 ifs_max_val;
++	u16 ifs_min_val;
++	u16 ifs_ratio;
++	u16 ifs_step_size;
++	u16 mta_reg_count;
++	u16 rar_entry_count;
++	u16 fc_high_water;
++	u16 fc_low_water;
++	u16 fc_pause_time;
++
++	u8  forced_speed_duplex;
++
++	bool arc_subsystem_valid;
++	bool autoneg;
++	bool autoneg_failed;
++	bool get_link_status;
++	bool in_ifs_mode;
++	bool serdes_has_link;
++	bool tx_pkt_filtering;
++};
++
++struct e1000_phy_info {
++	struct e1000_phy_operations ops;
++
++	enum e1000_phy_type type;
++
++	enum e1000_1000t_rx_status local_rx;
++	enum e1000_1000t_rx_status remote_rx;
++	enum e1000_ms_type ms_type;
++	enum e1000_ms_type original_ms_type;
++	enum e1000_rev_polarity cable_polarity;
++	enum e1000_smart_speed smart_speed;
++
++	u32 addr;
++	u32 id;
++	u32 reset_delay_us; /* in usec */
++	u32 revision;
++
++	u16 autoneg_advertised;
++	u16 autoneg_mask;
++	u16 cable_length;
++	u16 max_cable_length;
++	u16 min_cable_length;
++
++	u8 mdix;
++
++	bool disable_polarity_correction;
++	bool is_mdix;
++	bool polarity_correction;
++	bool speed_downgraded;
++	bool wait_for_link;
++};
++
++struct e1000_nvm_info {
++	struct e1000_nvm_operations ops;
++
++	enum e1000_nvm_type type;
++	enum e1000_nvm_override override;
++
++	u32 flash_bank_size;
++	u32 flash_base_addr;
++
++	u16 word_size;
++	u16 delay_usec;
++	u16 address_bits;
++	u16 opcode_bits;
++	u16 page_size;
++};
++
++struct e1000_bus_info {
++	enum e1000_bus_width width;
++
++	u16 func;
++};
++
++struct e1000_dev_spec_82571 {
++	bool laa_is_present;
++};
++
++struct e1000_shadow_ram {
++	u16  value;
++	bool modified;
++};
++
++#define E1000_ICH8_SHADOW_RAM_WORDS		2048
++
++struct e1000_dev_spec_ich8lan {
++	bool kmrn_lock_loss_workaround_enabled;
++	struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS];
++};
++
++struct e1000_hw {
++	struct e1000_adapter *adapter;
++
++	u8 __iomem *hw_addr;
++	u8 __iomem *flash_address;
++
++	struct e1000_mac_info  mac;
++	struct e1000_phy_info  phy;
++	struct e1000_nvm_info  nvm;
++	struct e1000_bus_info  bus;
++	struct e1000_host_mng_dhcp_cookie mng_cookie;
++
++	union {
++		struct e1000_dev_spec_82571	e82571;
++		struct e1000_dev_spec_ich8lan	ich8lan;
++	} dev_spec;
++
++	enum e1000_media_type media_type;
++};
++
++#ifdef DEBUG
++#define hw_dbg(hw, format, arg...) \
++	printk(KERN_DEBUG, "%s: " format, e1000_get_hw_dev_name(hw), ##arg);
++#else
++static inline int __attribute__ ((format (printf, 2, 3)))
++hw_dbg(struct e1000_hw *hw, const char *format, ...)
++{
++	return 0;
++}
++#endif
++
++#endif
+diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c
+new file mode 100644
+index 0000000..5967139
+--- /dev/null
++++ b/drivers/net/e1000e/ich8lan.c
+@@ -0,0 +1,2297 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++/*
++ * 82562G-2 10/100 Network Connection
++ * 82562GT 10/100 Network Connection
++ * 82562GT-2 10/100 Network Connection
++ * 82562V 10/100 Network Connection
++ * 82562V-2 10/100 Network Connection
++ * 82566DC-2 Gigabit Network Connection
++ * 82566DC Gigabit Network Connection
++ * 82566DM-2 Gigabit Network Connection
++ * 82566DM Gigabit Network Connection
++ * 82566MC Gigabit Network Connection
++ * 82566MM Gigabit Network Connection
++ */
++
++#include "e1000.h"
++
++#define ICH_FLASH_GFPREG		0x0000
++#define ICH_FLASH_HSFSTS		0x0004
++#define ICH_FLASH_HSFCTL		0x0006
++#define ICH_FLASH_FADDR			0x0008
++#define ICH_FLASH_FDATA0		0x0010
++
++#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
++#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
++#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
++#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
++#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
++
++#define ICH_CYCLE_READ			0
++#define ICH_CYCLE_WRITE			2
++#define ICH_CYCLE_ERASE			3
++
++#define FLASH_GFPREG_BASE_MASK		0x1FFF
++#define FLASH_SECTOR_ADDR_SHIFT		12
++
++#define ICH_FLASH_SEG_SIZE_256		256
++#define ICH_FLASH_SEG_SIZE_4K		4096
++#define ICH_FLASH_SEG_SIZE_8K		8192
++#define ICH_FLASH_SEG_SIZE_64K		65536
++
++
++#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
++
++#define E1000_ICH_MNG_IAMT_MODE		0x2
++
++#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
++				 (ID_LED_DEF1_OFF2 <<  8) | \
++				 (ID_LED_DEF1_ON2  <<  4) | \
++				 (ID_LED_DEF1_DEF2))
++
++#define E1000_ICH_NVM_SIG_WORD		0x13
++#define E1000_ICH_NVM_SIG_MASK		0xC000
++
++#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
++
++#define E1000_FEXTNVM_SW_CONFIG		1
++#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
++
++#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
++
++#define E1000_ICH_RAR_ENTRIES		7
++
++#define PHY_PAGE_SHIFT 5
++#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
++			   ((reg) & MAX_PHY_REG_ADDRESS))
++#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
++#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
++
++#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
++#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
++#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
++
++/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
++/* Offset 04h HSFSTS */
++union ich8_hws_flash_status {
++	struct ich8_hsfsts {
++		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
++		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
++		u16 dael       :1; /* bit 2 Direct Access error Log */
++		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
++		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
++		u16 reserved1  :2; /* bit 13:6 Reserved */
++		u16 reserved2  :6; /* bit 13:6 Reserved */
++		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
++		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
++	} hsf_status;
++	u16 regval;
++};
++
++/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
++/* Offset 06h FLCTL */
++union ich8_hws_flash_ctrl {
++	struct ich8_hsflctl {
++		u16 flcgo      :1;   /* 0 Flash Cycle Go */
++		u16 flcycle    :2;   /* 2:1 Flash Cycle */
++		u16 reserved   :5;   /* 7:3 Reserved  */
++		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
++		u16 flockdn    :6;   /* 15:10 Reserved */
++	} hsf_ctrl;
++	u16 regval;
++};
++
++/* ICH Flash Region Access Permissions */
++union ich8_hws_flash_regacc {
++	struct ich8_flracc {
++		u32 grra      :8; /* 0:7 GbE region Read Access */
++		u32 grwa      :8; /* 8:15 GbE region Write Access */
++		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
++		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
++	} hsf_flregacc;
++	u16 regval;
++};
++
++static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
++static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
++static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
++static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
++static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
++static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
++						u32 offset, u8 byte);
++static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
++					 u16 *data);
++static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
++					 u8 size, u16 *data);
++static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
++static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
++
++static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
++{
++	return readw(hw->flash_address + reg);
++}
++
++static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
++{
++	return readl(hw->flash_address + reg);
++}
++
++static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
++{
++	writew(val, hw->flash_address + reg);
++}
++
++static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
++{
++	writel(val, hw->flash_address + reg);
++}
++
++#define er16flash(reg)		__er16flash(hw, (reg))
++#define er32flash(reg)		__er32flash(hw, (reg))
++#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
++#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
++
++/**
++ *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
++ *  @hw: pointer to the HW structure
++ *
++ *  Initialize family-specific PHY parameters and function pointers.
++ **/
++static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val = E1000_SUCCESS;
++	u16 i = 0;
++
++	phy->addr			= 1;
++	phy->reset_delay_us		= 100;
++
++	phy->id = 0;
++	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
++	       (i++ < 100)) {
++		msleep(1);
++		ret_val = e1000_get_phy_id(hw);
++		if (ret_val)
++			goto out;
++	}
++
++	/* Verify phy id */
++	switch (phy->id) {
++	case IGP03E1000_E_PHY_ID:
++		phy->type = e1000_phy_igp_3;
++		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
++		break;
++	case IFE_E_PHY_ID:
++	case IFE_PLUS_E_PHY_ID:
++	case IFE_C_E_PHY_ID:
++		phy->type = e1000_phy_ife;
++		phy->autoneg_mask = E1000_ALL_NOT_GIG;
++		break;
++	default:
++		ret_val = -E1000_ERR_PHY;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
++ *  @hw: pointer to the HW structure
++ *
++ *  Initialize family-specific NVM parameters and function
++ *  pointers.
++ **/
++static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++	u32 gfpreg;
++	u32 sector_base_addr;
++	u32 sector_end_addr;
++	s32 ret_val = E1000_SUCCESS;
++	u16 i;
++
++	/* Can't read flash registers if the register set isn't mapped.
++	 */
++	if (!hw->flash_address) {
++		hw_dbg(hw, "ERROR: Flash registers not mapped\n");
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++	}
++
++	nvm->type = e1000_nvm_flash_sw;
++
++	gfpreg = er32flash(ICH_FLASH_GFPREG);
++
++	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
++	 * Add 1 to sector_end_addr since this sector is included in
++	 * the overall size. */
++	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
++	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
++
++	/* flash_base_addr is byte-aligned */
++	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
++
++	/* find total size of the NVM, then cut in half since the total
++	 * size represents two separate NVM banks. */
++	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
++				<< FLASH_SECTOR_ADDR_SHIFT;
++	nvm->flash_bank_size /= 2;
++	/* Adjust to word count */
++	nvm->flash_bank_size /= sizeof(u16);
++
++	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
++
++	/* Clear shadow ram */
++	for (i = 0; i < nvm->word_size; i++) {
++		dev_spec->shadow_ram[i].modified = 0;
++		dev_spec->shadow_ram[i].value    = 0xFFFF;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
++ *  @hw: pointer to the HW structure
++ *
++ *  Initialize family-specific MAC parameters and function
++ *  pointers.
++ **/
++static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct e1000_mac_info *mac = &hw->mac;
++
++	/* Set media type function pointer */
++	hw->media_type = e1000_media_type_copper;
++
++	/* Set mta register count */
++	mac->mta_reg_count = 32;
++	/* Set rar entry count */
++	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
++	if (mac->type == e1000_ich8lan)
++		mac->rar_entry_count--;
++	/* Set if manageability features are enabled. */
++	mac->arc_subsystem_valid = 1;
++
++	/* Enable PCS Lock-loss workaround for ICH8 */
++	if (mac->type == e1000_ich8lan)
++		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
++
++	return E1000_SUCCESS;
++}
++
++static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	s32 rc;
++
++	rc = e1000_init_mac_params_ich8lan(adapter);
++	if (rc)
++		return rc;
++
++	rc = e1000_init_nvm_params_ich8lan(hw);
++	if (rc)
++		return rc;
++
++	rc = e1000_init_phy_params_ich8lan(hw);
++	if (rc)
++		return rc;
++
++	if ((adapter->hw.mac.type == e1000_ich8lan) &&
++	    (adapter->hw.phy.type == e1000_phy_igp_3))
++		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_acquire_swflag_ich8lan - Acquire software control flag
++ *  @hw: pointer to the HW structure
++ *
++ *  Acquires the software control flag for performing NVM and PHY
++ *  operations.  This is a function pointer entry point only called by
++ *  read/write routines for the PHY and NVM parts.
++ **/
++static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
++{
++	u32 extcnf_ctrl;
++	u32 timeout = PHY_CFG_TIMEOUT;
++	s32 ret_val = E1000_SUCCESS;
++
++	while (timeout) {
++		extcnf_ctrl = er32(EXTCNF_CTRL);
++		extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
++		ew32(EXTCNF_CTRL, extcnf_ctrl);
++
++		extcnf_ctrl = er32(EXTCNF_CTRL);
++		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
++			break;
++		mdelay(1);
++		timeout--;
++	}
++
++	if (!timeout) {
++		hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_release_swflag_ich8lan - Release software control flag
++ *  @hw: pointer to the HW structure
++ *
++ *  Releases the software control flag for performing NVM and PHY operations.
++ *  This is a function pointer entry point only called by read/write
++ *  routines for the PHY and NVM parts.
++ **/
++static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
++{
++	u32 extcnf_ctrl;
++
++	extcnf_ctrl = er32(EXTCNF_CTRL);
++	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
++	ew32(EXTCNF_CTRL, extcnf_ctrl);
++}
++
++/**
++ *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
++ *  @hw: pointer to the HW structure
++ *
++ *  Checks if firmware is blocking the reset of the PHY.
++ *  This is a function pointer entry point only called by
++ *  reset routines.
++ **/
++static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
++{
++	u32 fwsm;
++
++	fwsm = er32(FWSM);
++
++	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
++						: E1000_BLK_PHY_RESET;
++}
++
++/**
++ *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
++ *  @hw: pointer to the HW structure
++ *
++ *  Forces the speed and duplex settings of the PHY.
++ *  This is a function pointer entry point only called by
++ *  PHY setup routines.
++ **/
++static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 data;
++	bool link;
++
++	if (phy->type != e1000_phy_ife) {
++		ret_val = e1000_phy_force_speed_duplex_igp(hw);
++		goto out;
++	}
++
++	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
++	if (ret_val)
++		goto out;
++
++	e1000_phy_force_speed_duplex_setup(hw, &data);
++
++	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
++	if (ret_val)
++		goto out;
++
++	/* Disable MDI-X support for 10/100 */
++	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
++	if (ret_val)
++		goto out;
++
++	data &= ~IFE_PMC_AUTO_MDIX;
++	data &= ~IFE_PMC_FORCE_MDIX;
++
++	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
++	if (ret_val)
++		goto out;
++
++	hw_dbg(hw, "IFE PMC: %X\n", data);
++
++	udelay(1);
++
++	if (phy->wait_for_link) {
++		hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
++
++		ret_val = e1000_phy_has_link_generic(hw,
++						     PHY_FORCE_LIMIT,
++						     100000,
++						     &link);
++		if (ret_val)
++			goto out;
++
++		if (!link)
++			hw_dbg(hw, "Link taking longer than expected.\n");
++
++		/* Try once more */
++		ret_val = e1000_phy_has_link_generic(hw,
++						     PHY_FORCE_LIMIT,
++						     100000,
++						     &link);
++		if (ret_val)
++			goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
++ *  @hw: pointer to the HW structure
++ *
++ *  Resets the PHY
++ *  This is a function pointer entry point called by drivers
++ *  or other shared routines.
++ **/
++static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	u32 i;
++	u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
++	s32 ret_val;
++	u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
++	u16 word_addr, reg_data, reg_addr, phy_page = 0;
++
++	ret_val = e1000_phy_hw_reset_generic(hw);
++	if (ret_val)
++		goto out;
++
++	/* Initialize the PHY from the NVM on ICH platforms.  This
++	 * is needed due to an issue where the NVM configuration is
++	 * not properly autoloaded after power transitions.
++	 * Therefore, after each PHY reset, we will load the
++	 * configuration data out of the NVM manually.
++	 */
++	if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
++		struct e1000_adapter *adapter = hw->adapter;
++
++		/* Check if SW needs configure the PHY */
++		if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
++		    (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
++			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
++		else
++			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
++
++		data = er32(FEXTNVM);
++		if (!(data & sw_cfg_mask))
++			goto out;
++
++		/* Wait for basic configuration completes before proceeding*/
++		do {
++			data = er32(STATUS);
++			data &= E1000_STATUS_LAN_INIT_DONE;
++			udelay(100);
++		} while ((!data) && --loop);
++
++		/* If basic configuration is incomplete before the above loop
++		 * count reaches 0, loading the configuration from NVM will
++		 * leave the PHY in a bad state possibly resulting in no link.
++		 */
++		if (loop == 0) {
++			hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
++		}
++
++		/* Clear the Init Done bit for the next init event */
++		data = er32(STATUS);
++		data &= ~E1000_STATUS_LAN_INIT_DONE;
++		ew32(STATUS, data);
++
++		/* Make sure HW does not configure LCD from PHY
++		 * extended configuration before SW configuration */
++		data = er32(EXTCNF_CTRL);
++		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
++			goto out;
++
++		cnf_size = er32(EXTCNF_SIZE);
++		cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
++		cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
++		if (!cnf_size)
++			goto out;
++
++		cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
++		cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
++
++		/* Configure LCD from extended configuration
++		 * region. */
++
++		/* cnf_base_addr is in DWORD */
++		word_addr = (u16)(cnf_base_addr << 1);
++
++		for (i = 0; i < cnf_size; i++) {
++			ret_val = e1000_read_nvm(hw,
++						(word_addr + i * 2),
++						1,
++						&reg_data);
++			if (ret_val)
++				goto out;
++
++			ret_val = e1000_read_nvm(hw,
++						(word_addr + i * 2 + 1),
++						1,
++						&reg_addr);
++			if (ret_val)
++				goto out;
++
++			/* Save off the PHY page for future writes. */
++			if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
++				phy_page = reg_data;
++				continue;
++			}
++
++			reg_addr |= phy_page;
++
++			ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
++			if (ret_val)
++				goto out;
++		}
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
++ *  @hw: pointer to the HW structure
++ *
++ *  Populates "phy" structure with various feature states.
++ *  This function is only called by other family-specific
++ *  routines.
++ **/
++static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 data;
++	bool link;
++
++	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	if (ret_val)
++		goto out;
++
++	if (!link) {
++		hw_dbg(hw, "Phy info is only valid if link is up\n");
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++	}
++
++	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
++	if (ret_val)
++		goto out;
++	phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
++
++	if (phy->polarity_correction) {
++		ret_val = e1000_check_polarity_ife_ich8lan(hw);
++		if (ret_val)
++			goto out;
++	} else {
++		/* Polarity is forced */
++		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
++				      ? e1000_rev_polarity_reversed
++				      : e1000_rev_polarity_normal;
++	}
++
++	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
++	if (ret_val)
++		goto out;
++
++	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
++
++	/* The following parameters are undefined for 10/100 operation. */
++	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
++	phy->local_rx = e1000_1000t_rx_status_undefined;
++	phy->remote_rx = e1000_1000t_rx_status_undefined;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
++ *  @hw: pointer to the HW structure
++ *
++ *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
++ *  This is a function pointer entry point called by drivers
++ *  or other shared routines.
++ **/
++static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
++{
++	s32 ret_val = -E1000_ERR_PHY_TYPE;
++
++	switch (hw->phy.type) {
++	case e1000_phy_ife:
++		ret_val = e1000_get_phy_info_ife_ich8lan(hw);
++		break;
++	case e1000_phy_igp_3:
++		ret_val = e1000_get_phy_info_igp(hw);
++		break;
++	default:
++		break;
++	}
++
++	return ret_val;
++}
++
++/**
++ *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
++ *  @hw: pointer to the HW structure
++ *
++ *  Polarity is determined on the polarity reveral feature being enabled.
++ *  This function is only called by other family-specific
++ *  routines.
++ **/
++static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 phy_data, offset, mask;
++
++	/* Polarity is determined based on the reversal feature
++	 * being enabled.
++	 */
++	if (phy->polarity_correction) {
++		offset	= IFE_PHY_EXTENDED_STATUS_CONTROL;
++		mask	= IFE_PESC_POLARITY_REVERSED;
++	} else {
++		offset	= IFE_PHY_SPECIAL_CONTROL;
++		mask	= IFE_PSC_FORCE_POLARITY;
++	}
++
++	ret_val = e1e_rphy(hw, offset, &phy_data);
++
++	if (!ret_val)
++		phy->cable_polarity = (phy_data & mask)
++				      ? e1000_rev_polarity_reversed
++				      : e1000_rev_polarity_normal;
++
++	return ret_val;
++}
++
++/**
++ *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
++ *  @hw: pointer to the HW structure
++ *  @active: TRUE to enable LPLU, FALSE to disable
++ *
++ *  Sets the LPLU D0 state according to the active flag.  When
++ *  activating LPLU this function also disables smart speed
++ *  and vice versa.  LPLU will not be activated unless the
++ *  device autonegotiation advertisement meets standards of
++ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
++ *  This is a function pointer entry point only called by
++ *  PHY setup routines.
++ **/
++static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	u32 phy_ctrl;
++	s32 ret_val = E1000_SUCCESS;
++	u16 data;
++
++	if (phy->type != e1000_phy_igp_3)
++		goto out;
++
++	phy_ctrl = er32(PHY_CTRL);
++
++	if (active) {
++		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
++		ew32(PHY_CTRL, phy_ctrl);
++
++		/* Call gig speed drop workaround on LPLU before accessing
++		 * any PHY registers */
++		if ((hw->mac.type == e1000_ich8lan) &&
++		    (hw->phy.type == e1000_phy_igp_3))
++			e1000_gig_downshift_workaround_ich8lan(hw);
++
++		/* When LPLU is enabled, we should disable SmartSpeed */
++		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
++		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
++		if (ret_val)
++			goto out;
++	} else {
++		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
++		ew32(PHY_CTRL, phy_ctrl);
++
++		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
++		 * during Dx states where the power conservation is most
++		 * important.  During driver activity we should enable
++		 * SmartSpeed, so performance is maintained. */
++		if (phy->smart_speed == e1000_smart_speed_on) {
++			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						    &data);
++			if (ret_val)
++				goto out;
++
++			data |= IGP01E1000_PSCFR_SMART_SPEED;
++			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     data);
++			if (ret_val)
++				goto out;
++		} else if (phy->smart_speed == e1000_smart_speed_off) {
++			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						    &data);
++			if (ret_val)
++				goto out;
++
++			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     data);
++			if (ret_val)
++				goto out;
++		}
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
++ *  @hw: pointer to the HW structure
++ *  @active: TRUE to enable LPLU, FALSE to disable
++ *
++ *  Sets the LPLU D3 state according to the active flag.  When
++ *  activating LPLU this function also disables smart speed
++ *  and vice versa.  LPLU will not be activated unless the
++ *  device autonegotiation advertisement meets standards of
++ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
++ *  This is a function pointer entry point only called by
++ *  PHY setup routines.
++ **/
++static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	u32 phy_ctrl;
++	s32 ret_val = E1000_SUCCESS;
++	u16 data;
++
++	phy_ctrl = er32(PHY_CTRL);
++
++	if (!active) {
++		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
++		ew32(PHY_CTRL, phy_ctrl);
++		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
++		 * during Dx states where the power conservation is most
++		 * important.  During driver activity we should enable
++		 * SmartSpeed, so performance is maintained. */
++		if (phy->smart_speed == e1000_smart_speed_on) {
++			ret_val = e1e_rphy(hw,
++						    IGP01E1000_PHY_PORT_CONFIG,
++						    &data);
++			if (ret_val)
++				goto out;
++
++			data |= IGP01E1000_PSCFR_SMART_SPEED;
++			ret_val = e1e_wphy(hw,
++						     IGP01E1000_PHY_PORT_CONFIG,
++						     data);
++			if (ret_val)
++				goto out;
++		} else if (phy->smart_speed == e1000_smart_speed_off) {
++			ret_val = e1e_rphy(hw,
++						    IGP01E1000_PHY_PORT_CONFIG,
++						    &data);
++			if (ret_val)
++				goto out;
++
++			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++			ret_val = e1e_wphy(hw,
++						     IGP01E1000_PHY_PORT_CONFIG,
++						     data);
++			if (ret_val)
++				goto out;
++		}
++	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
++		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
++		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
++		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
++		ew32(PHY_CTRL, phy_ctrl);
++
++		/* Call gig speed drop workaround on LPLU before accessing
++		 * any PHY registers */
++		if ((hw->mac.type == e1000_ich8lan) &&
++		    (hw->phy.type == e1000_phy_igp_3))
++			e1000_gig_downshift_workaround_ich8lan(hw);
++
++		/* When LPLU is enabled, we should disable SmartSpeed */
++		ret_val = e1e_rphy(hw,
++					    IGP01E1000_PHY_PORT_CONFIG,
++					    &data);
++		if (ret_val)
++			goto out;
++
++		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++		ret_val = e1e_wphy(hw,
++					     IGP01E1000_PHY_PORT_CONFIG,
++					     data);
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
++ *  @hw: pointer to the HW structure
++ *  @offset: The offset (in bytes) of the word(s) to read.
++ *  @words: Size of data to read in words
++ *  @data: Pointer to the word(s) to read at offset.
++ *
++ *  Reads a word(s) from the NVM using the flash access registers.
++ **/
++static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
++				  u16 *data)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++	u32 act_offset;
++	s32 ret_val = E1000_SUCCESS;
++	u16 i, word;
++
++	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
++	    (words == 0)) {
++		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	ret_val = e1000_acquire_swflag_ich8lan(hw);
++	if (ret_val)
++		goto out;
++
++	/* Start with the bank offset, then add the relative offset. */
++	act_offset = (er32(EECD) & E1000_EECD_SEC1VAL)
++		     ? nvm->flash_bank_size
++		     : 0;
++	act_offset += offset;
++
++	for (i = 0; i < words; i++) {
++		if ((dev_spec->shadow_ram) &&
++		    (dev_spec->shadow_ram[offset+i].modified)) {
++			data[i] = dev_spec->shadow_ram[offset+i].value;
++		} else {
++			ret_val = e1000_read_flash_word_ich8lan(hw,
++								act_offset + i,
++								&word);
++			if (ret_val)
++				break;
++			data[i] = word;
++		}
++	}
++
++	e1000_release_swflag_ich8lan(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_flash_cycle_init_ich8lan - Initialize flash
++ *  @hw: pointer to the HW structure
++ *
++ *  This function does initial flash setup so that a new read/write/erase cycle
++ *  can be started.
++ **/
++static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
++{
++	union ich8_hws_flash_status hsfsts;
++	s32 ret_val = -E1000_ERR_NVM;
++	s32 i = 0;
++
++	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++
++	/* Check if the flash descriptor is valid */
++	if (hsfsts.hsf_status.fldesvalid == 0) {
++		hw_dbg(hw, "Flash descriptor invalid.  "
++			 "SW Sequencing must be used.");
++		goto out;
++	}
++
++	/* Clear FCERR and DAEL in hw status by writing 1 */
++	hsfsts.hsf_status.flcerr = 1;
++	hsfsts.hsf_status.dael = 1;
++
++	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
++
++	/* Either we should have a hardware SPI cycle in progress
++	 * bit to check against, in order to start a new cycle or
++	 * FDONE bit should be changed in the hardware so that it
++	 * is 1 after harware reset, which can then be used as an
++	 * indication whether a cycle is in progress or has been
++	 * completed.
++	 */
++
++	if (hsfsts.hsf_status.flcinprog == 0) {
++		/* There is no cycle running at present,
++		 * so we can start a cycle */
++		/* Begin by setting Flash Cycle Done. */
++		hsfsts.hsf_status.flcdone = 1;
++		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
++		ret_val = E1000_SUCCESS;
++	} else {
++		/* otherwise poll for sometime so the current
++		 * cycle has a chance to end before giving up. */
++		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
++			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
++			if (hsfsts.hsf_status.flcinprog == 0) {
++				ret_val = E1000_SUCCESS;
++				break;
++			}
++			udelay(1);
++		}
++		if (ret_val == E1000_SUCCESS) {
++			/* Successful in waiting for previous cycle to timeout,
++			 * now set the Flash Cycle Done. */
++			hsfsts.hsf_status.flcdone = 1;
++			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
++		} else {
++			hw_dbg(hw, "Flash controller busy, cannot get access");
++		}
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
++ *  @hw: pointer to the HW structure
++ *  @timeout: maximum time to wait for completion
++ *
++ *  This function starts a flash cycle and waits for its completion.
++ **/
++static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
++{
++	union ich8_hws_flash_ctrl hsflctl;
++	union ich8_hws_flash_status hsfsts;
++	s32 ret_val = -E1000_ERR_NVM;
++	u32 i = 0;
++
++	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
++	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
++	hsflctl.hsf_ctrl.flcgo = 1;
++	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
++
++	/* wait till FDONE bit is set to 1 */
++	do {
++		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++		if (hsfsts.hsf_status.flcdone == 1)
++			break;
++		udelay(1);
++	} while (i++ < timeout);
++
++	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
++		ret_val = E1000_SUCCESS;
++
++	return ret_val;
++}
++
++/**
++ *  e1000_read_flash_word_ich8lan - Read word from flash
++ *  @hw: pointer to the HW structure
++ *  @offset: offset to data location
++ *  @data: pointer to the location for storing the data
++ *
++ *  Reads the flash word at offset into data.  Offset is converted
++ *  to bytes before read.
++ **/
++static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
++					 u16 *data)
++{
++	s32 ret_val;
++
++	if (!data) {
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	/* Must convert offset into bytes. */
++	offset <<= 1;
++
++	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
++ *  @hw: pointer to the HW structure
++ *  @offset: The offset (in bytes) of the byte or word to read.
++ *  @size: Size of data to read, 1=byte 2=word
++ *  @data: Pointer to the word to store the value read.
++ *
++ *  Reads a byte or word from the NVM using the flash access registers.
++ **/
++static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
++					 u8 size, u16 *data)
++{
++	union ich8_hws_flash_status hsfsts;
++	union ich8_hws_flash_ctrl hsflctl;
++	u32 flash_linear_addr;
++	u32 flash_data = 0;
++	s32 ret_val = -E1000_ERR_NVM;
++	u8 count = 0;
++
++	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
++		goto out;
++
++	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
++			    hw->nvm.flash_base_addr;
++
++	do {
++		udelay(1);
++		/* Steps */
++		ret_val = e1000_flash_cycle_init_ich8lan(hw);
++		if (ret_val != E1000_SUCCESS)
++			break;
++
++		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
++		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
++		hsflctl.hsf_ctrl.fldbcount = size - 1;
++		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
++		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
++
++		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
++
++		ret_val = e1000_flash_cycle_ich8lan(hw,
++						ICH_FLASH_READ_COMMAND_TIMEOUT);
++
++		/* Check if FCERR is set to 1, if set to 1, clear it
++		 * and try the whole sequence a few more times, else
++		 * read in (shift in) the Flash Data0, the order is
++		 * least significant byte first msb to lsb */
++		if (ret_val == E1000_SUCCESS) {
++			flash_data = er32flash(ICH_FLASH_FDATA0);
++			if (size == 1) {
++				*data = (u8)(flash_data & 0x000000FF);
++			} else if (size == 2) {
++				*data = (u16)(flash_data & 0x0000FFFF);
++			}
++			break;
++		} else {
++			/* If we've gotten here, then things are probably
++			 * completely hosed, but if the error condition is
++			 * detected, it won't hurt to give it another try...
++			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
++			 */
++			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++			if (hsfsts.hsf_status.flcerr == 1) {
++				/* Repeat for some time before giving up. */
++				continue;
++			} else if (hsfsts.hsf_status.flcdone == 0) {
++				hw_dbg(hw, "Timeout error - flash cycle "
++					 "did not complete.");
++				break;
++			}
++		}
++	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
++ *  @hw: pointer to the HW structure
++ *  @offset: The offset (in bytes) of the word(s) to write.
++ *  @words: Size of data to write in words
++ *  @data: Pointer to the word(s) to write at offset.
++ *
++ *  Writes a byte or word to the NVM using the flash access registers.
++ **/
++static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
++				   u16 *data)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++	s32 ret_val = E1000_SUCCESS;
++	u16 i;
++
++	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
++	    (words == 0)) {
++		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	ret_val = e1000_acquire_swflag_ich8lan(hw);
++	if (ret_val)
++		goto out;
++
++	for (i = 0; i < words; i++) {
++		dev_spec->shadow_ram[offset+i].modified = 1;
++		dev_spec->shadow_ram[offset+i].value = data[i];
++	}
++
++	e1000_release_swflag_ich8lan(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
++ *  @hw: pointer to the HW structure
++ *
++ *  The NVM checksum is updated by calling the generic update_nvm_checksum,
++ *  which writes the checksum to the shadow ram.  The changes in the shadow
++ *  ram are then committed to the EEPROM by processing each bank at a time
++ *  checking for the modified bit and writing only the pending changes.
++ *  After a succesful commit, the shadow ram is cleared and is ready for
++ *  future writes.
++ **/
++static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++	u32 i, act_offset, new_bank_offset, old_bank_offset;
++	s32 ret_val;
++	u16 data;
++
++	ret_val = e1000_update_nvm_checksum_generic(hw);
++	if (ret_val)
++		goto out;
++
++	if (nvm->type != e1000_nvm_flash_sw)
++		goto out;
++
++	ret_val = e1000_acquire_swflag_ich8lan(hw);
++	if (ret_val)
++		goto out;
++
++	/* We're writing to the opposite bank so if we're on bank 1,
++	 * write to bank 0 etc.  We also need to erase the segment that
++	 * is going to be written */
++	if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
++		new_bank_offset = nvm->flash_bank_size;
++		old_bank_offset = 0;
++		e1000_erase_flash_bank_ich8lan(hw, 1);
++	} else {
++		old_bank_offset = nvm->flash_bank_size;
++		new_bank_offset = 0;
++		e1000_erase_flash_bank_ich8lan(hw, 0);
++	}
++
++	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
++		/* Determine whether to write the value stored
++		 * in the other NVM bank or a modified value stored
++		 * in the shadow RAM */
++		if (dev_spec->shadow_ram[i].modified) {
++			data = dev_spec->shadow_ram[i].value;
++		} else {
++			e1000_read_flash_word_ich8lan(hw,
++						      i + old_bank_offset,
++						      &data);
++		}
++
++		/* If the word is 0x13, then make sure the signature bits
++		 * (15:14) are 11b until the commit has completed.
++		 * This will allow us to write 10b which indicates the
++		 * signature is valid.  We want to do this after the write
++		 * has completed so that we don't mark the segment valid
++		 * while the write is still in progress */
++		if (i == E1000_ICH_NVM_SIG_WORD)
++			data |= E1000_ICH_NVM_SIG_MASK;
++
++		/* Convert offset to bytes. */
++		act_offset = (i + new_bank_offset) << 1;
++
++		udelay(100);
++		/* Write the bytes to the new bank. */
++		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
++							       act_offset,
++							       (u8)data);
++		if (ret_val)
++			break;
++
++		udelay(100);
++		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
++							  act_offset + 1,
++							  (u8)(data >> 8));
++		if (ret_val)
++			break;
++	}
++
++	/* Don't bother writing the segment valid bits if sector
++	 * programming failed. */
++	if (ret_val) {
++		hw_dbg(hw, "Flash commit failed.\n");
++		e1000_release_swflag_ich8lan(hw);
++		goto out;
++	}
++
++	/* Finally validate the new segment by setting bit 15:14
++	 * to 10b in word 0x13 , this can be done without an
++	 * erase as well since these bits are 11 to start with
++	 * and we need to change bit 14 to 0b */
++	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
++	e1000_read_flash_word_ich8lan(hw, act_offset, &data);
++	data &= 0xBFFF;
++	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
++						       act_offset * 2 + 1,
++						       (u8)(data >> 8));
++	if (ret_val) {
++		e1000_release_swflag_ich8lan(hw);
++		goto out;
++	}
++
++	/* And invalidate the previously valid segment by setting
++	 * its signature word (0x13) high_byte to 0b. This can be
++	 * done without an erase because flash erase sets all bits
++	 * to 1's. We can write 1's to 0's without an erase */
++	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
++	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
++	if (ret_val) {
++		e1000_release_swflag_ich8lan(hw);
++		goto out;
++	}
++
++	/* Great!  Everything worked, we can now clear the cached entries. */
++	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
++		dev_spec->shadow_ram[i].modified = 0;
++		dev_spec->shadow_ram[i].value = 0xFFFF;
++	}
++
++	e1000_release_swflag_ich8lan(hw);
++
++	/* Reload the EEPROM, or else modifications will not appear
++	 * until after the next adapter reset.
++	 */
++	e1000_reload_nvm(hw);
++	msleep(10);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
++ *  @hw: pointer to the HW structure
++ *
++ *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
++ *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
++ *  calculated, in which case we need to calculate the checksum and set bit 6.
++ **/
++static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
++{
++	s32 ret_val = E1000_SUCCESS;
++	u16 data;
++
++	/* Read 0x19 and check bit 6.  If this bit is 0, the checksum
++	 * needs to be fixed.  This bit is an indication that the NVM
++	 * was prepared by OEM software and did not calculate the
++	 * checksum...a likely scenario.
++	 */
++	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
++	if (ret_val)
++		goto out;
++
++	if ((data & 0x40) == 0) {
++		data |= 0x40;
++		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
++		if (ret_val)
++			goto out;
++		ret_val = e1000_update_nvm_checksum(hw);
++		if (ret_val)
++			goto out;
++	}
++
++	ret_val = e1000_validate_nvm_checksum_generic(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
++ *  @hw: pointer to the HW structure
++ *  @offset: The offset (in bytes) of the byte/word to read.
++ *  @size: Size of data to read, 1=byte 2=word
++ *  @data: The byte(s) to write to the NVM.
++ *
++ *  Writes one/two bytes to the NVM using the flash access registers.
++ **/
++static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
++					  u8 size, u16 data)
++{
++	union ich8_hws_flash_status hsfsts;
++	union ich8_hws_flash_ctrl hsflctl;
++	u32 flash_linear_addr;
++	u32 flash_data = 0;
++	s32 ret_val = -E1000_ERR_NVM;
++	u8 count = 0;
++
++	if (size < 1 || size > 2 || data > size * 0xff ||
++	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
++		goto out;
++
++	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
++			    hw->nvm.flash_base_addr;
++
++	do {
++		udelay(1);
++		/* Steps */
++		ret_val = e1000_flash_cycle_init_ich8lan(hw);
++		if (ret_val != E1000_SUCCESS)
++			break;
++
++		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
++		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
++		hsflctl.hsf_ctrl.fldbcount = size -1;
++		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
++		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
++
++		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
++
++		if (size == 1)
++			flash_data = (u32)data & 0x00FF;
++		else
++			flash_data = (u32)data;
++
++		ew32flash(ICH_FLASH_FDATA0, flash_data);
++
++		/* check if FCERR is set to 1 , if set to 1, clear it
++		 * and try the whole sequence a few more times else done */
++		ret_val = e1000_flash_cycle_ich8lan(hw,
++					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
++		if (ret_val == E1000_SUCCESS) {
++			break;
++		} else {
++			/* If we're here, then things are most likely
++			 * completely hosed, but if the error condition
++			 * is detected, it won't hurt to give it another
++			 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
++			 */
++			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++			if (hsfsts.hsf_status.flcerr == 1) {
++				/* Repeat for some time before giving up. */
++				continue;
++			} else if (hsfsts.hsf_status.flcdone == 0) {
++				hw_dbg(hw, "Timeout error - flash cycle "
++					 "did not complete.");
++				break;
++			}
++		}
++	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
++ *  @hw: pointer to the HW structure
++ *  @offset: The index of the byte to read.
++ *  @data: The byte to write to the NVM.
++ *
++ *  Writes a single byte to the NVM using the flash access registers.
++ **/
++static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
++					  u8 data)
++{
++	u16 word = (u16)data;
++
++	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
++}
++
++/**
++ *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
++ *  @hw: pointer to the HW structure
++ *  @offset: The offset of the byte to write.
++ *  @byte: The byte to write to the NVM.
++ *
++ *  Writes a single byte to the NVM using the flash access registers.
++ *  Goes through a retry algorithm before giving up.
++ **/
++static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
++						u32 offset, u8 byte)
++{
++	s32 ret_val;
++	u16 program_retries;
++
++	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
++	if (ret_val == E1000_SUCCESS)
++		goto out;
++
++	for (program_retries = 0; program_retries < 100; program_retries++) {
++		hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
++		udelay(100);
++		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
++		if (ret_val == E1000_SUCCESS)
++			break;
++	}
++	if (program_retries == 100) {
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
++ *  @hw: pointer to the HW structure
++ *  @bank: 0 for first bank, 1 for second bank, etc.
++ *
++ *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
++ *  bank N is 4096 * N + flash_reg_addr.
++ **/
++static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	union ich8_hws_flash_status hsfsts;
++	union ich8_hws_flash_ctrl hsflctl;
++	u32 flash_linear_addr;
++	/* bank size is in 16bit words - adjust to bytes */
++	u32 flash_bank_size = nvm->flash_bank_size * 2;
++	s32  ret_val = E1000_SUCCESS;
++	s32  count = 0;
++	s32  j, iteration, sector_size;
++
++	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++
++	/* Determine HW Sector size: Read BERASE bits of hw flash status
++	 * register */
++	/* 00: The Hw sector is 256 bytes, hence we need to erase 16
++	 *     consecutive sectors.  The start index for the nth Hw sector
++	 *     can be calculated as = bank * 4096 + n * 256
++	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
++	 *     The start index for the nth Hw sector can be calculated
++	 *     as = bank * 4096
++	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
++	 *     (ich9 only, otherwise error condition)
++	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
++	 */
++	switch (hsfsts.hsf_status.berasesz) {
++	case 0:
++		/* Hw sector size 256 */
++		sector_size = ICH_FLASH_SEG_SIZE_256;
++		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
++		break;
++	case 1:
++		sector_size = ICH_FLASH_SEG_SIZE_4K;
++		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
++		break;
++	case 2:
++		if (hw->mac.type == e1000_ich9lan) {
++			sector_size = ICH_FLASH_SEG_SIZE_8K;
++			iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
++		} else {
++			ret_val = -E1000_ERR_NVM;
++			goto out;
++		}
++		break;
++	case 3:
++		sector_size = ICH_FLASH_SEG_SIZE_64K;
++		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
++		break;
++	default:
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	/* Start with the base address, then add the sector offset. */
++	flash_linear_addr = hw->nvm.flash_base_addr;
++	flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
++
++	for (j = 0; j < iteration ; j++) {
++		do {
++			/* Steps */
++			ret_val = e1000_flash_cycle_init_ich8lan(hw);
++			if (ret_val)
++				goto out;
++
++			/* Write a value 11 (block Erase) in Flash
++			 * Cycle field in hw flash control */
++			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
++			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
++			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
++
++			/* Write the last 24 bits of an index within the
++			 * block into Flash Linear address field in Flash
++			 * Address.
++			 */
++			flash_linear_addr += (j * sector_size);
++			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
++
++			ret_val = e1000_flash_cycle_ich8lan(hw,
++					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
++			if (ret_val == E1000_SUCCESS) {
++				break;
++			} else {
++				/* Check if FCERR is set to 1.  If 1,
++				 * clear it and try the whole sequence
++				 * a few more times else Done */
++				hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++				if (hsfsts.hsf_status.flcerr == 1) {
++					/* repeat for some time before
++					 * giving up */
++					continue;
++				} else if (hsfsts.hsf_status.flcdone == 0)
++					goto out;
++			}
++		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_valid_led_default_ich8lan - Set the default LED settings
++ *  @hw: pointer to the HW structure
++ *  @data: Pointer to the LED settings
++ *
++ *  Reads the LED default settings from the NVM to data.  If the NVM LED
++ *  settings is all 0's or F's, set the LED default to a valid LED default
++ *  setting.
++ **/
++static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
++{
++	s32 ret_val;
++
++	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
++	if (ret_val) {
++		hw_dbg(hw, "NVM Read Error\n");
++		goto out;
++	}
++
++	if (*data == ID_LED_RESERVED_0000 ||
++	    *data == ID_LED_RESERVED_FFFF)
++		*data = ID_LED_DEFAULT_ICH8LAN;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
++ *  @hw: pointer to the HW structure
++ *
++ *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
++ *  register, so the the bus width is hard coded.
++ **/
++static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_bus_info *bus = &hw->bus;
++	s32 ret_val;
++
++	ret_val = e1000_get_bus_info_pcie(hw);
++
++	/* ICH devices are "PCI Express"-ish.  They have
++	 * a configuration space, but do not contain
++	 * PCI Express Capability registers, so bus width
++	 * must be hardcoded.
++	 */
++	if (bus->width == e1000_bus_width_unknown)
++		bus->width = e1000_bus_width_pcie_x1;
++
++	return ret_val;
++}
++
++/**
++ *  e1000_reset_hw_ich8lan - Reset the hardware
++ *  @hw: pointer to the HW structure
++ *
++ *  Does a full reset of the hardware which includes a reset of the PHY and
++ *  MAC.
++ **/
++static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
++{
++	u32 ctrl, icr, kab;
++	s32 ret_val;
++
++	/* Prevent the PCI-E bus from sticking if there is no TLP connection
++	 * on the last TLP read/write transaction when MAC is reset.
++	 */
++	ret_val = e1000_disable_pcie_master(hw);
++	if (ret_val) {
++		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
++	}
++
++	hw_dbg(hw, "Masking off all interrupts\n");
++	ew32(IMC, 0xffffffff);
++
++	/* Disable the Transmit and Receive units.  Then delay to allow
++	 * any pending transactions to complete before we hit the MAC
++	 * with the global reset.
++	 */
++	ew32(RCTL, 0);
++	ew32(TCTL, E1000_TCTL_PSP);
++	e1e_flush();
++
++	msleep(10);
++
++	/* Workaround for ICH8 bit corruption issue in FIFO memory */
++	if (hw->mac.type == e1000_ich8lan) {
++		/* Set Tx and Rx buffer allocation to 8k apiece. */
++		ew32(PBA, E1000_PBA_8K);
++		/* Set Packet Buffer Size to 16k. */
++		ew32(PBS, E1000_PBS_16K);
++	}
++
++	ctrl = er32(CTRL);
++
++	if (!e1000_check_reset_block(hw)) {
++		/* PHY HW reset requires MAC CORE reset at the same
++		 * time to make sure the interface between MAC and the
++		 * external PHY is reset.
++		 */
++		ctrl |= E1000_CTRL_PHY_RST;
++	}
++	ret_val = e1000_acquire_swflag_ich8lan(hw);
++	hw_dbg(hw, "Issuing a global reset to ich8lan");
++	ew32(CTRL, (ctrl | E1000_CTRL_RST));
++	msleep(20);
++
++	ret_val = e1000_get_auto_rd_done(hw);
++	if (ret_val) {
++		/*
++		 * When auto config read does not complete, do not
++		 * return with an error. This can happen in situations
++		 * where there is no eeprom and prevents getting link.
++		 */
++		hw_dbg(hw, "Auto Read Done did not complete\n");
++	}
++
++	ew32(IMC, 0xffffffff);
++	icr = er32(ICR);
++
++	kab = er32(KABGTXD);
++	kab |= E1000_KABGTXD_BGSQLBIAS;
++	ew32(KABGTXD, kab);
++
++	return ret_val;
++}
++
++/**
++ *  e1000_init_hw_ich8lan - Initialize the hardware
++ *  @hw: pointer to the HW structure
++ *
++ *  Prepares the hardware for transmit and receive by doing the following:
++ *   - initialize hardware bits
++ *   - initialize LED identification
++ *   - setup receive address registers
++ *   - setup flow control
++ *   - setup transmit discriptors
++ *   - clear statistics
++ **/
++static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	u32 ctrl_ext, txdctl, snoop;
++	s32 ret_val;
++	u16 i;
++
++	e1000_initialize_hw_bits_ich8lan(hw);
++
++	/* Initialize identification LED */
++	ret_val = e1000_id_led_init(hw);
++	if (ret_val) {
++		hw_dbg(hw, "Error initializing identification LED\n");
++		goto out;
++	}
++
++	/* Setup the receive address. */
++	e1000_init_rx_addrs(hw, mac->rar_entry_count);
++
++	/* Zero out the Multicast HASH table */
++	hw_dbg(hw, "Zeroing the MTA\n");
++	for (i = 0; i < mac->mta_reg_count; i++)
++		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
++
++	/* Setup link and flow control */
++	ret_val = e1000_setup_link_ich8lan(hw);
++
++	/* Set the transmit descriptor write-back policy for both queues */
++	txdctl = er32(TXDCTL);
++	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
++		 E1000_TXDCTL_FULL_TX_DESC_WB;
++	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
++		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
++	ew32(TXDCTL, txdctl);
++	txdctl = er32(TXDCTL1);
++	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
++		 E1000_TXDCTL_FULL_TX_DESC_WB;
++	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
++		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
++	ew32(TXDCTL1, txdctl);
++
++	/* ICH8 has opposite polarity of no_snoop bits.
++	 * By default, we should use snoop behavior. */
++	if (mac->type == e1000_ich8lan)
++		snoop = PCIE_ICH8_SNOOP_ALL;
++	else
++		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
++	e1000_set_pcie_no_snoop(hw, snoop);
++
++	ctrl_ext = er32(CTRL_EXT);
++	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
++	ew32(CTRL_EXT, ctrl_ext);
++
++	/* Clear all of the statistics registers (clear on read).  It is
++	 * important that we do this after we have tried to establish link
++	 * because the symbol error count will increment wildly if there
++	 * is no link.
++	 */
++	e1000_clear_hw_cntrs_ich8lan(hw);
++
++out:
++	return ret_val;
++}
++/**
++ *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
++ *  @hw: pointer to the HW structure
++ *
++ *  Sets/Clears required hardware bits necessary for correctly setting up the
++ *  hardware for transmit and receive.
++ **/
++static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
++{
++	u32 reg;
++
++	/* Extended Device Control */
++	reg = er32(CTRL_EXT);
++	reg |= (1 << 22);
++	ew32(CTRL_EXT, reg);
++
++	/* Transmit Descriptor Control 0 */
++	reg = er32(TXDCTL);
++	reg |= (1 << 22);
++	ew32(TXDCTL, reg);
++
++	/* Transmit Descriptor Control 1 */
++	reg = er32(TXDCTL1);
++	reg |= (1 << 22);
++	ew32(TXDCTL1, reg);
++
++	/* Transmit Arbitration Control 0 */
++	reg = er32(TARC0);
++	if (hw->mac.type == e1000_ich8lan)
++		reg |= (1 << 28) | (1 << 29);
++	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
++	ew32(TARC0, reg);
++
++	/* Transmit Arbitration Control 1 */
++	reg = er32(TARC1);
++	if (er32(TCTL) & E1000_TCTL_MULR)
++		reg &= ~(1 << 28);
++	else
++		reg |= (1 << 28);
++	reg |= (1 << 24) | (1 << 26) | (1 << 30);
++	ew32(TARC1, reg);
++
++	/* Device Status */
++	if (hw->mac.type == e1000_ich8lan) {
++		reg = er32(STATUS);
++		reg &= ~(1 << 31);
++		ew32(STATUS, reg);
++	}
++}
++
++/**
++ *  e1000_setup_link_ich8lan - Setup flow control and link settings
++ *  @hw: pointer to the HW structure
++ *
++ *  Determines which flow control settings to use, then configures flow
++ *  control.  Calls the appropriate media-specific link configuration
++ *  function.  Assuming the adapter has a valid link partner, a valid link
++ *  should be established.  Assumes the hardware has previously been reset
++ *  and the transmitter and receiver are not enabled.
++ **/
++static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	s32 ret_val = E1000_SUCCESS;
++
++	if (e1000_check_reset_block(hw))
++		goto out;
++
++	/* ICH parts do not have a word in the NVM to determine
++	 * the default flow control setting, so we explicitly
++	 * set it to full.
++	 */
++	if (mac->fc == e1000_fc_default)
++		mac->fc = e1000_fc_full;
++
++	mac->original_fc = mac->fc;
++
++	hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
++
++	/* Continue to configure the copper link. */
++	ret_val = e1000_setup_copper_link_ich8lan(hw);
++	if (ret_val)
++		goto out;
++
++	ew32(FCTTV, mac->fc_pause_time);
++
++	ret_val = e1000_set_fc_watermarks(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
++ *  @hw: pointer to the HW structure
++ *
++ *  Configures the kumeran interface to the PHY to wait the appropriate time
++ *  when polling the PHY, then call the generic setup_copper_link to finish
++ *  configuring the copper link.
++ **/
++static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
++{
++	u32 ctrl;
++	s32 ret_val;
++	u16 reg_data;
++
++	ctrl = er32(CTRL);
++	ctrl |= E1000_CTRL_SLU;
++	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++	ew32(CTRL, ctrl);
++
++	/* Set the mac to wait the maximum time between each iteration
++	 * and increase the max iterations when polling the phy;
++	 * this fixes erroneous timeouts at 10Mbps. */
++	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
++	if (ret_val)
++		goto out;
++	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
++	if (ret_val)
++		goto out;
++	reg_data |= 0x3F;
++	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
++	if (ret_val)
++		goto out;
++
++	if (hw->phy.type == e1000_phy_igp_3) {
++		ret_val = e1000_copper_link_setup_igp(hw);
++		if (ret_val)
++			goto out;
++	}
++
++	ret_val = e1000_setup_copper_link(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
++ *  @hw: pointer to the HW structure
++ *  @speed: pointer to store current link speed
++ *  @duplex: pointer to store the current link duplex
++ *
++ *  Calls the generic get_speed_and_duplex to retreive the current link
++ *  information and then calls the Kumeran lock loss workaround for links at
++ *  gigabit speeds.
++ **/
++static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
++					  u16 *duplex)
++{
++	s32 ret_val;
++
++	ret_val = e1000_get_speed_and_duplex_copper(hw, speed, duplex);
++	if (ret_val)
++		goto out;
++
++	if ((hw->mac.type == e1000_ich8lan) &&
++	    (hw->phy.type == e1000_phy_igp_3) &&
++	    (*speed == SPEED_1000)) {
++		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
++ *  @hw: pointer to the HW structure
++ *
++ *  Work-around for 82566 Kumeran PCS lock loss:
++ *  On link status change (i.e. PCI reset, speed change) and link is up and
++ *  speed is gigabit-
++ *    0) if workaround is optionally disabled do nothing
++ *    1) wait 1ms for Kumeran link to come up
++ *    2) check Kumeran Diagnostic register PCS lock loss bit
++ *    3) if not set the link is locked (all is good), otherwise...
++ *    4) reset the PHY
++ *    5) repeat up to 10 times
++ *  Note: this is only called for IGP3 copper when speed is 1gb.
++ **/
++static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
++{
++	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++	u32 phy_ctrl;
++	s32 ret_val = E1000_SUCCESS;
++	u16 i, data;
++	bool link;
++
++	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
++		goto out;
++
++	/* Make sure link is up before proceeding.  If not just return.
++	 * Attempting this while link is negotiating fouled up link
++	 * stability */
++	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	if (!link) {
++		ret_val = E1000_SUCCESS;
++		goto out;
++	}
++
++	for (i = 0; i < 10; i++) {
++		/* read once to clear */
++		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
++		if (ret_val)
++			goto out;
++		/* and again to get new status */
++		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
++		if (ret_val)
++			goto out;
++
++		/* check for PCS lock */
++		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) {
++			ret_val = E1000_SUCCESS;
++			goto out;
++		}
++
++		/* Issue PHY reset */
++		e1000_phy_hw_reset(hw);
++		mdelay(5);
++	}
++	/* Disable GigE link negotiation */
++	phy_ctrl = er32(PHY_CTRL);
++	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
++		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
++	ew32(PHY_CTRL, phy_ctrl);
++
++	/* Call gig speed drop workaround on Giga disable before accessing
++	 * any PHY registers */
++	e1000_gig_downshift_workaround_ich8lan(hw);
++
++	/* unable to acquire PCS lock */
++	ret_val = -E1000_ERR_PHY;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
++ *  @hw: pointer to the HW structure
++ *  @state: boolean value used to set the current Kumaran workaround state
++ *
++ *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
++ *  /disabled - FALSE).
++ **/
++void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
++						 bool state)
++{
++	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
++
++	if (hw->mac.type != e1000_ich8lan) {
++		hw_dbg(hw, "Workaround applies to ICH8 only.\n");
++		goto out;
++	}
++
++	dev_spec->kmrn_lock_loss_workaround_enabled = state;
++
++out:
++	return;
++}
++
++/**
++ *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
++ *  @hw: pointer to the HW structure
++ *
++ *  Workaround for 82566 power-down on D3 entry:
++ *    1) disable gigabit link
++ *    2) write VR power-down enable
++ *    3) read it back
++ *  Continue if successful, else issue LCD reset and repeat
++ **/
++void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
++{
++	u32 reg;
++	u16 data;
++	u8  retry = 0;
++
++	if (hw->phy.type != e1000_phy_igp_3)
++		goto out;
++
++	/* Try the workaround twice (if needed) */
++	do {
++		/* Disable link */
++		reg = er32(PHY_CTRL);
++		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
++			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
++		ew32(PHY_CTRL, reg);
++
++		/* Call gig speed drop workaround on Giga disable before
++		 * accessing any PHY registers */
++		if (hw->mac.type == e1000_ich8lan)
++			e1000_gig_downshift_workaround_ich8lan(hw);
++
++		/* Write VR power-down enable */
++		e1e_rphy(hw, IGP3_VR_CTRL, &data);
++		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
++		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
++
++		/* Read it back and test */
++		e1e_rphy(hw, IGP3_VR_CTRL, &data);
++		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
++		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
++			break;
++
++		/* Issue PHY reset and repeat at most one more time */
++		reg = er32(CTRL);
++		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
++		retry++;
++	} while (retry);
++
++out:
++	return;
++}
++
++/**
++ *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
++ *  @hw: pointer to the HW structure
++ *
++ *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
++ *  LPLU, Giga disable, MDIC PHY reset):
++ *    1) Set Kumeran Near-end loopback
++ *    2) Clear Kumeran Near-end loopback
++ *  Should only be called for ICH8[m] devices with IGP_3 Phy.
++ **/
++void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
++{
++	s32 ret_val = E1000_SUCCESS;
++	u16 reg_data;
++
++	if ((hw->mac.type != e1000_ich8lan) ||
++	    (hw->phy.type != e1000_phy_igp_3))
++		goto out;
++
++	ret_val = e1000_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
++				      &reg_data);
++	if (ret_val)
++		goto out;
++	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
++	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
++				       reg_data);
++	if (ret_val)
++		goto out;
++	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
++	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
++				       reg_data);
++out:
++	return;
++}
++
++/**
++ *  e1000_cleanup_led_ich8lan - Restore the default LED operation
++ *  @hw: pointer to the HW structure
++ *
++ *  Return the LED back to the default configuration.
++ **/
++static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
++{
++	s32 ret_val = E1000_SUCCESS;
++
++	if (hw->phy.type == e1000_phy_ife)
++		ret_val = e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
++	else
++		ew32(LEDCTL, hw->mac.ledctl_default);
++
++	return ret_val;
++}
++
++/**
++ *  e1000_led_on_ich8lan - Turn LED's on
++ *  @hw: pointer to the HW structure
++ *
++ *  Turn on the LED's.
++ **/
++static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
++{
++	s32 ret_val = E1000_SUCCESS;
++
++	if (hw->phy.type == e1000_phy_ife)
++		ret_val = e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
++				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
++	else
++		ew32(LEDCTL, hw->mac.ledctl_mode2);
++
++	return ret_val;
++}
++
++/**
++ *  e1000_led_off_ich8lan - Turn LED's off
++ *  @hw: pointer to the HW structure
++ *
++ *  Turn off the LED's.
++ **/
++static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
++{
++	s32 ret_val = E1000_SUCCESS;
++
++	if (hw->phy.type == e1000_phy_ife)
++		ret_val = e1e_wphy(hw,
++			       IFE_PHY_SPECIAL_CONTROL_LED,
++			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
++	else
++		ew32(LEDCTL, hw->mac.ledctl_mode1);
++
++	return ret_val;
++}
++
++/**
++ *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
++ *  @hw: pointer to the HW structure
++ *
++ *  Clears hardware counters specific to the silicon family and calls
++ *  clear_hw_cntrs_generic to clear all general purpose counters.
++ **/
++static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
++{
++	u32 temp;
++
++	e1000_clear_hw_cntrs_base(hw);
++
++	temp = er32(ALGNERRC);
++	temp = er32(RXERRC);
++	temp = er32(TNCRS);
++	temp = er32(CEXTERR);
++	temp = er32(TSCTC);
++	temp = er32(TSCTFC);
++
++	temp = er32(MGTPRC);
++	temp = er32(MGTPDC);
++	temp = er32(MGTPTC);
++
++	temp = er32(IAC);
++	temp = er32(ICRXOC);
++
++}
++
++static struct e1000_mac_operations ich8_mac_ops = {
++	.mng_mode_enab		= E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
++	.check_for_link		= e1000_check_for_copper_link,
++	.cleanup_led		= e1000_cleanup_led_ich8lan,
++	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
++	.get_bus_info		= e1000_get_bus_info_ich8lan,
++	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
++	.led_on			= e1000_led_on_ich8lan,
++	.led_off		= e1000_led_off_ich8lan,
++	.mc_addr_list_update	= e1000_mc_addr_list_update_generic,
++	.reset_hw		= e1000_reset_hw_ich8lan,
++	.init_hw		= e1000_init_hw_ich8lan,
++	.setup_link		= e1000_setup_link_ich8lan,
++	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
++};
++
++static struct e1000_phy_operations ich8_phy_ops = {
++	.acquire_phy		= e1000_acquire_swflag_ich8lan,
++	.check_reset_block	= e1000_check_reset_block_ich8lan,
++	.commit_phy		= NULL,
++	.force_speed_duplex	= e1000_phy_force_speed_duplex_ich8lan,
++	.get_cfg_done		= e1000_get_cfg_done,
++	.get_cable_length	= e1000_get_cable_length_igp_2,
++	.get_phy_info		= e1000_get_phy_info_ich8lan,
++	.read_phy_reg		= e1000_read_phy_reg_igp,
++	.release_phy		= e1000_release_swflag_ich8lan,
++	.reset_phy		= e1000_phy_hw_reset_ich8lan,
++	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
++	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
++	.write_phy_reg		= e1000_write_phy_reg_igp,
++};
++
++static struct e1000_nvm_operations ich8_nvm_ops = {
++	.acquire_nvm		= e1000_acquire_swflag_ich8lan,
++	.read_nvm	 	= e1000_read_nvm_ich8lan,
++	.release_nvm		= e1000_release_swflag_ich8lan,
++	.update_nvm		= e1000_update_nvm_checksum_ich8lan,
++	.valid_led_default	= e1000_valid_led_default_ich8lan,
++	.validate_nvm		= e1000_validate_nvm_checksum_ich8lan,
++	.write_nvm		= e1000_write_nvm_ich8lan,
++};
++
++struct e1000_info e1000_ich8_info = {
++	.mac			= e1000_ich8lan,
++	.flags			= FLAG_HAS_WOL
++				  | FLAG_RX_CSUM_ENABLED
++				  | FLAG_HAS_CTRLEXT_ON_LOAD
++				  | FLAG_HAS_AMT
++				  | FLAG_HAS_FLASH
++				  | FLAG_APME_IN_WUC,
++	.pba			= 8,
++	.get_invariants		= e1000_get_invariants_ich8lan,
++	.mac_ops		= &ich8_mac_ops,
++	.phy_ops		= &ich8_phy_ops,
++	.nvm_ops		= &ich8_nvm_ops,
++};
++
++struct e1000_info e1000_ich9_info = {
++	.mac			= e1000_ich9lan,
++	.flags			= FLAG_HAS_JUMBO_FRAMES
++				  | FLAG_HAS_WOL
++				  | FLAG_RX_CSUM_ENABLED
++				  | FLAG_HAS_CTRLEXT_ON_LOAD
++				  | FLAG_HAS_AMT
++				  | FLAG_HAS_ERT
++				  | FLAG_HAS_FLASH
++				  | FLAG_APME_IN_WUC,
++	.pba			= 10,
++	.get_invariants		= e1000_get_invariants_ich8lan,
++	.mac_ops		= &ich8_mac_ops,
++	.phy_ops		= &ich8_phy_ops,
++	.nvm_ops		= &ich8_nvm_ops,
++};
++
+diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
+new file mode 100644
+index 0000000..21c16e0
+--- /dev/null
++++ b/drivers/net/e1000e/lib.c
+@@ -0,0 +1,2528 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#include <linux/netdevice.h>
++#include <linux/pci.h>
++
++#include "e1000.h"
++
++enum e1000_mng_mode {
++	e1000_mng_mode_none = 0,
++	e1000_mng_mode_asf,
++	e1000_mng_mode_pt,
++	e1000_mng_mode_ipmi,
++	e1000_mng_mode_host_if_only
++};
++
++#define E1000_FACTPS_MNGCG		0x20000000
++
++#define E1000_IAMT_SIGNATURE		0x544D4149 /* Intel(R) Active Management
++						    * Technology signature */
++
++/**
++ *  e1000_get_bus_info_pcie - Get PCIe bus information
++ *  @hw: pointer to the HW structure
++ *
++ *  Determines and stores the system bus information for a particular
++ *  network interface.  The following bus information is determined and stored:
++ *  bus speed, bus width, type (PCIe), and PCIe function.
++ **/
++s32 e1000_get_bus_info_pcie(struct e1000_hw *hw)
++{
++	struct e1000_bus_info *bus = &hw->bus;
++	struct e1000_adapter *adapter = hw->adapter;
++	u32 status;
++	u16 pcie_link_status, pci_header_type, cap_offset;
++
++	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
++	if (!cap_offset) {
++		bus->width = e1000_bus_width_unknown;
++	} else {
++		pci_read_config_word(adapter->pdev,
++				     cap_offset + PCIE_LINK_STATUS,
++				     &pcie_link_status);
++		bus->width = (enum e1000_bus_width)((pcie_link_status &
++						     PCIE_LINK_WIDTH_MASK) >>
++						    PCIE_LINK_WIDTH_SHIFT);
++	}
++
++	pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
++			     &pci_header_type);
++	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
++		status = er32(STATUS);
++		bus->func = (status & E1000_STATUS_FUNC_MASK)
++			    >> E1000_STATUS_FUNC_SHIFT;
++	} else {
++		bus->func = 0;
++	}
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_write_vfta - Write value to VLAN filter table
++ *  @hw: pointer to the HW structure
++ *  @offset: register offset in VLAN filter table
++ *  @value: register value written to VLAN filter table
++ *
++ *  Writes value at the given offset in the register array which stores
++ *  the VLAN filter table.
++ **/
++void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
++{
++	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
++	e1e_flush();
++}
++
++/**
++ *  e1000_init_rx_addrs - Initialize receive address's
++ *  @hw: pointer to the HW structure
++ *  @rar_count: receive address registers
++ *
++ *  Setups the receive address registers by setting the base receive address
++ *  register to the devices MAC address and clearing all the other receive
++ *  address registers to 0.
++ **/
++void e1000_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
++{
++	u32 i;
++
++	/* Setup the receive address */
++	hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
++
++	e1000_rar_set(hw, hw->mac.addr, 0);
++
++	/* Zero out the other (rar_entry_count - 1) receive addresses */
++	hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
++	for (i = 1; i < rar_count; i++) {
++		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
++		e1e_flush();
++		E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
++		e1e_flush();
++	}
++}
++
++/**
++ *  e1000_rar_set - Set receive address register
++ *  @hw: pointer to the HW structure
++ *  @addr: pointer to the receive address
++ *  @index: receive address array register
++ *
++ *  Sets the receive address array register at index to the address passed
++ *  in by addr.
++ **/
++void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
++{
++	u32 rar_low, rar_high;
++
++	/* HW expects these in little endian so we reverse the byte order
++	 * from network order (big endian) to little endian
++	 */
++	rar_low = ((u32) addr[0] |
++		   ((u32) addr[1] << 8) |
++		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
++
++	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
++
++	rar_high |= E1000_RAH_AV;
++
++	E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
++	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
++}
++
++/**
++ *  e1000_mta_set - Set multicast filter table address
++ *  @hw: pointer to the HW structure
++ *  @hash_value: determines the MTA register and bit to set
++ *
++ *  The multicast table address is a register array of 32-bit registers.
++ *  The hash_value is used to determine what register the bit is in, the
++ *  current value is read, the new bit is OR'd in and the new value is
++ *  written back into the register.
++ **/
++static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
++{
++	u32 hash_bit, hash_reg, mta;
++
++	/* The MTA is a register array of 32-bit registers. It is
++	 * treated like an array of (32*mta_reg_count) bits.  We want to
++	 * set bit BitArray[hash_value]. So we figure out what register
++	 * the bit is in, read it, OR in the new bit, then write
++	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
++	 * mask to bits 31:5 of the hash value which gives us the
++	 * register we're modifying.  The hash bit within that register
++	 * is determined by the lower 5 bits of the hash value.
++	 */
++	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
++	hash_bit = hash_value & 0x1F;
++
++	mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
++
++	mta |= (1 << hash_bit);
++
++	E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
++	e1e_flush();
++}
++
++/**
++ *  e1000_hash_mc_addr - Generate a multicast hash value
++ *  @hw: pointer to the HW structure
++ *  @mc_addr: pointer to a multicast address
++ *
++ *  Generates a multicast address hash value which is used to determine
++ *  the multicast filter table array address and new table value.  See
++ *  e1000_mta_set_generic()
++ **/
++static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
++{
++	u32 hash_value, hash_mask;
++	u8 bit_shift = 0;
++
++	/* Register count multiplied by bits per register */
++	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
++
++	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
++	 * where 0xFF would still fall within the hash mask. */
++	while (hash_mask >> bit_shift != 0xFF)
++		bit_shift++;
++
++	/* The portion of the address that is used for the hash table
++	 * is determined by the mc_filter_type setting.
++	 * The algorithm is such that there is a total of 8 bits of shifting.
++	 * The bit_shift for a mc_filter_type of 0 represents the number of
++	 * left-shifts where the MSB of mc_addr[5] would still fall within
++	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
++	 * of 8 bits of shifting, then mc_addr[4] will shift right the
++	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
++	 * cases are a variation of this algorithm...essentially raising the
++	 * number of bits to shift mc_addr[5] left, while still keeping the
++	 * 8-bit shifting total.
++	 */
++	/* For example, given the following Destination MAC Address and an
++	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
++	 * we can see that the bit_shift for case 0 is 4.  These are the hash
++	 * values resulting from each mc_filter_type...
++	 * [0] [1] [2] [3] [4] [5]
++	 * 01  AA  00  12  34  56
++	 * LSB		 MSB
++	 *
++	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
++	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
++	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
++	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
++	 */
++	switch (hw->mac.mc_filter_type) {
++	default:
++	case 0:
++		break;
++	case 1:
++		bit_shift += 1;
++		break;
++	case 2:
++		bit_shift += 2;
++		break;
++	case 3:
++		bit_shift += 4;
++		break;
++	}
++
++	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
++				  (((u16) mc_addr[5]) << bit_shift)));
++
++	return hash_value;
++}
++
++/**
++ *  e1000_mc_addr_list_update_generic - Update Multicast addresses
++ *  @hw: pointer to the HW structure
++ *  @mc_addr_list: array of multicast addresses to program
++ *  @mc_addr_count: number of multicast addresses to program
++ *  @rar_used_count: the first RAR register free to program
++ *  @rar_count: total number of supported Receive Address Registers
++ *
++ *  Updates the Receive Address Registers and Multicast Table Array.
++ *  The caller must have a packed mc_addr_list of multicast addresses.
++ *  The parameter rar_count will usually be hw->mac.rar_entry_count
++ *  unless there are workarounds that change this.
++ **/
++void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
++				       u8 *mc_addr_list, u32 mc_addr_count,
++				       u32 rar_used_count, u32 rar_count)
++{
++	u32 hash_value;
++	u32 i;
++
++	/* Load the first set of multicast addresses into the exact
++	 * filters (RAR).  If there are not enough to fill the RAR
++	 * array, clear the filters.
++	 */
++	for (i = rar_used_count; i < rar_count; i++) {
++		if (mc_addr_count) {
++			e1000_rar_set(hw, mc_addr_list, i);
++			mc_addr_count--;
++			mc_addr_list += ETH_ALEN;
++		} else {
++			E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
++			e1e_flush();
++			E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
++			e1e_flush();
++		}
++	}
++
++	/* Clear the old settings from the MTA */
++	hw_dbg(hw, "Clearing MTA\n");
++	for (i = 0; i < hw->mac.mta_reg_count; i++) {
++		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
++		e1e_flush();
++	}
++
++	/* Load any remaining multicast addresses into the hash table. */
++	for (; mc_addr_count > 0; mc_addr_count--) {
++		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
++		hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
++		e1000_mta_set(hw, hash_value);
++		mc_addr_list += ETH_ALEN;
++	}
++}
++
++/**
++ *  e1000_clear_hw_cntrs_base - Clear base hardware counters
++ *  @hw: pointer to the HW structure
++ *
++ *  Clears the base hardware counters by reading the counter registers.
++ **/
++void e1000_clear_hw_cntrs_base(struct e1000_hw *hw)
++{
++	u32 temp;
++
++	temp = er32(CRCERRS);
++	temp = er32(SYMERRS);
++	temp = er32(MPC);
++	temp = er32(SCC);
++	temp = er32(ECOL);
++	temp = er32(MCC);
++	temp = er32(LATECOL);
++	temp = er32(COLC);
++	temp = er32(DC);
++	temp = er32(SEC);
++	temp = er32(RLEC);
++	temp = er32(XONRXC);
++	temp = er32(XONTXC);
++	temp = er32(XOFFRXC);
++	temp = er32(XOFFTXC);
++	temp = er32(FCRUC);
++	temp = er32(GPRC);
++	temp = er32(BPRC);
++	temp = er32(MPRC);
++	temp = er32(GPTC);
++	temp = er32(GORCL);
++	temp = er32(GORCH);
++	temp = er32(GOTCL);
++	temp = er32(GOTCH);
++	temp = er32(RNBC);
++	temp = er32(RUC);
++	temp = er32(RFC);
++	temp = er32(ROC);
++	temp = er32(RJC);
++	temp = er32(TORL);
++	temp = er32(TORH);
++	temp = er32(TOTL);
++	temp = er32(TOTH);
++	temp = er32(TPR);
++	temp = er32(TPT);
++	temp = er32(MPTC);
++	temp = er32(BPTC);
++}
++
++/**
++ *  e1000_check_for_copper_link - Check for link (Copper)
++ *  @hw: pointer to the HW structure
++ *
++ *  Checks to see of the link status of the hardware has changed.  If a
++ *  change in link status has been detected, then we read the PHY registers
++ *  to get the current speed/duplex if link exists.
++ **/
++s32 e1000_check_for_copper_link(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	s32 ret_val;
++	bool link;
++
++	/* We only want to go out to the PHY registers to see if Auto-Neg
++	 * has completed and/or if our link status has changed.  The
++	 * get_link_status flag is set upon receiving a Link Status
++	 * Change or Rx Sequence Error interrupt.
++	 */
++	if (!mac->get_link_status) {
++		ret_val = E1000_SUCCESS;
++		goto out;
++	}
++
++	/* First we want to see if the MII Status Register reports
++	 * link.  If so, then we want to get the current speed/duplex
++	 * of the PHY.
++	 */
++	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	if (ret_val)
++		goto out;
++
++	if (!link)
++		goto out; /* No link detected */
++
++	mac->get_link_status = 0;
++
++	/* Check if there was DownShift, must be checked
++	 * immediately after link-up */
++	e1000_check_downshift(hw);
++
++	/* If we are forcing speed/duplex, then we simply return since
++	 * we have already determined whether we have link or not.
++	 */
++	if (!mac->autoneg) {
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++	}
++
++	/* Auto-Neg is enabled.  Auto Speed Detection takes care
++	 * of MAC speed/duplex configuration.  So we only need to
++	 * configure Collision Distance in the MAC.
++	 */
++	e1000_config_collision_dist(hw);
++
++	/* Configure Flow Control now that Auto-Neg has completed.
++	 * First, we need to restore the desired flow control
++	 * settings because we may have had to re-autoneg with a
++	 * different link partner.
++	 */
++	ret_val = e1000_config_fc_after_link_up(hw);
++	if (ret_val) {
++		hw_dbg(hw, "Error configuring flow control\n");
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_check_for_fiber_link - Check for link (Fiber)
++ *  @hw: pointer to the HW structure
++ *
++ *  Checks for link up on the hardware.  If link is not up and we have
++ *  a signal, then we need to force link up.
++ **/
++s32 e1000_check_for_fiber_link(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	u32 rxcw;
++	u32 ctrl;
++	u32 status;
++	s32 ret_val = E1000_SUCCESS;
++
++	ctrl = er32(CTRL);
++	status = er32(STATUS);
++	rxcw = er32(RXCW);
++
++	/* If we don't have link (auto-negotiation failed or link partner
++	 * cannot auto-negotiate), the cable is plugged in (we have signal),
++	 * and our link partner is not trying to auto-negotiate with us (we
++	 * are receiving idles or data), we need to force link up. We also
++	 * need to give auto-negotiation time to complete, in case the cable
++	 * was just plugged in. The autoneg_failed flag does this.
++	 */
++	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
++	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
++	    (!(rxcw & E1000_RXCW_C))) {
++		if (mac->autoneg_failed == 0) {
++			mac->autoneg_failed = 1;
++			goto out;
++		}
++		hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
++
++		/* Disable auto-negotiation in the TXCW register */
++		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
++
++		/* Force link-up and also force full-duplex. */
++		ctrl = er32(CTRL);
++		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
++		ew32(CTRL, ctrl);
++
++		/* Configure Flow Control after forcing link up. */
++		ret_val = e1000_config_fc_after_link_up(hw);
++		if (ret_val) {
++			hw_dbg(hw, "Error configuring flow control\n");
++			goto out;
++		}
++	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
++		/* If we are forcing link and we are receiving /C/ ordered
++		 * sets, re-enable auto-negotiation in the TXCW register
++		 * and disable forced link in the Device Control register
++		 * in an attempt to auto-negotiate with our link partner.
++		 */
++		hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
++		ew32(TXCW, mac->txcw);
++		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
++
++		mac->serdes_has_link = 1;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_check_for_serdes_link - Check for link (Serdes)
++ *  @hw: pointer to the HW structure
++ *
++ *  Checks for link up on the hardware.  If link is not up and we have
++ *  a signal, then we need to force link up.
++ **/
++s32 e1000_check_for_serdes_link(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	u32 rxcw;
++	u32 ctrl;
++	u32 status;
++	s32 ret_val = E1000_SUCCESS;
++
++	ctrl = er32(CTRL);
++	status = er32(STATUS);
++	rxcw = er32(RXCW);
++
++	/* If we don't have link (auto-negotiation failed or link partner
++	 * cannot auto-negotiate), and our link partner is not trying to
++	 * auto-negotiate with us (we are receiving idles or data),
++	 * we need to force link up. We also need to give auto-negotiation
++	 * time to complete.
++	 */
++	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
++	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
++		if (mac->autoneg_failed == 0) {
++			mac->autoneg_failed = 1;
++			goto out;
++		}
++		hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
++
++		/* Disable auto-negotiation in the TXCW register */
++		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
++
++		/* Force link-up and also force full-duplex. */
++		ctrl = er32(CTRL);
++		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
++		ew32(CTRL, ctrl);
++
++		/* Configure Flow Control after forcing link up. */
++		ret_val = e1000_config_fc_after_link_up(hw);
++		if (ret_val) {
++			hw_dbg(hw, "Error configuring flow control\n");
++			goto out;
++		}
++	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
++		/* If we are forcing link and we are receiving /C/ ordered
++		 * sets, re-enable auto-negotiation in the TXCW register
++		 * and disable forced link in the Device Control register
++		 * in an attempt to auto-negotiate with our link partner.
++		 */
++		hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
++		ew32(TXCW, mac->txcw);
++		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
++
++		mac->serdes_has_link = 1;
++	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
++		/* If we force link for non-auto-negotiation switch, check
++		 * link status based on MAC synchronization for internal
++		 * serdes media type.
++		 */
++		/* SYNCH bit and IV bit are sticky. */
++		udelay(10);
++		if (E1000_RXCW_SYNCH & er32(RXCW)) {
++			if (!(rxcw & E1000_RXCW_IV)) {
++				mac->serdes_has_link = 1;
++				hw_dbg(hw, "SERDES: Link is up.\n");
++			}
++		} else {
++			mac->serdes_has_link = 0;
++			hw_dbg(hw, "SERDES: Link is down.\n");
++		}
++	}
++
++	if (E1000_TXCW_ANE & er32(TXCW)) {
++		status = er32(STATUS);
++		mac->serdes_has_link = (status & E1000_STATUS_LU);
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_set_default_fc_generic - Set flow control default values
++ *  @hw: pointer to the HW structure
++ *
++ *  Read the EEPROM for the default values for flow control and store the
++ *  values.
++ **/
++static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	s32 ret_val = E1000_SUCCESS;
++	u16 nvm_data;
++
++	if (mac->fc != e1000_fc_default)
++		goto out;
++
++	/* Read and store word 0x0F of the EEPROM. This word contains bits
++	 * that determine the hardware's default PAUSE (flow control) mode,
++	 * a bit that determines whether the HW defaults to enabling or
++	 * disabling auto-negotiation, and the direction of the
++	 * SW defined pins. If there is no SW over-ride of the flow
++	 * control setting, then the variable hw->fc will
++	 * be initialized based on a value in the EEPROM.
++	 */
++	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
++
++	if (ret_val) {
++		hw_dbg(hw, "NVM Read Error\n");
++		goto out;
++	}
++
++	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
++		mac->fc = e1000_fc_none;
++	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
++		 NVM_WORD0F_ASM_DIR)
++		mac->fc = e1000_fc_tx_pause;
++	else
++		mac->fc = e1000_fc_full;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_setup_link - Setup flow control and link settings
++ *  @hw: pointer to the HW structure
++ *
++ *  Determines which flow control settings to use, then configures flow
++ *  control.  Calls the appropriate media-specific link configuration
++ *  function.  Assuming the adapter has a valid link partner, a valid link
++ *  should be established.  Assumes the hardware has previously been reset
++ *  and the transmitter and receiver are not enabled.
++ **/
++s32 e1000_setup_link(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	s32 ret_val = E1000_SUCCESS;
++
++	/* In the case of the phy reset being blocked, we already have a link.
++	 * We do not need to set it up again.
++	 */
++	if (e1000_check_reset_block(hw))
++		goto out;
++
++	ret_val = e1000_set_default_fc_generic(hw);
++	if (ret_val)
++		goto out;
++
++	/* We want to save off the original Flow Control configuration just
++	 * in case we get disconnected and then reconnected into a different
++	 * hub or switch with different Flow Control capabilities.
++	 */
++	mac->original_fc = mac->fc;
++
++	hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
++
++	/* Call the necessary media_type subroutine to configure the link. */
++	ret_val = mac->ops.setup_physical_interface(hw);
++	if (ret_val)
++		goto out;
++
++	/* Initialize the flow control address, type, and PAUSE timer
++	 * registers to their default values.  This is done even if flow
++	 * control is disabled, because it does not hurt anything to
++	 * initialize these registers.
++	 */
++	hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n");
++	ew32(FCT, FLOW_CONTROL_TYPE);
++	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
++	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
++
++	ew32(FCTTV, mac->fc_pause_time);
++
++	ret_val = e1000_set_fc_watermarks(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_commit_fc_settings_generic - Configure flow control
++ *  @hw: pointer to the HW structure
++ *
++ *  Write the flow control settings to the Transmit Config Word Register (TXCW)
++ *  base on the flow control settings in e1000_mac_info.
++ **/
++static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	u32 txcw;
++	s32 ret_val = E1000_SUCCESS;
++
++	/* Check for a software override of the flow control settings, and
++	 * setup the device accordingly.  If auto-negotiation is enabled, then
++	 * software will have to set the "PAUSE" bits to the correct value in
++	 * the Transmit Config Word Register (TXCW) and re-start auto-
++	 * negotiation.  However, if auto-negotiation is disabled, then
++	 * software will have to manually configure the two flow control enable
++	 * bits in the CTRL register.
++	 *
++	 * The possible values of the "fc" parameter are:
++	 *      0:  Flow control is completely disabled
++	 *      1:  Rx flow control is enabled (we can receive pause frames,
++	 *	  but not send pause frames).
++	 *      2:  Tx flow control is enabled (we can send pause frames but we
++	 *	  do not support receiving pause frames).
++	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
++	 */
++	switch (mac->fc) {
++	case e1000_fc_none:
++		/* Flow control completely disabled by a software over-ride. */
++		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
++		break;
++	case e1000_fc_rx_pause:
++		/* RX Flow control is enabled and TX Flow control is disabled
++		 * by a software over-ride. Since there really isn't a way to
++		 * advertise that we are capable of RX Pause ONLY, we will
++		 * advertise that we support both symmetric and asymmetric RX
++		 * PAUSE.  Later, we will disable the adapter's ability to send
++		 * PAUSE frames.
++		 */
++		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
++		break;
++	case e1000_fc_tx_pause:
++		/* TX Flow control is enabled, and RX Flow control is disabled,
++		 * by a software over-ride.
++		 */
++		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
++		break;
++	case e1000_fc_full:
++		/* Flow control (both RX and TX) is enabled by a software
++		 * over-ride.
++		 */
++		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
++		break;
++	default:
++		hw_dbg(hw, "Flow control param set incorrectly\n");
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++		break;
++	}
++
++	ew32(TXCW, txcw);
++	mac->txcw = txcw;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_poll_fiber_serdes_link_generic - Poll for link up
++ *  @hw: pointer to the HW structure
++ *
++ *  Polls for link up by reading the status register, if link fails to come
++ *  up with auto-negotiation, then the link is forced if a signal is detected.
++ **/
++static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	u32 i, status;
++	s32 ret_val = E1000_SUCCESS;
++
++	/* If we have a signal (the cable is plugged in, or assumed true for
++	 * serdes media) then poll for a "Link-Up" indication in the Device
++	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
++	 * seconds (Auto-negotiation should complete in less than 500
++	 * milliseconds even if the other end is doing it in SW).
++	 */
++	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
++		msleep(10);
++		status = er32(STATUS);
++		if (status & E1000_STATUS_LU)
++			break;
++	}
++	if (i == FIBER_LINK_UP_LIMIT) {
++		hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
++		mac->autoneg_failed = 1;
++		/* AutoNeg failed to achieve a link, so we'll call
++		 * mac->check_for_link. This routine will force the
++		 * link up if we detect a signal. This will allow us to
++		 * communicate with non-autonegotiating link partners.
++		 */
++		ret_val = mac->ops.check_for_link(hw);
++		if (ret_val) {
++			hw_dbg(hw, "Error while checking for link\n");
++			goto out;
++		}
++		mac->autoneg_failed = 0;
++	} else {
++		mac->autoneg_failed = 0;
++		hw_dbg(hw, "Valid Link Found\n");
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_setup_fiber_serdes_link - Setup link for fiber/serdes
++ *  @hw: pointer to the HW structure
++ *
++ *  Configures collision distance and flow control for fiber and serdes
++ *  links.  Upon successful setup, poll for link.
++ **/
++s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
++{
++	u32 ctrl;
++	s32 ret_val = E1000_SUCCESS;
++
++	ctrl = er32(CTRL);
++
++	/* Take the link out of reset */
++	ctrl &= ~E1000_CTRL_LRST;
++
++	e1000_config_collision_dist(hw);
++
++	ret_val = e1000_commit_fc_settings_generic(hw);
++	if (ret_val)
++		goto out;
++
++	/* Since auto-negotiation is enabled, take the link out of reset (the
++	 * link will be in reset, because we previously reset the chip). This
++	 * will restart auto-negotiation.  If auto-negotiation is successful
++	 * then the link-up status bit will be set and the flow control enable
++	 * bits (RFCE and TFCE) will be set according to their negotiated value.
++	 */
++	hw_dbg(hw, "Auto-negotiation enabled\n");
++
++	ew32(CTRL, ctrl);
++	e1e_flush();
++	msleep(1);
++
++	/* For these adapters, the SW defineable pin 1 is set when the optics
++	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
++	 * indication.
++	 */
++	if (hw->media_type == e1000_media_type_internal_serdes ||
++	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
++		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
++	} else {
++		hw_dbg(hw, "No signal detected\n");
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_config_collision_dist - Configure collision distance
++ *  @hw: pointer to the HW structure
++ *
++ *  Configures the collision distance to the default value and is used
++ *  during link setup. Currently no func pointer exists and all
++ *  implementations are handled in the generic version of this function.
++ **/
++void e1000_config_collision_dist(struct e1000_hw *hw)
++{
++	u32 tctl;
++
++	tctl = er32(TCTL);
++
++	tctl &= ~E1000_TCTL_COLD;
++	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
++
++	ew32(TCTL, tctl);
++	e1e_flush();
++}
++
++/**
++ *  e1000_set_fc_watermarks - Set flow control high/low watermarks
++ *  @hw: pointer to the HW structure
++ *
++ *  Sets the flow control high/low threshold (watermark) registers.  If
++ *  flow control XON frame transmission is enabled, then set XON frame
++ *  tansmission as well.
++ **/
++s32 e1000_set_fc_watermarks(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	s32 ret_val = E1000_SUCCESS;
++	u32 fcrtl = 0, fcrth = 0;
++
++	/* Set the flow control receive threshold registers.  Normally,
++	 * these registers will be set to a default threshold that may be
++	 * adjusted later by the driver's runtime code.  However, if the
++	 * ability to transmit pause frames is not enabled, then these
++	 * registers will be set to 0.
++	 */
++	if (mac->fc & e1000_fc_tx_pause) {
++		/* We need to set up the Receive Threshold high and low water
++		 * marks as well as (optionally) enabling the transmission of
++		 * XON frames.
++		 */
++		fcrtl = mac->fc_low_water;
++		fcrtl |= E1000_FCRTL_XONE;
++
++		fcrth = mac->fc_high_water;
++	}
++	ew32(FCRTL, fcrtl);
++	ew32(FCRTH, fcrth);
++
++	return ret_val;
++}
++
++/**
++ *  e1000_force_mac_fc - Force the MAC's flow control settings
++ *  @hw: pointer to the HW structure
++ *
++ *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
++ *  device control register to reflect the adapter settings.  TFCE and RFCE
++ *  need to be explicitly set by software when a copper PHY is used because
++ *  autonegotiation is managed by the PHY rather than the MAC.  Software must
++ *  also configure these bits when link is forced on a fiber connection.
++ **/
++s32 e1000_force_mac_fc(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	u32 ctrl;
++	s32 ret_val = E1000_SUCCESS;
++
++	ctrl = er32(CTRL);
++
++	/* Because we didn't get link via the internal auto-negotiation
++	 * mechanism (we either forced link or we got link via PHY
++	 * auto-neg), we have to manually enable/disable transmit an
++	 * receive flow control.
++	 *
++	 * The "Case" statement below enables/disable flow control
++	 * according to the "mac->fc" parameter.
++	 *
++	 * The possible values of the "fc" parameter are:
++	 *      0:  Flow control is completely disabled
++	 *      1:  Rx flow control is enabled (we can receive pause
++	 *	  frames but not send pause frames).
++	 *      2:  Tx flow control is enabled (we can send pause frames
++	 *	  frames but we do not receive pause frames).
++	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
++	 *  other:  No other values should be possible at this point.
++	 */
++	hw_dbg(hw, "mac->fc = %u\n", mac->fc);
++
++	switch (mac->fc) {
++	case e1000_fc_none:
++		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
++		break;
++	case e1000_fc_rx_pause:
++		ctrl &= (~E1000_CTRL_TFCE);
++		ctrl |= E1000_CTRL_RFCE;
++		break;
++	case e1000_fc_tx_pause:
++		ctrl &= (~E1000_CTRL_RFCE);
++		ctrl |= E1000_CTRL_TFCE;
++		break;
++	case e1000_fc_full:
++		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
++		break;
++	default:
++		hw_dbg(hw, "Flow control param set incorrectly\n");
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++	}
++
++	ew32(CTRL, ctrl);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_config_fc_after_link_up - Configures flow control after link
++ *  @hw: pointer to the HW structure
++ *
++ *  Checks the status of auto-negotiation after link up to ensure that the
++ *  speed and duplex were not forced.  If the link needed to be forced, then
++ *  flow control needs to be forced also.  If auto-negotiation is enabled
++ *  and did not fail, then we configure flow control based on our link
++ *  partner.
++ **/
++s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	s32 ret_val = E1000_SUCCESS;
++	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
++	u16 speed, duplex;
++
++	/* Check for the case where we have fiber media and auto-neg failed
++	 * so we had to force link.  In this case, we need to force the
++	 * configuration of the MAC to match the "fc" parameter.
++	 */
++	if (mac->autoneg_failed) {
++		if (hw->media_type == e1000_media_type_fiber ||
++		    hw->media_type == e1000_media_type_internal_serdes)
++			ret_val = e1000_force_mac_fc(hw);
++	} else {
++		if (hw->media_type == e1000_media_type_copper)
++			ret_val = e1000_force_mac_fc(hw);
++	}
++
++	if (ret_val) {
++		hw_dbg(hw, "Error forcing flow control settings\n");
++		goto out;
++	}
++
++	/* Check for the case where we have copper media and auto-neg is
++	 * enabled.  In this case, we need to check and see if Auto-Neg
++	 * has completed, and if so, how the PHY and link partner has
++	 * flow control configured.
++	 */
++	if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) {
++		/* Read the MII Status Register and check to see if AutoNeg
++		 * has completed.  We read this twice because this reg has
++		 * some "sticky" (latched) bits.
++		 */
++		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
++		if (ret_val)
++			goto out;
++		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
++		if (ret_val)
++			goto out;
++
++		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
++			hw_dbg(hw, "Copper PHY and Auto Neg "
++				 "has not completed.\n");
++			goto out;
++		}
++
++		/* The AutoNeg process has completed, so we now need to
++		 * read both the Auto Negotiation Advertisement
++		 * Register (Address 4) and the Auto_Negotiation Base
++		 * Page Ability Register (Address 5) to determine how
++		 * flow control was negotiated.
++		 */
++		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
++		if (ret_val)
++			goto out;
++		ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
++		if (ret_val)
++			goto out;
++
++		/* Two bits in the Auto Negotiation Advertisement Register
++		 * (Address 4) and two bits in the Auto Negotiation Base
++		 * Page Ability Register (Address 5) determine flow control
++		 * for both the PHY and the link partner.  The following
++		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
++		 * 1999, describes these PAUSE resolution bits and how flow
++		 * control is determined based upon these settings.
++		 * NOTE:  DC = Don't Care
++		 *
++		 *   LOCAL DEVICE  |   LINK PARTNER
++		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
++		 *-------|---------|-------|---------|--------------------
++		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
++		 *   0   |    1    |   0   |   DC    | e1000_fc_none
++		 *   0   |    1    |   1   |    0    | e1000_fc_none
++		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
++		 *   1   |    0    |   0   |   DC    | e1000_fc_none
++		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
++		 *   1   |    1    |   0   |    0    | e1000_fc_none
++		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
++		 *
++		 */
++		/* Are both PAUSE bits set to 1?  If so, this implies
++		 * Symmetric Flow Control is enabled at both ends.  The
++		 * ASM_DIR bits are irrelevant per the spec.
++		 *
++		 * For Symmetric Flow Control:
++		 *
++		 *   LOCAL DEVICE  |   LINK PARTNER
++		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
++		 *-------|---------|-------|---------|--------------------
++		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
++		 *
++		 */
++		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
++		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
++			/* Now we need to check if the user selected RX ONLY
++			 * of pause frames.  In this case, we had to advertise
++			 * FULL flow control because we could not advertise RX
++			 * ONLY. Hence, we must now check to see if we need to
++			 * turn OFF  the TRANSMISSION of PAUSE frames.
++			 */
++			if (mac->original_fc == e1000_fc_full) {
++				mac->fc = e1000_fc_full;
++				hw_dbg(hw, "Flow Control = FULL.\r\n");
++			} else {
++				mac->fc = e1000_fc_rx_pause;
++				hw_dbg(hw, "Flow Control = "
++					 "RX PAUSE frames only.\r\n");
++			}
++		}
++		/* For receiving PAUSE frames ONLY.
++		 *
++		 *   LOCAL DEVICE  |   LINK PARTNER
++		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
++		 *-------|---------|-------|---------|--------------------
++		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
++		 *
++		 */
++		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
++			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
++			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
++			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
++			mac->fc = e1000_fc_tx_pause;
++			hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
++		}
++		/* For transmitting PAUSE frames ONLY.
++		 *
++		 *   LOCAL DEVICE  |   LINK PARTNER
++		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
++		 *-------|---------|-------|---------|--------------------
++		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
++		 *
++		 */
++		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
++			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
++			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
++			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
++			mac->fc = e1000_fc_rx_pause;
++			hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
++		}
++		/* Per the IEEE spec, at this point flow control should be
++		 * disabled.  However, we want to consider that we could
++		 * be connected to a legacy switch that doesn't advertise
++		 * desired flow control, but can be forced on the link
++		 * partner.  So if we advertised no flow control, that is
++		 * what we will resolve to.  If we advertised some kind of
++		 * receive capability (Rx Pause Only or Full Flow Control)
++		 * and the link partner advertised none, we will configure
++		 * ourselves to enable Rx Flow Control only.  We can do
++		 * this safely for two reasons:  If the link partner really
++		 * didn't want flow control enabled, and we enable Rx, no
++		 * harm done since we won't be receiving any PAUSE frames
++		 * anyway.  If the intent on the link partner was to have
++		 * flow control enabled, then by us enabling RX only, we
++		 * can at least receive pause frames and process them.
++		 * This is a good idea because in most cases, since we are
++		 * predominantly a server NIC, more times than not we will
++		 * be asked to delay transmission of packets than asking
++		 * our link partner to pause transmission of frames.
++		 */
++		else if ((mac->original_fc == e1000_fc_none) ||
++			 (mac->original_fc == e1000_fc_tx_pause)) {
++			mac->fc = e1000_fc_none;
++			hw_dbg(hw, "Flow Control = NONE.\r\n");
++		} else {
++			mac->fc = e1000_fc_rx_pause;
++			hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
++		}
++
++		/* Now we need to do one last check...  If we auto-
++		 * negotiated to HALF DUPLEX, flow control should not be
++		 * enabled per IEEE 802.3 spec.
++		 */
++		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
++		if (ret_val) {
++			hw_dbg(hw, "Error getting link speed and duplex\n");
++			goto out;
++		}
++
++		if (duplex == HALF_DUPLEX)
++			mac->fc = e1000_fc_none;
++
++		/* Now we call a subroutine to actually force the MAC
++		 * controller to use the correct flow control settings.
++		 */
++		ret_val = e1000_force_mac_fc(hw);
++		if (ret_val) {
++			hw_dbg(hw, "Error forcing flow control settings\n");
++			goto out;
++		}
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_speed_and_duplex_copper - Retreive current speed/duplex
++ *  @hw: pointer to the HW structure
++ *  @speed: stores the current speed
++ *  @duplex: stores the current duplex
++ *
++ *  Read the status register for the current speed/duplex and store the current
++ *  speed and duplex for copper connections.
++ **/
++s32 e1000_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
++{
++	u32 status;
++
++	status = er32(STATUS);
++	if (status & E1000_STATUS_SPEED_1000) {
++		*speed = SPEED_1000;
++		hw_dbg(hw, "1000 Mbs, ");
++	} else if (status & E1000_STATUS_SPEED_100) {
++		*speed = SPEED_100;
++		hw_dbg(hw, "100 Mbs, ");
++	} else {
++		*speed = SPEED_10;
++		hw_dbg(hw, "10 Mbs, ");
++	}
++
++	if (status & E1000_STATUS_FD) {
++		*duplex = FULL_DUPLEX;
++		hw_dbg(hw, "Full Duplex\n");
++	} else {
++		*duplex = HALF_DUPLEX;
++		hw_dbg(hw, "Half Duplex\n");
++	}
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex
++ *  @hw: pointer to the HW structure
++ *  @speed: stores the current speed
++ *  @duplex: stores the current duplex
++ *
++ *  Sets the speed and duplex to gigabit full duplex (the only possible option)
++ *  for fiber/serdes links.
++ **/
++s32 e1000_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
++{
++	*speed = SPEED_1000;
++	*duplex = FULL_DUPLEX;
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_get_hw_semaphore - Acquire hardware semaphore
++ *  @hw: pointer to the HW structure
++ *
++ *  Acquire the HW semaphore to access the PHY or NVM
++ **/
++s32 e1000_get_hw_semaphore(struct e1000_hw *hw)
++{
++	u32 swsm;
++	s32 ret_val = E1000_SUCCESS;
++	s32 timeout = hw->nvm.word_size + 1;
++	s32 i = 0;
++
++	/* Get the SW semaphore */
++	while (i < timeout) {
++		swsm = er32(SWSM);
++		if (!(swsm & E1000_SWSM_SMBI))
++			break;
++
++		udelay(50);
++		i++;
++	}
++
++	if (i == timeout) {
++		hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	/* Get the FW semaphore. */
++	for (i = 0; i < timeout; i++) {
++		swsm = er32(SWSM);
++		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
++
++		/* Semaphore acquired if bit latched */
++		if (er32(SWSM) & E1000_SWSM_SWESMBI)
++			break;
++
++		udelay(50);
++	}
++
++	if (i == timeout) {
++		/* Release semaphores */
++		e1000_put_hw_semaphore(hw);
++		hw_dbg(hw, "Driver can't access the NVM\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_put_hw_semaphore - Release hardware semaphore
++ *  @hw: pointer to the HW structure
++ *
++ *  Release hardware semaphore used to access the PHY or NVM
++ **/
++void e1000_put_hw_semaphore(struct e1000_hw *hw)
++{
++	u32 swsm;
++
++	swsm = er32(SWSM);
++
++	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
++
++	ew32(SWSM, swsm);
++}
++
++/**
++ *  e1000_get_auto_rd_done - Check for auto read completion
++ *  @hw: pointer to the HW structure
++ *
++ *  Check EEPROM for Auto Read done bit.
++ **/
++s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
++{
++	s32 i = 0;
++	s32 ret_val = E1000_SUCCESS;
++
++	while (i < AUTO_READ_DONE_TIMEOUT) {
++		if (er32(EECD) & E1000_EECD_AUTO_RD)
++			break;
++		msleep(1);
++		i++;
++	}
++
++	if (i == AUTO_READ_DONE_TIMEOUT) {
++		hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
++		ret_val = -E1000_ERR_RESET;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_valid_led_default - Verify a valid default LED config
++ *  @hw: pointer to the HW structure
++ *  @data: pointer to the NVM (EEPROM)
++ *
++ *  Read the EEPROM for the current default LED configuration.  If the
++ *  LED configuration is not valid, set to a valid LED configuration.
++ **/
++s32 e1000_valid_led_default(struct e1000_hw *hw, u16 *data)
++{
++	s32 ret_val;
++
++	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
++	if (ret_val) {
++		hw_dbg(hw, "NVM Read Error\n");
++		goto out;
++	}
++
++	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
++		*data = ID_LED_DEFAULT;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_id_led_init -
++ *  @hw: pointer to the HW structure
++ *
++ **/
++s32 e1000_id_led_init(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	s32 ret_val;
++	const u32 ledctl_mask = 0x000000FF;
++	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
++	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
++	u16 data, i, temp;
++	const u16 led_mask = 0x0F;
++
++	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
++	if (ret_val)
++		goto out;
++
++	mac->ledctl_default = er32(LEDCTL);
++	mac->ledctl_mode1 = mac->ledctl_default;
++	mac->ledctl_mode2 = mac->ledctl_default;
++
++	for (i = 0; i < 4; i++) {
++		temp = (data >> (i << 2)) & led_mask;
++		switch (temp) {
++		case ID_LED_ON1_DEF2:
++		case ID_LED_ON1_ON2:
++		case ID_LED_ON1_OFF2:
++			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
++			mac->ledctl_mode1 |= ledctl_on << (i << 3);
++			break;
++		case ID_LED_OFF1_DEF2:
++		case ID_LED_OFF1_ON2:
++		case ID_LED_OFF1_OFF2:
++			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
++			mac->ledctl_mode1 |= ledctl_off << (i << 3);
++			break;
++		default:
++			/* Do nothing */
++			break;
++		}
++		switch (temp) {
++		case ID_LED_DEF1_ON2:
++		case ID_LED_ON1_ON2:
++		case ID_LED_OFF1_ON2:
++			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
++			mac->ledctl_mode2 |= ledctl_on << (i << 3);
++			break;
++		case ID_LED_DEF1_OFF2:
++		case ID_LED_ON1_OFF2:
++		case ID_LED_OFF1_OFF2:
++			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
++			mac->ledctl_mode2 |= ledctl_off << (i << 3);
++			break;
++		default:
++			/* Do nothing */
++			break;
++		}
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_cleanup_led_generic - Set LED config to default operation
++ *  @hw: pointer to the HW structure
++ *
++ *  Remove the current LED configuration and set the LED configuration
++ *  to the default value, saved from the EEPROM.
++ **/
++s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
++{
++	ew32(LEDCTL, hw->mac.ledctl_default);
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_blink_led - Blink LED
++ *  @hw: pointer to the HW structure
++ *
++ *  Blink the led's which are set to be on.
++ **/
++s32 e1000_blink_led(struct e1000_hw *hw)
++{
++	u32 ledctl_blink = 0;
++	u32 i;
++
++	if (hw->media_type == e1000_media_type_fiber) {
++		/* always blink LED0 for PCI-E fiber */
++		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
++		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
++	} else {
++		/* set the blink bit for each LED that's "on" (0x0E)
++		 * in ledctl_mode2 */
++		ledctl_blink = hw->mac.ledctl_mode2;
++		for (i = 0; i < 4; i++)
++			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
++			    E1000_LEDCTL_MODE_LED_ON)
++				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
++						 (i * 8));
++	}
++
++	ew32(LEDCTL, ledctl_blink);
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_led_on_generic - Turn LED on
++ *  @hw: pointer to the HW structure
++ *
++ *  Turn LED on.
++ **/
++s32 e1000_led_on_generic(struct e1000_hw *hw)
++{
++	u32 ctrl;
++
++	switch (hw->media_type) {
++	case e1000_media_type_fiber:
++		ctrl = er32(CTRL);
++		ctrl &= ~E1000_CTRL_SWDPIN0;
++		ctrl |= E1000_CTRL_SWDPIO0;
++		ew32(CTRL, ctrl);
++		break;
++	case e1000_media_type_copper:
++		ew32(LEDCTL, hw->mac.ledctl_mode2);
++		break;
++	default:
++		break;
++	}
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_led_off_generic - Turn LED off
++ *  @hw: pointer to the HW structure
++ *
++ *  Turn LED off.
++ **/
++s32 e1000_led_off_generic(struct e1000_hw *hw)
++{
++	u32 ctrl;
++
++	switch (hw->media_type) {
++	case e1000_media_type_fiber:
++		ctrl = er32(CTRL);
++		ctrl |= E1000_CTRL_SWDPIN0;
++		ctrl |= E1000_CTRL_SWDPIO0;
++		ew32(CTRL, ctrl);
++		break;
++	case e1000_media_type_copper:
++		ew32(LEDCTL, hw->mac.ledctl_mode1);
++		break;
++	default:
++		break;
++	}
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_set_pcie_no_snoop - Set PCI-express capabilities
++ *  @hw: pointer to the HW structure
++ *  @no_snoop: bitmap of snoop events
++ *
++ *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
++ **/
++void e1000_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
++{
++	u32 gcr;
++
++	if (no_snoop) {
++		gcr = er32(GCR);
++		gcr &= ~(PCIE_NO_SNOOP_ALL);
++		gcr |= no_snoop;
++		ew32(GCR, gcr);
++	}
++}
++
++/**
++ *  e1000_disable_pcie_master - Disables PCI-express master access
++ *  @hw: pointer to the HW structure
++ *
++ *  Returns 0 (E1000_SUCCESS) if successful, else returns -10
++ *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
++ *  the master requests to be disabled.
++ *
++ *  Disables PCI-Express master access and verifies there are no pending
++ *  requests.
++ **/
++s32 e1000_disable_pcie_master(struct e1000_hw *hw)
++{
++	u32 ctrl;
++	s32 timeout = MASTER_DISABLE_TIMEOUT;
++	s32 ret_val = E1000_SUCCESS;
++
++	ctrl = er32(CTRL);
++	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
++	ew32(CTRL, ctrl);
++
++	while (timeout) {
++		if (!(er32(STATUS) &
++		      E1000_STATUS_GIO_MASTER_ENABLE))
++			break;
++		udelay(100);
++		timeout--;
++	}
++
++	if (!timeout) {
++		hw_dbg(hw, "Master requests are pending.\n");
++		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_reset_adaptive - Reset Adaptive Interframe Spacing
++ *  @hw: pointer to the HW structure
++ *
++ *  Reset the Adaptive Interframe Spacing throttle to default values.
++ **/
++void e1000_reset_adaptive(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++
++	mac->current_ifs_val = 0;
++	mac->ifs_min_val = IFS_MIN;
++	mac->ifs_max_val = IFS_MAX;
++	mac->ifs_step_size = IFS_STEP;
++	mac->ifs_ratio = IFS_RATIO;
++
++	mac->in_ifs_mode = 0;
++	ew32(AIT, 0);
++}
++
++/**
++ *  e1000_update_adaptive - Update Adaptive Interframe Spacing
++ *  @hw: pointer to the HW structure
++ *
++ *  Update the Adaptive Interframe Spacing Throttle value based on the
++ *  time between transmitted packets and time between collisions.
++ **/
++void e1000_update_adaptive(struct e1000_hw *hw)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++
++	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
++		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
++			mac->in_ifs_mode = 1;
++			if (mac->current_ifs_val < mac->ifs_max_val) {
++				if (!mac->current_ifs_val)
++					mac->current_ifs_val = mac->ifs_min_val;
++				else
++					mac->current_ifs_val +=
++						mac->ifs_step_size;
++				ew32(AIT,
++						mac->current_ifs_val);
++			}
++		}
++	} else {
++		if (mac->in_ifs_mode &&
++		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
++			mac->current_ifs_val = 0;
++			mac->in_ifs_mode = 0;
++			ew32(AIT, 0);
++		}
++	}
++}
++
++/**
++ *  e1000_raise_eec_clk - Raise EEPROM clock
++ *  @hw: pointer to the HW structure
++ *  @eecd: pointer to the EEPROM
++ *
++ *  Enable/Raise the EEPROM clock bit.
++ **/
++static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
++{
++	*eecd = *eecd | E1000_EECD_SK;
++	ew32(EECD, *eecd);
++	e1e_flush();
++	udelay(hw->nvm.delay_usec);
++}
++
++/**
++ *  e1000_lower_eec_clk - Lower EEPROM clock
++ *  @hw: pointer to the HW structure
++ *  @eecd: pointer to the EEPROM
++ *
++ *  Clear/Lower the EEPROM clock bit.
++ **/
++static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
++{
++	*eecd = *eecd & ~E1000_EECD_SK;
++	ew32(EECD, *eecd);
++	e1e_flush();
++	udelay(hw->nvm.delay_usec);
++}
++
++/**
++ *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
++ *  @hw: pointer to the HW structure
++ *  @data: data to send to the EEPROM
++ *  @count: number of bits to shift out
++ *
++ *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
++ *  "data" parameter will be shifted out to the EEPROM one bit at a time.
++ *  In order to do this, "data" must be broken down into bits.
++ **/
++static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	u32 eecd = er32(EECD);
++	u32 mask;
++
++	mask = 0x01 << (count - 1);
++	if (nvm->type == e1000_nvm_eeprom_spi)
++		eecd |= E1000_EECD_DO;
++
++	do {
++		eecd &= ~E1000_EECD_DI;
++
++		if (data & mask)
++			eecd |= E1000_EECD_DI;
++
++		ew32(EECD, eecd);
++		e1e_flush();
++
++		udelay(nvm->delay_usec);
++
++		e1000_raise_eec_clk(hw, &eecd);
++		e1000_lower_eec_clk(hw, &eecd);
++
++		mask >>= 1;
++	} while (mask);
++
++	eecd &= ~E1000_EECD_DI;
++	ew32(EECD, eecd);
++}
++
++/**
++ *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
++ *  @hw: pointer to the HW structure
++ *  @count: number of bits to shift in
++ *
++ *  In order to read a register from the EEPROM, we need to shift 'count' bits
++ *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
++ *  the EEPROM (setting the SK bit), and then reading the value of the data out
++ *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
++ *  always be clear.
++ **/
++static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
++{
++	u32 eecd;
++	u32 i;
++	u16 data;
++
++	eecd = er32(EECD);
++
++	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
++	data = 0;
++
++	for (i = 0; i < count; i++) {
++		data <<= 1;
++		e1000_raise_eec_clk(hw, &eecd);
++
++		eecd = er32(EECD);
++
++		eecd &= ~E1000_EECD_DI;
++		if (eecd & E1000_EECD_DO)
++			data |= 1;
++
++		e1000_lower_eec_clk(hw, &eecd);
++	}
++
++	return data;
++}
++
++/**
++ *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
++ *  @hw: pointer to the HW structure
++ *  @ee_reg: EEPROM flag for polling
++ *
++ *  Polls the EEPROM status bit for either read or write completion based
++ *  upon the value of 'ee_reg'.
++ **/
++s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
++{
++	u32 attempts = 100000;
++	u32 i, reg = 0;
++	s32 ret_val = -E1000_ERR_NVM;
++
++	for (i = 0; i < attempts; i++) {
++		if (ee_reg == E1000_NVM_POLL_READ)
++			reg = er32(EERD);
++		else
++			reg = er32(EEWR);
++
++		if (reg & E1000_NVM_RW_REG_DONE) {
++			ret_val = E1000_SUCCESS;
++			break;
++		}
++
++		udelay(5);
++	}
++
++	return ret_val;
++}
++
++/**
++ *  e1000_acquire_nvm - Generic request for access to EEPROM
++ *  @hw: pointer to the HW structure
++ *
++ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
++ *  Return successful if access grant bit set, else clear the request for
++ *  EEPROM access and return -E1000_ERR_NVM (-1).
++ **/
++s32 e1000_acquire_nvm(struct e1000_hw *hw)
++{
++	u32 eecd = er32(EECD);
++	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
++	s32 ret_val = E1000_SUCCESS;
++
++	ew32(EECD, eecd | E1000_EECD_REQ);
++	eecd = er32(EECD);
++
++	while (timeout) {
++		if (eecd & E1000_EECD_GNT)
++			break;
++		udelay(5);
++		eecd = er32(EECD);
++		timeout--;
++	}
++
++	if (!timeout) {
++		eecd &= ~E1000_EECD_REQ;
++		ew32(EECD, eecd);
++		hw_dbg(hw, "Could not acquire NVM grant\n");
++		ret_val = -E1000_ERR_NVM;
++	}
++
++	return ret_val;
++}
++
++/**
++ *  e1000_standby_nvm - Return EEPROM to standby state
++ *  @hw: pointer to the HW structure
++ *
++ *  Return the EEPROM to a standby state.
++ **/
++static void e1000_standby_nvm(struct e1000_hw *hw)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	u32 eecd = er32(EECD);
++
++	if (nvm->type == e1000_nvm_eeprom_spi) {
++		/* Toggle CS to flush commands */
++		eecd |= E1000_EECD_CS;
++		ew32(EECD, eecd);
++		e1e_flush();
++		udelay(nvm->delay_usec);
++		eecd &= ~E1000_EECD_CS;
++		ew32(EECD, eecd);
++		e1e_flush();
++		udelay(nvm->delay_usec);
++	}
++}
++
++/**
++ *  e1000_stop_nvm - Terminate EEPROM command
++ *  @hw: pointer to the HW structure
++ *
++ *  Terminates the current command by inverting the EEPROM's chip select pin.
++ **/
++static void e1000_stop_nvm(struct e1000_hw *hw)
++{
++	u32 eecd;
++
++	eecd = er32(EECD);
++	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
++		/* Pull CS high */
++		eecd |= E1000_EECD_CS;
++		e1000_lower_eec_clk(hw, &eecd);
++	}
++}
++
++/**
++ *  e1000_release_nvm - Release exclusive access to EEPROM
++ *  @hw: pointer to the HW structure
++ *
++ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
++ **/
++void e1000_release_nvm(struct e1000_hw *hw)
++{
++	u32 eecd;
++
++	e1000_stop_nvm(hw);
++
++	eecd = er32(EECD);
++	eecd &= ~E1000_EECD_REQ;
++	ew32(EECD, eecd);
++}
++
++/**
++ *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
++ *  @hw: pointer to the HW structure
++ *
++ *  Setups the EEPROM for reading and writing.
++ **/
++static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	u32 eecd = er32(EECD);
++	s32 ret_val = E1000_SUCCESS;
++	u16 timeout = 0;
++	u8 spi_stat_reg;
++
++	if (nvm->type == e1000_nvm_eeprom_spi) {
++		/* Clear SK and CS */
++		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
++		ew32(EECD, eecd);
++		udelay(1);
++		timeout = NVM_MAX_RETRY_SPI;
++
++		/* Read "Status Register" repeatedly until the LSB is cleared.
++		 * The EEPROM will signal that the command has been completed
++		 * by clearing bit 0 of the internal status register.  If it's
++		 * not cleared within 'timeout', then error out. */
++		while (timeout) {
++			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
++						 hw->nvm.opcode_bits);
++			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
++			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
++				break;
++
++			udelay(5);
++			e1000_standby_nvm(hw);
++			timeout--;
++		}
++
++		if (!timeout) {
++			hw_dbg(hw, "SPI NVM Status error\n");
++			ret_val = -E1000_ERR_NVM;
++			goto out;
++		}
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_read_nvm_spi - Read EEPROM's using SPI
++ *  @hw: pointer to the HW structure
++ *  @offset: offset of word in the EEPROM to read
++ *  @words: number of words to read
++ *  @data: word read from the EEPROM
++ *
++ *  Reads a 16 bit word from the EEPROM.
++ **/
++s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	u32 i = 0;
++	s32 ret_val;
++	u16 word_in;
++	u8 read_opcode = NVM_READ_OPCODE_SPI;
++
++	/* A check for invalid values:  offset too large, too many words,
++	 * and not enough words. */
++	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
++	    (words == 0)) {
++		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	ret_val = nvm->ops.acquire_nvm(hw);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1000_ready_nvm_eeprom(hw);
++	if (ret_val)
++		goto release;
++
++	e1000_standby_nvm(hw);
++
++	if ((nvm->address_bits == 8) && (offset >= 128))
++		read_opcode |= NVM_A8_OPCODE_SPI;
++
++	/* Send the READ command (opcode + addr) */
++	e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
++	e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
++
++	/* Read the data.  SPI NVMs increment the address with each byte
++	 * read and will roll over if reading beyond the end.  This allows
++	 * us to read the whole NVM from any offset */
++	for (i = 0; i < words; i++) {
++		word_in = e1000_shift_in_eec_bits(hw, 16);
++		data[i] = (word_in >> 8) | (word_in << 8);
++	}
++
++release:
++	nvm->ops.release_nvm(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_read_nvm_eerd - Reads EEPROM using EERD register
++ *  @hw: pointer to the HW structure
++ *  @offset: offset of word in the EEPROM to read
++ *  @words: number of words to read
++ *  @data: word read from the EEPROM
++ *
++ *  Reads a 16 bit word from the EEPROM using the EERD register.
++ **/
++s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	u32 i, eerd = 0;
++	s32 ret_val = E1000_SUCCESS;
++
++	/* A check for invalid values:  offset too large, too many words,
++	 * and not enough words. */
++	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
++	    (words == 0)) {
++		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	for (i = 0; i < words; i++) {
++		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
++		       E1000_NVM_RW_REG_START;
++
++		ew32(EERD, eerd);
++		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
++		if (ret_val)
++			break;
++
++		data[i] = (er32(EERD) >>
++			   E1000_NVM_RW_REG_DATA);
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_nvm_spi - Write to EEPROM using SPI
++ *  @hw: pointer to the HW structure
++ *  @offset: offset within the EEPROM to be written to
++ *  @words: number of words to write
++ *  @data: 16 bit word(s) to be written to the EEPROM
++ *
++ *  Writes data to EEPROM at offset using SPI interface.
++ *
++ *  If e1000_update_nvm_checksum is not called after this function , the
++ *  EEPROM will most likley contain an invalid checksum.
++ **/
++s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++{
++	struct e1000_nvm_info *nvm = &hw->nvm;
++	s32 ret_val;
++	u16 widx = 0;
++
++	/* A check for invalid values:  offset too large, too many words,
++	 * and not enough words. */
++	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
++	    (words == 0)) {
++		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++	ret_val = nvm->ops.acquire_nvm(hw);
++	if (ret_val)
++		goto out;
++
++	msleep(10);
++
++	while (widx < words) {
++		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
++
++		ret_val = e1000_ready_nvm_eeprom(hw);
++		if (ret_val)
++			goto release;
++
++		e1000_standby_nvm(hw);
++
++		/* Send the WRITE ENABLE command (8 bit opcode) */
++		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
++					 nvm->opcode_bits);
++
++		e1000_standby_nvm(hw);
++
++		/* Some SPI eeproms use the 8th address bit embedded in the
++		 * opcode */
++		if ((nvm->address_bits == 8) && (offset >= 128))
++			write_opcode |= NVM_A8_OPCODE_SPI;
++
++		/* Send the Write command (8-bit opcode + addr) */
++		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
++		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
++					 nvm->address_bits);
++
++		/* Loop to allow for up to whole page write of eeprom */
++		while (widx < words) {
++			u16 word_out = data[widx];
++			word_out = (word_out >> 8) | (word_out << 8);
++			e1000_shift_out_eec_bits(hw, word_out, 16);
++			widx++;
++
++			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
++				e1000_standby_nvm(hw);
++				break;
++			}
++		}
++	}
++
++	msleep(10);
++release:
++	nvm->ops.release_nvm(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_read_mac_addr - Read device MAC address
++ *  @hw: pointer to the HW structure
++ *
++ *  Reads the device MAC address from the EEPROM and stores the value.
++ *  Since devices with two ports use the same EEPROM, we increment the
++ *  last bit in the MAC address for the second port.
++ **/
++s32 e1000_read_mac_addr(struct e1000_hw *hw)
++{
++	s32  ret_val = E1000_SUCCESS;
++	u16 offset, nvm_data, i;
++
++	for (i = 0; i < ETH_ALEN; i += 2) {
++		offset = i >> 1;
++		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
++		if (ret_val) {
++			hw_dbg(hw, "NVM Read Error\n");
++			goto out;
++		}
++		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
++		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
++	}
++
++	/* Flip last bit of mac address if we're on second port */
++	if (hw->bus.func == E1000_FUNC_1)
++		hw->mac.perm_addr[5] ^= 1;
++
++	for (i = 0; i < ETH_ALEN; i++)
++		hw->mac.addr[i] = hw->mac.perm_addr[i];
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
++ *  @hw: pointer to the HW structure
++ *
++ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
++ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
++ **/
++s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
++{
++	s32 ret_val = E1000_SUCCESS;
++	u16 checksum = 0;
++	u16 i, nvm_data;
++
++	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
++		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
++		if (ret_val) {
++			hw_dbg(hw, "NVM Read Error\n");
++			goto out;
++		}
++		checksum += nvm_data;
++	}
++
++	if (checksum != (u16) NVM_SUM) {
++		hw_dbg(hw, "NVM Checksum Invalid\n");
++		ret_val = -E1000_ERR_NVM;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_update_nvm_checksum_generic - Update EEPROM checksum
++ *  @hw: pointer to the HW structure
++ *
++ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
++ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
++ *  value to the EEPROM.
++ **/
++s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
++{
++	s32  ret_val;
++	u16 checksum = 0;
++	u16 i, nvm_data;
++
++	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
++		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
++		if (ret_val) {
++			hw_dbg(hw, "NVM Read Error while updating checksum.\n");
++			goto out;
++		}
++		checksum += nvm_data;
++	}
++	checksum = (u16) NVM_SUM - checksum;
++	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
++	if (ret_val) {
++		hw_dbg(hw, "NVM Write Error while updating checksum.\n");
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_reload_nvm - Reloads EEPROM
++ *  @hw: pointer to the HW structure
++ *
++ *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
++ *  extended control register.
++ **/
++void e1000_reload_nvm(struct e1000_hw *hw)
++{
++	u32 ctrl_ext;
++
++	udelay(10);
++	ctrl_ext = er32(CTRL_EXT);
++	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
++	ew32(CTRL_EXT, ctrl_ext);
++	e1e_flush();
++}
++
++/**
++ *  e1000_calculate_checksum - Calculate checksum for buffer
++ *  @buffer: pointer to EEPROM
++ *  @length: size of EEPROM to calculate a checksum for
++ *
++ *  Calculates the checksum for some buffer on a specified length.  The
++ *  checksum calculated is returned.
++ **/
++static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
++{
++	u32 i;
++	u8  sum = 0;
++
++	if (!buffer)
++		return 0;
++
++	for (i = 0; i < length; i++)
++		sum += buffer[i];
++
++	return (u8) (0 - sum);
++}
++
++/**
++ *  e1000_mng_enable_host_if - Checks host interface is enabled
++ *  @hw: pointer to the HW structure
++ *
++ *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
++ *
++ *  This function checks whether the HOST IF is enabled for command operaton
++ *  and also checks whether the previous command is completed.  It busy waits
++ *  in case of previous command is not completed.
++ **/
++static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
++{
++	u32 hicr;
++	s32 ret_val = E1000_SUCCESS;
++	u8  i;
++
++	/* Check that the host interface is enabled. */
++	hicr = er32(HICR);
++	if ((hicr & E1000_HICR_EN) == 0) {
++		hw_dbg(hw, "E1000_HOST_EN bit disabled.\n");
++		ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
++		goto out;
++	}
++	/* check the previous command is completed */
++	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
++		hicr = er32(HICR);
++		if (!(hicr & E1000_HICR_C))
++			break;
++		mdelay(1);
++	}
++
++	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
++		hw_dbg(hw, "Previous command timeout failed .\n");
++		ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_check_mng_mode - check managament mode
++ *  @hw: pointer to the HW structure
++ *
++ *  Reads the firmware semaphore register and returns true (>0) if
++ *  manageability is enabled, else false (0).
++ **/
++bool e1000_check_mng_mode(struct e1000_hw *hw)
++{
++	u32 fwsm = er32(FWSM);
++
++	return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab;
++}
++
++/**
++ *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
++ *  @hw: pointer to the HW structure
++ *
++ *  Enables packet filtering on transmit packets if manageability is enabled
++ *  and host interface is enabled.
++ **/
++bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
++{
++	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
++	u32 *buffer = (u32 *)&hw->mng_cookie;
++	u32 offset;
++	s32 ret_val, hdr_csum, csum;
++	u8 i, len;
++	bool tx_filter = 1;
++
++	/* No manageability, no filtering */
++	if (!e1000_check_mng_mode(hw)) {
++		tx_filter = 0;
++		goto out;
++	}
++
++	/* If we can't read from the host interface for whatever
++	 * reason, disable filtering.
++	 */
++	ret_val = e1000_mng_enable_host_if(hw);
++	if (ret_val != E1000_SUCCESS) {
++		tx_filter = 0;
++		goto out;
++	}
++
++	/* Read in the header.  Length and offset are in dwords. */
++	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
++	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
++	for (i = 0; i < len; i++)
++		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
++	hdr_csum = hdr->checksum;
++	hdr->checksum = 0;
++	csum = e1000_calculate_checksum((u8 *)hdr,
++					E1000_MNG_DHCP_COOKIE_LENGTH);
++	/* If either the checksums or signature don't match, then
++	 * the cookie area isn't considered valid, in which case we
++	 * take the safe route of assuming Tx filtering is enabled.
++	 */
++	if (hdr_csum != csum)
++		goto out;
++	if (hdr->signature != E1000_IAMT_SIGNATURE)
++		goto out;
++
++	/* Cookie area is valid, make the final check for filtering. */
++	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
++		tx_filter = 0;
++
++out:
++	hw->mac.tx_pkt_filtering = tx_filter;
++	return tx_filter;
++}
++
++/**
++ *  e1000_mng_write_cmd_header - Writes manageability command header
++ *  @hw: pointer to the HW structure
++ *  @hdr: pointer to the host interface command header
++ *
++ *  Writes the command header after does the checksum calculation.
++ **/
++s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
++				  struct e1000_host_mng_command_header *hdr)
++{
++	u16 i, length = sizeof(struct e1000_host_mng_command_header);
++
++	/* Write the whole command header structure with new checksum. */
++
++	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
++
++	length >>= 2;
++	/* Write the relevant command block into the ram area. */
++	for (i = 0; i < length; i++) {
++		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
++					    *((u32 *) hdr + i));
++		e1e_flush();
++	}
++
++	return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_mng_host_if_write - Writes to the manageability host interface
++ *  @hw: pointer to the HW structure
++ *  @buffer: pointer to the host interface buffer
++ *  @length: size of the buffer
++ *  @offset: location in the buffer to write to
++ *  @sum: sum of the data (not checksum)
++ *
++ *  This function writes the buffer content at the offset given on the host if.
++ *  It also does alignment considerations to do the writes in most efficient
++ *  way.  Also fills up the sum of the buffer in *buffer parameter.
++ **/
++static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
++				   u16 length, u16 offset, u8 *sum)
++{
++	u8 *tmp;
++	u8 *bufptr = buffer;
++	u32 data = 0;
++	s32 ret_val = E1000_SUCCESS;
++	u16 remaining, i, j, prev_bytes;
++
++	/* sum = only sum of the data and it is not checksum */
++
++	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
++		ret_val = -E1000_ERR_PARAM;
++		goto out;
++	}
++
++	tmp = (u8 *)&data;
++	prev_bytes = offset & 0x3;
++	offset >>= 2;
++
++	if (prev_bytes) {
++		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
++		for (j = prev_bytes; j < sizeof(u32); j++) {
++			*(tmp + j) = *bufptr++;
++			*sum += *(tmp + j);
++		}
++		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
++		length -= j - prev_bytes;
++		offset++;
++	}
++
++	remaining = length & 0x3;
++	length -= remaining;
++
++	/* Calculate length in DWORDs */
++	length >>= 2;
++
++	/* The device driver writes the relevant command block into the
++	 * ram area. */
++	for (i = 0; i < length; i++) {
++		for (j = 0; j < sizeof(u32); j++) {
++			*(tmp + j) = *bufptr++;
++			*sum += *(tmp + j);
++		}
++
++		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
++	}
++	if (remaining) {
++		for (j = 0; j < sizeof(u32); j++) {
++			if (j < remaining)
++				*(tmp + j) = *bufptr++;
++			else
++				*(tmp + j) = 0;
++
++			*sum += *(tmp + j);
++		}
++		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
++ *  @hw: pointer to the HW structure
++ *  @buffer: pointer to the host interface
++ *  @length: size of the buffer
++ *
++ *  Writes the DHCP information to the host interface.
++ **/
++s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
++{
++	struct e1000_host_mng_command_header hdr;
++	s32 ret_val;
++	u32 hicr;
++
++	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
++	hdr.command_length = length;
++	hdr.reserved1 = 0;
++	hdr.reserved2 = 0;
++	hdr.checksum = 0;
++
++	/* Enable the host interface */
++	ret_val = e1000_mng_enable_host_if(hw);
++	if (ret_val)
++		goto out;
++
++	/* Populate the host interface with the contents of "buffer". */
++	ret_val = e1000_mng_host_if_write(hw, buffer, length,
++					  sizeof(hdr), &(hdr.checksum));
++	if (ret_val)
++		goto out;
++
++	/* Write the manageability command header */
++	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
++	if (ret_val)
++		goto out;
++
++	/* Tell the ARC a new command is pending. */
++	hicr = er32(HICR);
++	ew32(HICR, hicr | E1000_HICR_C);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_enable_mng_pass_thru - Enable processing of ARP's
++ *  @hw: pointer to the HW structure
++ *
++ *  Verifies the hardware needs to allow ARPs to be processed by the host.
++ **/
++bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
++{
++	u32 manc;
++	u32 fwsm, factps;
++	bool ret_val = 0;
++
++	manc = er32(MANC);
++
++	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
++	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
++		goto out;
++
++	if (hw->mac.arc_subsystem_valid) {
++		fwsm = er32(FWSM);
++		factps = er32(FACTPS);
++
++		if (!(factps & E1000_FACTPS_MNGCG) &&
++		    ((fwsm & E1000_FWSM_MODE_MASK) ==
++		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
++			ret_val = 1;
++			goto out;
++		}
++	} else {
++		if ((manc & E1000_MANC_SMBUS_EN) &&
++		    !(manc & E1000_MANC_ASF_EN)) {
++			ret_val = 1;
++			goto out;
++		}
++	}
++
++out:
++	return ret_val;
++}
++
+diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
+new file mode 100644
+index 0000000..2d0e78c
+--- /dev/null
++++ b/drivers/net/e1000e/netdev.c
+@@ -0,0 +1,4413 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/init.h>
++#include <linux/vmalloc.h>
++#include <linux/pagemap.h>
++#include <linux/netdevice.h>
++#include <linux/tcp.h>
++#include <linux/ipv6.h>
++#include <net/checksum.h>
++#include <net/ip6_checksum.h>
++#include <linux/mii.h>
++#include <linux/ethtool.h>
++#include <linux/if_vlan.h>
++#include <linux/cpu.h>
++#include <linux/smp.h>
++
++#include "e1000.h"
++
++#define DRV_VERSION "0.2.0"
++char e1000_driver_name[] = "e1000e";
++const char e1000_driver_version[] = DRV_VERSION;
++
++const struct e1000_info * e1000_info_tbl[] = {
++	[board_82571]		= &e1000_82571_info,
++	[board_82572]		= &e1000_82572_info,
++	[board_82573]		= &e1000_82573_info,
++	[board_80003es2lan]	= &e1000_es2_info,
++	[board_ich8lan]		= &e1000_ich8_info,
++	[board_ich9lan]		= &e1000_ich9_info,
++};
++
++#ifdef DEBUG
++/**
++ * e1000_get_hw_dev_name - return device name string
++ * used by hardware layer to print debugging information
++ **/
++char *e1000_get_hw_dev_name(struct e1000_hw *hw)
++{
++	struct e1000_adapter *adapter = hw->back;
++	struct net_device *netdev = adapter->netdev;
++	return netdev->name;
++}
++#endif
++
++/**
++ * e1000_desc_unused - calculate if we have unused descriptors
++ **/
++static int e1000_desc_unused(struct e1000_ring *ring)
++{
++	if (ring->next_to_clean > ring->next_to_use)
++		return ring->next_to_clean - ring->next_to_use - 1;
++
++	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
++}
++
++/**
++ * e1000_receive_skb - helper function to handle rx indications
++ * @adapter: board private structure
++ * @status: descriptor status field as written by hardware
++ * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
++ * @skb: pointer to sk_buff to be indicated to stack
++ **/
++static void e1000_receive_skb(struct e1000_adapter *adapter,
++			      struct net_device *netdev,
++			      struct sk_buff *skb,
++			      u8 status, u16 vlan)
++{
++	skb->protocol = eth_type_trans(skb, netdev);
++
++	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
++		vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
++					 le16_to_cpu(vlan) &
++					 E1000_RXD_SPC_VLAN_MASK);
++	else
++		netif_receive_skb(skb);
++
++	netdev->last_rx = jiffies;
++}
++
++/**
++ * e1000_rx_checksum - Receive Checksum Offload for 82543
++ * @adapter:     board private structure
++ * @status_err:  receive descriptor status and error fields
++ * @csum:	receive descriptor csum field
++ * @sk_buff:     socket buffer with received data
++ **/
++static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
++			      u32 csum, struct sk_buff *skb)
++{
++	u16 status = (u16)status_err;
++	u8 errors = (u8)(status_err >> 24);
++	skb->ip_summed = CHECKSUM_NONE;
++
++	/* Ignore Checksum bit is set */
++	if (status & E1000_RXD_STAT_IXSM)
++		return;
++	/* TCP/UDP checksum error bit is set */
++	if (errors & E1000_RXD_ERR_TCPE) {
++		/* let the stack verify checksum errors */
++		adapter->hw_csum_err++;
++		return;
++	}
++
++	/* TCP/UDP Checksum has not been calculated */
++	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
++		return;
++
++	/* It must be a TCP or UDP packet with a valid checksum */
++	if (status & E1000_RXD_STAT_TCPCS) {
++		/* TCP checksum is good */
++		skb->ip_summed = CHECKSUM_UNNECESSARY;
++	} else {
++		/* IP fragment with UDP payload */
++		/* Hardware complements the payload checksum, so we undo it
++		 * and then put the value in host order for further stack use.
++		 */
++		csum = ntohl(csum ^ 0xFFFF);
++		skb->csum = csum;
++		skb->ip_summed = CHECKSUM_COMPLETE;
++	}
++	adapter->hw_csum_good++;
++}
++
++/**
++ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
++ * @adapter: address of board private structure
++ **/
++static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
++				   int cleaned_count)
++{
++	struct net_device *netdev = adapter->netdev;
++	struct pci_dev *pdev = adapter->pdev;
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++	struct e1000_rx_desc *rx_desc;
++	struct e1000_buffer *buffer_info;
++	struct sk_buff *skb;
++	unsigned int i;
++	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
++
++	i = rx_ring->next_to_use;
++	buffer_info = &rx_ring->buffer_info[i];
++
++	while (cleaned_count--) {
++		skb = buffer_info->skb;
++		if (skb) {
++			skb_trim(skb, 0);
++			goto map_skb;
++		}
++
++		skb = netdev_alloc_skb(netdev, bufsz);
++		if (!skb) {
++			/* Better luck next round */
++			adapter->alloc_rx_buff_failed++;
++			break;
++		}
++
++		/* Make buffer alignment 2 beyond a 16 byte boundary
++		 * this will result in a 16 byte aligned IP header after
++		 * the 14 byte MAC header is removed
++		 */
++		skb_reserve(skb, NET_IP_ALIGN);
++
++		buffer_info->skb = skb;
++map_skb:
++		buffer_info->dma = pci_map_single(pdev, skb->data,
++						  adapter->rx_buffer_len,
++						  PCI_DMA_FROMDEVICE);
++
++		rx_desc = E1000_RX_DESC(*rx_ring, i);
++		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
++
++		i++;
++		if (i == rx_ring->count)
++			i = 0;
++		buffer_info = &rx_ring->buffer_info[i];
++	}
++
++	if (rx_ring->next_to_use != i) {
++		rx_ring->next_to_use = i;
++		if (i-- == 0)
++			i = (rx_ring->count - 1);
++
++		/* Force memory writes to complete before letting h/w
++		 * know there are new descriptors to fetch.  (Only
++		 * applicable for weak-ordered memory model archs,
++		 * such as IA-64). */
++		wmb();
++		writel(i, adapter->hw.hw_addr + rx_ring->tail);
++	}
++}
++
++/**
++ * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
++ * @adapter: address of board private structure
++ **/
++static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
++				      int cleaned_count)
++{
++	struct net_device *netdev = adapter->netdev;
++	struct pci_dev *pdev = adapter->pdev;
++	union e1000_rx_desc_packet_split *rx_desc;
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++	struct e1000_buffer *buffer_info;
++	struct e1000_ps_page *ps_page;
++	struct sk_buff *skb;
++	unsigned int i, j;
++
++	i = rx_ring->next_to_use;
++	buffer_info = &rx_ring->buffer_info[i];
++
++	while (cleaned_count--) {
++		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
++
++		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
++			ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS)
++						     + j];
++			if (j < adapter->rx_ps_pages) {
++				if (!ps_page->page) {
++					ps_page->page = alloc_page(GFP_ATOMIC);
++					if (!ps_page->page) {
++						adapter->alloc_rx_buff_failed++;
++						goto no_buffers;
++					}
++					ps_page->dma = pci_map_page(pdev,
++							   ps_page->page,
++							   0, PAGE_SIZE,
++							   PCI_DMA_FROMDEVICE);
++				}
++				/*
++				 * Refresh the desc even if buffer_addrs
++				 * didn't change because each write-back
++				 * erases this info.
++				 */
++				rx_desc->read.buffer_addr[j+1] =
++				     cpu_to_le64(ps_page->dma);
++			} else {
++				rx_desc->read.buffer_addr[j+1] = ~0;
++			}
++		}
++
++		skb = netdev_alloc_skb(netdev,
++				       adapter->rx_ps_bsize0 + NET_IP_ALIGN);
++
++		if (!skb) {
++			adapter->alloc_rx_buff_failed++;
++			break;
++		}
++
++		/* Make buffer alignment 2 beyond a 16 byte boundary
++		 * this will result in a 16 byte aligned IP header after
++		 * the 14 byte MAC header is removed
++		 */
++		skb_reserve(skb, NET_IP_ALIGN);
++
++		buffer_info->skb = skb;
++		buffer_info->dma = pci_map_single(pdev, skb->data,
++						  adapter->rx_ps_bsize0,
++						  PCI_DMA_FROMDEVICE);
++
++		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
++
++		i++;
++		if (i == rx_ring->count)
++			i = 0;
++		buffer_info = &rx_ring->buffer_info[i];
++	}
++
++no_buffers:
++	if (rx_ring->next_to_use != i) {
++		rx_ring->next_to_use = i;
++
++		if (!(i--))
++			i = (rx_ring->count - 1);
++
++		/* Force memory writes to complete before letting h/w
++		 * know there are new descriptors to fetch.  (Only
++		 * applicable for weak-ordered memory model archs,
++		 * such as IA-64). */
++		wmb();
++		/* Hardware increments by 16 bytes, but packet split
++		 * descriptors are 32 bytes...so we increment tail
++		 * twice as much.
++		 */
++		writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
++	}
++}
++
++/**
++ * e1000_alloc_rx_buffers_jumbo - Replace used jumbo receive buffers
++ *
++ * @adapter: address of board private structure
++ * @cleaned_count: number of buffers to allocate this pass
++ **/
++static void e1000_alloc_rx_buffers_jumbo(struct e1000_adapter *adapter,
++					 int cleaned_count)
++{
++	struct net_device *netdev = adapter->netdev;
++	struct pci_dev *pdev = adapter->pdev;
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++	struct e1000_rx_desc *rx_desc;
++	struct e1000_buffer *buffer_info;
++	struct sk_buff *skb;
++	unsigned int i;
++	unsigned int bufsz = 256 -
++			     16 /*for skb_reserve */ -
++			     NET_IP_ALIGN;
++
++	i = rx_ring->next_to_use;
++	buffer_info = &rx_ring->buffer_info[i];
++
++	while (cleaned_count--) {
++		skb = buffer_info->skb;
++		if (skb) {
++			skb_trim(skb, 0);
++			goto check_page;
++		}
++
++		skb = netdev_alloc_skb(netdev, bufsz);
++		if (!skb) {
++			/* Better luck next round */
++			adapter->alloc_rx_buff_failed++;
++			break;
++		}
++
++		/* Make buffer alignment 2 beyond a 16 byte boundary
++		 * this will result in a 16 byte aligned IP header after
++		 * the 14 byte MAC header is removed
++		 */
++		skb_reserve(skb, NET_IP_ALIGN);
++
++		buffer_info->skb = skb;
++check_page:
++		/* allocate a new page if necessary */
++		if (!buffer_info->page) {
++			buffer_info->page = alloc_page(GFP_ATOMIC);
++			if (!buffer_info->page) {
++				adapter->alloc_rx_buff_failed++;
++				break;
++			}
++		}
++
++		if (!buffer_info->dma)
++			buffer_info->dma = pci_map_page(pdev,
++							buffer_info->page, 0,
++							PAGE_SIZE,
++							PCI_DMA_FROMDEVICE);
++
++		rx_desc = E1000_RX_DESC(*rx_ring, i);
++		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
++
++		i++;
++		if (i == rx_ring->count)
++			i = 0;
++		buffer_info = &rx_ring->buffer_info[i];
++	}
++
++	if (rx_ring->next_to_use != i) {
++		rx_ring->next_to_use = i;
++		if (i-- == 0)
++			i = (rx_ring->count - 1);
++
++		/* Force memory writes to complete before letting h/w
++		 * know there are new descriptors to fetch.  (Only
++		 * applicable for weak-ordered memory model archs,
++		 * such as IA-64). */
++		wmb();
++		writel(i, adapter->hw.hw_addr + rx_ring->tail);
++	}
++}
++
++/**
++ * e1000_clean_rx_irq - Send received data up the network stack; legacy
++ * @adapter: board private structure
++ *
++ * the return value indicates whether actual cleaning was done, there
++ * is no guarantee that everything was cleaned
++ **/
++static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
++			       int *work_done, int work_to_do)
++{
++	struct net_device *netdev = adapter->netdev;
++	struct pci_dev *pdev = adapter->pdev;
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++	struct e1000_rx_desc *rx_desc, *next_rxd;
++	struct e1000_buffer *buffer_info, *next_buffer;
++	u32 length;
++	unsigned int i;
++	int cleaned_count = 0;
++	bool cleaned = 0;
++	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
++
++	i = rx_ring->next_to_clean;
++	rx_desc = E1000_RX_DESC(*rx_ring, i);
++	buffer_info = &rx_ring->buffer_info[i];
++
++	while (rx_desc->status & E1000_RXD_STAT_DD) {
++		struct sk_buff *skb;
++		u8 status;
++
++		if (*work_done >= work_to_do)
++			break;
++		(*work_done)++;
++
++		status = rx_desc->status;
++		skb = buffer_info->skb;
++		buffer_info->skb = NULL;
++
++		prefetch(skb->data - NET_IP_ALIGN);
++
++		i++;
++		if (i == rx_ring->count)
++			i = 0;
++		next_rxd = E1000_RX_DESC(*rx_ring, i);
++		prefetch(next_rxd);
++
++		next_buffer = &rx_ring->buffer_info[i];
++
++		cleaned = 1;
++		cleaned_count++;
++		pci_unmap_single(pdev,
++				 buffer_info->dma,
++				 adapter->rx_buffer_len,
++				 PCI_DMA_FROMDEVICE);
++		buffer_info->dma = 0;
++
++		length = le16_to_cpu(rx_desc->length);
++
++		/* !EOP means multiple descriptors were used to store a single
++		 * packet, also make sure the frame isn't just CRC only */
++		if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
++			/* All receives must fit into a single buffer */
++			ndev_dbg(netdev, "%s: Receive packet consumed "
++				 "multiple buffers\n", netdev->name);
++			/* recycle */
++			buffer_info->skb = skb;
++			goto next_desc;
++		}
++
++		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
++			/* recycle */
++			buffer_info->skb = skb;
++			goto next_desc;
++		}
++
++		/* adjust length to remove Ethernet CRC */
++		length -= 4;
++
++		/* probably a little skewed due to removing CRC */
++		total_rx_bytes += length;
++		total_rx_packets++;
++
++		/* code added for copybreak, this should improve
++		 * performance for small packets with large amounts
++		 * of reassembly being done in the stack */
++		if (length < copybreak) {
++			struct sk_buff *new_skb =
++			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
++			if (new_skb) {
++				skb_reserve(new_skb, NET_IP_ALIGN);
++				memcpy(new_skb->data - NET_IP_ALIGN,
++				       skb->data - NET_IP_ALIGN,
++				       length + NET_IP_ALIGN);
++				/* save the skb in buffer_info as good */
++				buffer_info->skb = skb;
++				skb = new_skb;
++			}
++			/* else just continue with the old one */
++		}
++		/* end copybreak code */
++		skb_put(skb, length);
++
++		/* Receive Checksum Offload */
++		e1000_rx_checksum(adapter,
++				  (u32)(status) |
++				  ((u32)(rx_desc->errors) << 24),
++				  le16_to_cpu(rx_desc->csum), skb);
++
++		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
++
++next_desc:
++		rx_desc->status = 0;
++
++		/* return some buffers to hardware, one at a time is too slow */
++		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
++			adapter->alloc_rx_buf(adapter, cleaned_count);
++			cleaned_count = 0;
++		}
++
++		/* use prefetched values */
++		rx_desc = next_rxd;
++		buffer_info = next_buffer;
++	}
++	rx_ring->next_to_clean = i;
++
++	cleaned_count = e1000_desc_unused(rx_ring);
++	if (cleaned_count)
++		adapter->alloc_rx_buf(adapter, cleaned_count);
++
++	adapter->total_rx_packets += total_rx_packets;
++	adapter->total_rx_bytes += total_rx_bytes;
++	return cleaned;
++}
++
++static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
++			       u16 length)
++{
++	bi->page = NULL;
++	skb->len += length;
++	skb->data_len += length;
++	skb->truesize += length;
++}
++
++static void e1000_put_txbuf(struct e1000_adapter *adapter,
++			     struct e1000_buffer *buffer_info)
++{
++	if (buffer_info->dma) {
++		pci_unmap_page(adapter->pdev, buffer_info->dma,
++			       buffer_info->length, PCI_DMA_TODEVICE);
++		buffer_info->dma = 0;
++	}
++	if (buffer_info->skb) {
++		dev_kfree_skb_any(buffer_info->skb);
++		buffer_info->skb = NULL;
++	}
++}
++
++static void e1000_print_tx_hang(struct e1000_adapter *adapter)
++{
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	unsigned int i = tx_ring->next_to_clean;
++	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
++	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
++	struct net_device *netdev = adapter->netdev;
++
++	/* detected Tx unit hang */
++	ndev_err(netdev,
++		 "Detected Tx Unit Hang:\n"
++		 "  TDH                  <%x>\n"
++		 "  TDT                  <%x>\n"
++		 "  next_to_use          <%x>\n"
++		 "  next_to_clean        <%x>\n"
++		 "buffer_info[next_to_clean]:\n"
++		 "  time_stamp           <%lx>\n"
++		 "  next_to_watch        <%x>\n"
++		 "  jiffies              <%lx>\n"
++		 "  next_to_watch.status <%x>\n",
++		 readl(adapter->hw.hw_addr + tx_ring->head),
++		 readl(adapter->hw.hw_addr + tx_ring->tail),
++		 tx_ring->next_to_use,
++		 tx_ring->next_to_clean,
++		 tx_ring->buffer_info[eop].time_stamp,
++		 eop,
++		 jiffies,
++		 eop_desc->upper.fields.status);
++}
++
++/**
++ * e1000_clean_tx_irq - Reclaim resources after transmit completes
++ * @adapter: board private structure
++ *
++ * the return value indicates whether actual cleaning was done, there
++ * is no guarantee that everything was cleaned
++ **/
++static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
++{
++	struct net_device *netdev = adapter->netdev;
++	struct e1000_hw *hw = &adapter->hw;
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	struct e1000_tx_desc *tx_desc, *eop_desc;
++	struct e1000_buffer *buffer_info;
++	unsigned int i, eop;
++	unsigned int count = 0;
++	bool cleaned = 0;
++	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
++
++	i = tx_ring->next_to_clean;
++	eop = tx_ring->buffer_info[i].next_to_watch;
++	eop_desc = E1000_TX_DESC(*tx_ring, eop);
++
++	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
++		for (cleaned = 0; !cleaned; ) {
++			tx_desc = E1000_TX_DESC(*tx_ring, i);
++			buffer_info = &tx_ring->buffer_info[i];
++			cleaned = (i == eop);
++
++			if (cleaned) {
++				struct sk_buff *skb = buffer_info->skb;
++				unsigned int segs, bytecount;
++				segs = skb_shinfo(skb)->gso_segs ?: 1;
++				/* multiply data chunks by size of headers */
++				bytecount = ((segs - 1) * skb_headlen(skb)) +
++					    skb->len;
++				total_tx_packets += segs;
++				total_tx_bytes += bytecount;
++			}
++
++			e1000_put_txbuf(adapter, buffer_info);
++			tx_desc->upper.data = 0;
++
++			i++;
++			if (i == tx_ring->count)
++				i = 0;
++		}
++
++		eop = tx_ring->buffer_info[i].next_to_watch;
++		eop_desc = E1000_TX_DESC(*tx_ring, eop);
++#define E1000_TX_WEIGHT 64
++		/* weight of a sort for tx, to avoid endless transmit cleanup */
++		if (count++ == E1000_TX_WEIGHT)
++			break;
++	}
++
++	tx_ring->next_to_clean = i;
++
++#define TX_WAKE_THRESHOLD 32
++	if (cleaned && netif_carrier_ok(netdev) &&
++		     e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
++		/* Make sure that anybody stopping the queue after this
++		 * sees the new next_to_clean.
++		 */
++		smp_mb();
++
++		if (netif_queue_stopped(netdev) &&
++		    !(test_bit(__E1000_DOWN, &adapter->state))) {
++			netif_wake_queue(netdev);
++			++adapter->restart_queue;
++		}
++	}
++
++	if (adapter->detect_tx_hung) {
++		/* Detect a transmit hang in hardware, this serializes the
++		 * check with the clearing of time_stamp and movement of i */
++		adapter->detect_tx_hung = 0;
++		if (tx_ring->buffer_info[eop].dma &&
++		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
++			       + (adapter->tx_timeout_factor * HZ))
++		    && !(er32(STATUS) &
++			 E1000_STATUS_TXOFF)) {
++			e1000_print_tx_hang(adapter);
++			netif_stop_queue(netdev);
++		}
++	}
++	adapter->total_tx_bytes += total_tx_bytes;
++	adapter->total_tx_packets += total_tx_packets;
++	return cleaned;
++}
++
++/**
++ * e1000_clean_rx_irq_jumbo - Send received data up the network stack; legacy
++ * @adapter: board private structure
++ *
++ * the return value indicates whether actual cleaning was done, there
++ * is no guarantee that everything was cleaned
++ **/
++static bool e1000_clean_rx_irq_jumbo(struct e1000_adapter *adapter,
++				     int *work_done, int work_to_do)
++{
++	struct net_device *netdev = adapter->netdev;
++	struct pci_dev *pdev = adapter->pdev;
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++	struct e1000_rx_desc *rx_desc, *next_rxd;
++	struct e1000_buffer *buffer_info, *next_buffer;
++	u32 length;
++	unsigned int i;
++	int cleaned_count = 0;
++	bool cleaned = 0;
++	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
++
++	i = rx_ring->next_to_clean;
++	rx_desc = E1000_RX_DESC(*rx_ring, i);
++	buffer_info = &rx_ring->buffer_info[i];
++
++	while (rx_desc->status & E1000_RXD_STAT_DD) {
++		struct sk_buff *skb;
++		u8 status;
++
++		if (*work_done >= work_to_do)
++			break;
++		(*work_done)++;
++
++		status = rx_desc->status;
++		skb = buffer_info->skb;
++		buffer_info->skb = NULL;
++
++		i++;
++		if (i == rx_ring->count)
++			i = 0;
++		next_rxd = E1000_RX_DESC(*rx_ring, i);
++		prefetch(next_rxd);
++
++		next_buffer = &rx_ring->buffer_info[i];
++
++		cleaned = 1;
++		cleaned_count++;
++		pci_unmap_page(pdev,
++			       buffer_info->dma,
++			       PAGE_SIZE,
++			       PCI_DMA_FROMDEVICE);
++		buffer_info->dma = 0;
++
++		length = le16_to_cpu(rx_desc->length);
++
++		/* errors is only valid for DD + EOP descriptors */
++		if ((status & E1000_RXD_STAT_EOP) &&
++		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
++			/* recycle both page and skb */
++			buffer_info->skb = skb;
++			/* an error means any chain goes out the window too */
++			if (rx_ring->rx_skb_top)
++				dev_kfree_skb(rx_ring->rx_skb_top);
++			rx_ring->rx_skb_top = NULL;
++			goto next_desc;
++		}
++
++#define rxtop rx_ring->rx_skb_top
++		if (!(status & E1000_RXD_STAT_EOP)) {
++			/* this descriptor is only the beginning (or middle) */
++			if (!rxtop) {
++				/* this is the beginning of a chain */
++				rxtop = skb;
++				skb_fill_page_desc(rxtop, 0, buffer_info->page,
++						   0, length);
++			} else {
++				/* this is the middle of a chain */
++				skb_fill_page_desc(rxtop,
++						   skb_shinfo(rxtop)->nr_frags,
++						   buffer_info->page, 0,
++						   length);
++				/* re-use the skb, only consumed the page */
++				buffer_info->skb = skb;
++			}
++			e1000_consume_page(buffer_info, rxtop, length);
++			goto next_desc;
++		} else {
++			if (rxtop) {
++				/* end of the chain */
++				skb_fill_page_desc(rxtop,
++				    skb_shinfo(rxtop)->nr_frags,
++				    buffer_info->page, 0, length);
++				/* re-use the current skb, we only consumed the
++				 * page */
++				buffer_info->skb = skb;
++				skb = rxtop;
++				rxtop = NULL;
++				e1000_consume_page(buffer_info, skb, length);
++			} else {
++				/* no chain, got EOP, this buf is the packet
++				 * copybreak to save the put_page/alloc_page */
++				if (length <= copybreak &&
++				    skb_tailroom(skb) >= length) {
++					u8 *vaddr;
++					vaddr = kmap_atomic(buffer_info->page,
++							   KM_SKB_DATA_SOFTIRQ);
++					memcpy(skb_tail_pointer(skb),
++					       vaddr, length);
++					kunmap_atomic(vaddr,
++						      KM_SKB_DATA_SOFTIRQ);
++					/* re-use the page, so don't erase
++					 * buffer_info->page */
++					skb_put(skb, length);
++				} else {
++					skb_fill_page_desc(skb, 0,
++							   buffer_info->page, 0,
++							   length);
++					e1000_consume_page(buffer_info, skb,
++							   length);
++				}
++			}
++		}
++
++		/* Receive Checksum Offload XXX recompute due to CRC strip? */
++		e1000_rx_checksum(adapter,
++				  (u32)(status) |
++				  ((u32)(rx_desc->errors) << 24),
++				  le16_to_cpu(rx_desc->csum), skb);
++
++		pskb_trim(skb, skb->len - 4);
++
++		/* probably a little skewed due to removing CRC */
++		total_rx_bytes += skb->len;
++		total_rx_packets++;
++
++		/* eth type trans needs skb->data to point to something */
++		if (!pskb_may_pull(skb, ETH_HLEN)) {
++			ndev_err(netdev, "__pskb_pull_tail failed.\n");
++			dev_kfree_skb(skb);
++			goto next_desc;
++		}
++
++		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
++
++next_desc:
++		rx_desc->status = 0;
++
++		/* return some buffers to hardware, one at a time is too slow */
++		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
++			adapter->alloc_rx_buf(adapter, cleaned_count);
++			cleaned_count = 0;
++		}
++
++		/* use prefetched values */
++		rx_desc = next_rxd;
++		buffer_info = next_buffer;
++	}
++	rx_ring->next_to_clean = i;
++
++	cleaned_count = e1000_desc_unused(rx_ring);
++	if (cleaned_count)
++		adapter->alloc_rx_buf(adapter, cleaned_count);
++
++	adapter->total_rx_packets += total_rx_packets;
++	adapter->total_rx_bytes += total_rx_bytes;
++	return cleaned;
++}
++
++/**
++ * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
++ * @adapter: board private structure
++ *
++ * the return value indicates whether actual cleaning was done, there
++ * is no guarantee that everything was cleaned
++ **/
++static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
++				  int *work_done, int work_to_do)
++{
++	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
++	struct net_device *netdev = adapter->netdev;
++	struct pci_dev *pdev = adapter->pdev;
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++	struct e1000_buffer *buffer_info, *next_buffer;
++	struct e1000_ps_page *ps_page;
++	struct sk_buff *skb;
++	unsigned int i, j;
++	u32 length, staterr;
++	int cleaned_count = 0;
++	bool cleaned = 0;
++	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
++
++	i = rx_ring->next_to_clean;
++	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
++	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
++	buffer_info = &rx_ring->buffer_info[i];
++
++	while (staterr & E1000_RXD_STAT_DD) {
++		if (*work_done >= work_to_do)
++			break;
++		(*work_done)++;
++		skb = buffer_info->skb;
++
++		/* in the packet split case this is header only */
++		prefetch(skb->data - NET_IP_ALIGN);
++
++		i++;
++		if (i == rx_ring->count)
++			i = 0;
++		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
++		prefetch(next_rxd);
++
++		next_buffer = &rx_ring->buffer_info[i];
++
++		cleaned = 1;
++		cleaned_count++;
++		pci_unmap_single(pdev, buffer_info->dma,
++				 adapter->rx_ps_bsize0,
++				 PCI_DMA_FROMDEVICE);
++		buffer_info->dma = 0;
++
++		if (!(staterr & E1000_RXD_STAT_EOP)) {
++			ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
++				 "up the full packet\n", netdev->name);
++			dev_kfree_skb_irq(skb);
++			goto next_desc;
++		}
++
++		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
++			dev_kfree_skb_irq(skb);
++			goto next_desc;
++		}
++
++		length = le16_to_cpu(rx_desc->wb.middle.length0);
++
++		if (!length) {
++			ndev_dbg(netdev, "%s: Last part of the packet spanning"
++				 " multiple descriptors\n", netdev->name);
++			dev_kfree_skb_irq(skb);
++			goto next_desc;
++		}
++
++		/* Good Receive */
++		skb_put(skb, length);
++
++		{
++		/* this looks ugly, but it seems compiler issues make it
++		   more efficient than reusing j */
++		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
++
++		/* page alloc/put takes too long and effects small packet
++		 * throughput, so unsplit small packets and save the alloc/put*/
++		if (l1 && (l1 <= copybreak) &&
++		    ((length + l1) <= adapter->rx_ps_bsize0)) {
++			u8 *vaddr;
++
++			ps_page = &rx_ring->ps_pages[i * PS_PAGE_BUFFERS];
++
++			/* there is no documentation about how to call
++			 * kmap_atomic, so we can't hold the mapping
++			 * very long */
++			pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
++				PAGE_SIZE, PCI_DMA_FROMDEVICE);
++			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
++			memcpy(skb_tail_pointer(skb), vaddr, l1);
++			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
++			pci_dma_sync_single_for_device(pdev, ps_page->dma,
++				PAGE_SIZE, PCI_DMA_FROMDEVICE);
++			/* remove the CRC */
++			l1 -= 4;
++			skb_put(skb, l1);
++			goto copydone;
++		} /* if */
++		}
++
++		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
++			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
++			if (!length)
++				break;
++
++			ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS) + j];
++			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
++				       PCI_DMA_FROMDEVICE);
++			ps_page->dma = 0;
++			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
++			ps_page->page = NULL;
++			skb->len += length;
++			skb->data_len += length;
++			skb->truesize += length;
++		}
++
++		/* strip the ethernet crc, problem is we're using pages now so
++		 * this whole operation can get a little cpu intensive */
++		pskb_trim(skb, skb->len - 4);
++
++copydone:
++		total_rx_bytes += skb->len;
++		total_rx_packets++;
++
++		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
++			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
++
++		if (rx_desc->wb.upper.header_status &
++			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
++			adapter->rx_hdr_split++;
++
++		e1000_receive_skb(adapter, netdev, skb,
++				  staterr, rx_desc->wb.middle.vlan);
++
++next_desc:
++		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
++		buffer_info->skb = NULL;
++
++		/* return some buffers to hardware, one at a time is too slow */
++		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
++			adapter->alloc_rx_buf(adapter, cleaned_count);
++			cleaned_count = 0;
++		}
++
++		/* use prefetched values */
++		rx_desc = next_rxd;
++		buffer_info = next_buffer;
++
++		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
++	}
++	rx_ring->next_to_clean = i;
++
++	cleaned_count = e1000_desc_unused(rx_ring);
++	if (cleaned_count)
++		adapter->alloc_rx_buf(adapter, cleaned_count);
++
++	adapter->total_rx_packets += total_rx_packets;
++	adapter->total_rx_bytes += total_rx_bytes;
++	return cleaned;
++}
++
++/**
++ * e1000_clean_rx_ring - Free Rx Buffers per Queue
++ * @adapter: board private structure
++ **/
++static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
++{
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++	struct e1000_buffer *buffer_info;
++	struct e1000_ps_page *ps_page;
++	struct pci_dev *pdev = adapter->pdev;
++	unsigned long size;
++	unsigned int i, j;
++
++	/* Free all the Rx ring sk_buffs */
++	for (i = 0; i < rx_ring->count; i++) {
++		buffer_info = &rx_ring->buffer_info[i];
++		if (buffer_info->dma) {
++			if (adapter->clean_rx == e1000_clean_rx_irq)
++				pci_unmap_single(pdev, buffer_info->dma,
++						 adapter->rx_buffer_len,
++						 PCI_DMA_FROMDEVICE);
++			else if (adapter->clean_rx == e1000_clean_rx_irq_jumbo)
++				pci_unmap_page(pdev, buffer_info->dma,
++					       PAGE_SIZE, PCI_DMA_FROMDEVICE);
++			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
++				pci_unmap_single(pdev, buffer_info->dma,
++						 adapter->rx_ps_bsize0,
++						 PCI_DMA_FROMDEVICE);
++			buffer_info->dma = 0;
++		}
++
++		if (buffer_info->page) {
++			put_page(buffer_info->page);
++			buffer_info->page = NULL;
++		}
++
++		if (buffer_info->skb) {
++			dev_kfree_skb(buffer_info->skb);
++			buffer_info->skb = NULL;
++		}
++
++		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
++			ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS)
++						     + j];
++			if (!ps_page->page)
++				break;
++			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
++				       PCI_DMA_FROMDEVICE);
++			ps_page->dma = 0;
++			put_page(ps_page->page);
++			ps_page->page = NULL;
++		}
++	}
++
++	/* there also may be some cached data from a chained receive */
++	if (rx_ring->rx_skb_top) {
++		dev_kfree_skb(rx_ring->rx_skb_top);
++		rx_ring->rx_skb_top = NULL;
++	}
++
++	size = sizeof(struct e1000_buffer) * rx_ring->count;
++	memset(rx_ring->buffer_info, 0, size);
++	size = sizeof(struct e1000_ps_page)
++	       * (rx_ring->count * PS_PAGE_BUFFERS);
++	memset(rx_ring->ps_pages, 0, size);
++
++	/* Zero out the descriptor ring */
++	memset(rx_ring->desc, 0, rx_ring->size);
++
++	rx_ring->next_to_clean = 0;
++	rx_ring->next_to_use = 0;
++
++	writel(0, adapter->hw.hw_addr + rx_ring->head);
++	writel(0, adapter->hw.hw_addr + rx_ring->tail);
++}
++
++/**
++ * e1000_intr_msi - Interrupt Handler
++ * @irq: interrupt number
++ * @data: pointer to a network interface device structure
++ **/
++static irqreturn_t e1000_intr_msi(int irq, void *data)
++{
++	struct net_device *netdev = data;
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	u32 icr = er32(ICR);
++
++	/* read ICR disables interrupts using IAM, so keep up with our
++	 * enable/disable accounting */
++	atomic_inc(&adapter->irq_sem);
++
++	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
++		hw->mac.get_link_status = 1;
++		/* ICH8 workaround-- Call gig speed drop workaround on cable
++		 * disconnect (LSC) before accessing any PHY registers */
++		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
++		    (!(er32(STATUS) & E1000_STATUS_LU)))
++			e1000_gig_downshift_workaround_ich8lan(hw);
++
++		/* 80003ES2LAN workaround-- For packet buffer work-around on
++		 * link down event; disable receives here in the ISR and reset
++		 * adapter in watchdog */
++		if (netif_carrier_ok(netdev) &&
++		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
++			/* disable receives */
++			u32 rctl = er32(RCTL);
++			ew32(RCTL, rctl & ~E1000_RCTL_EN);
++		}
++		/* guard against interrupt when we're going down */
++		if (!test_bit(__E1000_DOWN, &adapter->state))
++			mod_timer(&adapter->watchdog_timer, jiffies + 1);
++	}
++
++	if (netif_rx_schedule_prep(netdev)) {
++		adapter->total_tx_bytes = 0;
++		adapter->total_tx_packets = 0;
++		adapter->total_rx_bytes = 0;
++		adapter->total_rx_packets = 0;
++		__netif_rx_schedule(netdev);
++	} else {
++		atomic_dec(&adapter->irq_sem);
++	}
++
++	return IRQ_HANDLED;
++}
++
++/**
++ * e1000_intr - Interrupt Handler
++ * @irq: interrupt number
++ * @data: pointer to a network interface device structure
++ **/
++static irqreturn_t e1000_intr(int irq, void *data)
++{
++	struct net_device *netdev = data;
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++
++	u32 rctl, icr = er32(ICR);
++	if (!icr)
++		return IRQ_NONE;  /* Not our interrupt */
++
++	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
++	 * not set, then the adapter didn't send an interrupt */
++	if (!(icr & E1000_ICR_INT_ASSERTED))
++		return IRQ_NONE;
++
++	/* Interrupt Auto-Mask...upon reading ICR,
++	 * interrupts are masked.  No need for the
++	 * IMC write, but it does mean we should
++	 * account for it ASAP. */
++	atomic_inc(&adapter->irq_sem);
++
++	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
++		hw->mac.get_link_status = 1;
++		/* ICH8 workaround-- Call gig speed drop workaround on cable
++		 * disconnect (LSC) before accessing any PHY registers */
++		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
++		    (!(er32(STATUS) & E1000_STATUS_LU)))
++			e1000_gig_downshift_workaround_ich8lan(hw);
++
++		/* 80003ES2LAN workaround--
++		 * For packet buffer work-around on link down event;
++		 * disable receives here in the ISR and
++		 * reset adapter in watchdog
++		 */
++		if (netif_carrier_ok(netdev) &&
++		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
++			/* disable receives */
++			rctl = er32(RCTL);
++			ew32(RCTL, rctl & ~E1000_RCTL_EN);
++		}
++		/* guard against interrupt when we're going down */
++		if (!test_bit(__E1000_DOWN, &adapter->state))
++			mod_timer(&adapter->watchdog_timer, jiffies + 1);
++	}
++
++	if (netif_rx_schedule_prep(netdev)) {
++		adapter->total_tx_bytes = 0;
++		adapter->total_tx_packets = 0;
++		adapter->total_rx_bytes = 0;
++		adapter->total_rx_packets = 0;
++		__netif_rx_schedule(netdev);
++	} else {
++		atomic_dec(&adapter->irq_sem);
++	}
++
++	return IRQ_HANDLED;
++}
++
++static int e1000_request_irq(struct e1000_adapter *adapter)
++{
++	struct net_device *netdev = adapter->netdev;
++	void (*handler) = &e1000_intr;
++	int irq_flags = IRQF_SHARED;
++	int err;
++
++	err = pci_enable_msi(adapter->pdev);
++	if (err) {
++		ndev_warn(netdev,
++		 "Unable to allocate MSI interrupt Error: %d\n", err);
++	} else {
++		adapter->flags |= FLAG_MSI_ENABLED;
++		handler = &e1000_intr_msi;
++		irq_flags = 0;
++	}
++
++	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
++			  netdev);
++	if (err) {
++		if (adapter->flags & FLAG_MSI_ENABLED)
++			pci_disable_msi(adapter->pdev);
++		ndev_err(netdev,
++		       "Unable to allocate interrupt Error: %d\n", err);
++	}
++
++	return err;
++}
++
++static void e1000_free_irq(struct e1000_adapter *adapter)
++{
++	struct net_device *netdev = adapter->netdev;
++
++	free_irq(adapter->pdev->irq, netdev);
++	if (adapter->flags & FLAG_MSI_ENABLED) {
++		pci_disable_msi(adapter->pdev);
++		adapter->flags &= ~FLAG_MSI_ENABLED;
++	}
++}
++
++/**
++ * e1000_irq_disable - Mask off interrupt generation on the NIC
++ **/
++static void e1000_irq_disable(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++
++	atomic_inc(&adapter->irq_sem);
++	ew32(IMC, ~0);
++	e1e_flush();
++	synchronize_irq(adapter->pdev->irq);
++}
++
++/**
++ * e1000_irq_enable - Enable default interrupt generation settings
++ **/
++static void e1000_irq_enable(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++
++	if (atomic_dec_and_test(&adapter->irq_sem)) {
++		ew32(IMS, IMS_ENABLE_MASK);
++		e1e_flush();
++	}
++}
++
++/**
++ * e1000_get_hw_control - get control of the h/w from f/w
++ * @adapter: address of board private structure
++ *
++ * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
++ * For ASF and Pass Through versions of f/w this means that
++ * the driver is loaded. For AMT version (only with 82573)
++ * of the f/w this means that the network i/f is open.
++ **/
++static void e1000_get_hw_control(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u32 ctrl_ext;
++	u32 swsm;
++
++	/* Let firmware know the driver has taken over */
++	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
++		swsm = er32(SWSM);
++		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
++	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
++		ctrl_ext = er32(CTRL_EXT);
++		ew32(CTRL_EXT,
++				ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
++	}
++}
++
++/**
++ * e1000_release_hw_control - release control of the h/w to f/w
++ * @adapter: address of board private structure
++ *
++ * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
++ * For ASF and Pass Through versions of f/w this means that the
++ * driver is no longer loaded. For AMT version (only with 82573) i
++ * of the f/w this means that the network i/f is closed.
++ *
++ **/
++static void e1000_release_hw_control(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u32 ctrl_ext;
++	u32 swsm;
++
++	/* Let firmware taken over control of h/w */
++	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
++		swsm = er32(SWSM);
++		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
++	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
++		ctrl_ext = er32(CTRL_EXT);
++		ew32(CTRL_EXT,
++				ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
++	}
++}
++
++static void e1000_release_manageability(struct e1000_adapter *adapter)
++{
++	if (adapter->flags & FLAG_MNG_PT_ENABLED) {
++		struct e1000_hw *hw = &adapter->hw;
++
++		u32 manc = er32(MANC);
++
++		/* re-enable hardware interception of ARP */
++		manc |= E1000_MANC_ARP_EN;
++		manc &= ~E1000_MANC_EN_MNG2HOST;
++
++		/* don't explicitly have to mess with MANC2H since
++		 * MANC has an enable disable that gates MANC2H */
++		ew32(MANC, manc);
++	}
++}
++
++/**
++ * @e1000_alloc_ring - allocate memory for a ring structure
++ **/
++static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
++				struct e1000_ring *ring)
++{
++	struct pci_dev *pdev = adapter->pdev;
++
++	ring->desc = pci_alloc_consistent(pdev, ring->size, &ring->dma);
++	if (!ring->desc)
++		return -ENOMEM;
++
++	return 0;
++}
++
++/**
++ * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
++ * @adapter: board private structure
++ *
++ * Return 0 on success, negative on failure
++ **/
++int e1000_setup_tx_resources(struct e1000_adapter *adapter)
++{
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	int err = -ENOMEM, size;
++
++	size = sizeof(struct e1000_buffer) * tx_ring->count;
++	tx_ring->buffer_info = vmalloc(size);
++	if (!tx_ring->buffer_info)
++		goto err;
++	memset(tx_ring->buffer_info, 0, size);
++
++	/* round up to nearest 4K */
++	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
++	tx_ring->size = ALIGN(tx_ring->size, 4096);
++
++	err = e1000_alloc_ring_dma(adapter, tx_ring);
++	if (err)
++		goto err;
++
++	tx_ring->next_to_use = 0;
++	tx_ring->next_to_clean = 0;
++	spin_lock_init(&adapter->tx_queue_lock);
++
++	return 0;
++err:
++	vfree(tx_ring->buffer_info);
++	ndev_err(adapter->netdev,
++	"Unable to allocate memory for the transmit descriptor ring\n");
++	return err;
++}
++
++/**
++ * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
++ * @adapter: board private structure
++ *
++ * Returns 0 on success, negative on failure
++ **/
++int e1000_setup_rx_resources(struct e1000_adapter *adapter)
++{
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++	int size, desc_len, err = -ENOMEM;
++
++	size = sizeof(struct e1000_buffer) * rx_ring->count;
++	rx_ring->buffer_info = vmalloc(size);
++	if (!rx_ring->buffer_info)
++		goto err;
++	memset(rx_ring->buffer_info, 0, size);
++
++	rx_ring->ps_pages = kcalloc(rx_ring->count * PS_PAGE_BUFFERS,
++				    sizeof(struct e1000_ps_page),
++				    GFP_KERNEL);
++	if (!rx_ring->ps_pages)
++		goto err;
++
++	desc_len = sizeof(union e1000_rx_desc_packet_split);
++
++	/* Round up to nearest 4K */
++	rx_ring->size = rx_ring->count * desc_len;
++	rx_ring->size = ALIGN(rx_ring->size, 4096);
++
++	err = e1000_alloc_ring_dma(adapter, rx_ring);
++	if (err)
++		goto err;
++
++	rx_ring->next_to_clean = 0;
++	rx_ring->next_to_use = 0;
++	rx_ring->rx_skb_top = NULL;
++
++	return 0;
++err:
++	vfree(rx_ring->buffer_info);
++	kfree(rx_ring->ps_pages);
++	ndev_err(adapter->netdev,
++	"Unable to allocate memory for the transmit descriptor ring\n");
++	return err;
++}
++
++/**
++ * e1000_clean_tx_ring - Free Tx Buffers
++ * @adapter: board private structure
++ **/
++static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
++{
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	struct e1000_buffer *buffer_info;
++	unsigned long size;
++	unsigned int i;
++
++	for (i = 0; i < tx_ring->count; i++) {
++		buffer_info = &tx_ring->buffer_info[i];
++		e1000_put_txbuf(adapter, buffer_info);
++	}
++
++	size = sizeof(struct e1000_buffer) * tx_ring->count;
++	memset(tx_ring->buffer_info, 0, size);
++
++	memset(tx_ring->desc, 0, tx_ring->size);
++
++	tx_ring->next_to_use = 0;
++	tx_ring->next_to_clean = 0;
++	tx_ring->last_tx_tso = 0;
++
++	writel(0, adapter->hw.hw_addr + tx_ring->head);
++	writel(0, adapter->hw.hw_addr + tx_ring->tail);
++}
++
++/**
++ * e1000_free_tx_resources - Free Tx Resources per Queue
++ * @adapter: board private structure
++ *
++ * Free all transmit software resources
++ **/
++void e1000_free_tx_resources(struct e1000_adapter *adapter)
++{
++	struct pci_dev *pdev = adapter->pdev;
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++
++	e1000_clean_tx_ring(adapter);
++
++	vfree(tx_ring->buffer_info);
++	tx_ring->buffer_info = NULL;
++
++	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
++	tx_ring->desc = NULL;
++}
++
++/**
++ * e1000_free_rx_resources - Free Rx Resources
++ * @adapter: board private structure
++ *
++ * Free all receive software resources
++ **/
++
++void e1000_free_rx_resources(struct e1000_adapter *adapter)
++{
++	struct pci_dev *pdev = adapter->pdev;
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++
++	e1000_clean_rx_ring(adapter);
++
++	vfree(rx_ring->buffer_info);
++	rx_ring->buffer_info = NULL;
++
++	kfree(rx_ring->ps_pages);
++	rx_ring->ps_pages = NULL;
++
++	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
++	rx_ring->desc = NULL;
++}
++
++/**
++ * e1000_update_itr - update the dynamic ITR value based on statistics
++ *      Stores a new ITR value based on packets and byte
++ *      counts during the last interrupt.  The advantage of per interrupt
++ *      computation is faster updates and more accurate ITR for the current
++ *      traffic pattern.  Constants in this function were computed
++ *      based on theoretical maximum wire speed and thresholds were set based
++ *      on testing data as well as attempting to minimize response time
++ *      while increasing bulk throughput.
++ *      this functionality is controlled by the InterruptThrottleRate module
++ *      parameter (see e1000_param.c)
++ * @adapter: pointer to adapter
++ * @itr_setting: current adapter->itr
++ * @packets: the number of packets during this measurement interval
++ * @bytes: the number of bytes during this measurement interval
++ **/
++static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
++				     u16 itr_setting, int packets,
++				     int bytes)
++{
++	unsigned int retval = itr_setting;
++
++	if (packets == 0)
++		goto update_itr_done;
++
++	switch (itr_setting) {
++	case lowest_latency:
++		/* handle TSO and jumbo frames */
++		if (bytes/packets > 8000)
++			retval = bulk_latency;
++		else if ((packets < 5) && (bytes > 512)) {
++			retval = low_latency;
++		}
++		break;
++	case low_latency:  /* 50 usec aka 20000 ints/s */
++		if (bytes > 10000) {
++			/* this if handles the TSO accounting */
++			if (bytes/packets > 8000) {
++				retval = bulk_latency;
++			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
++				retval = bulk_latency;
++			} else if ((packets > 35)) {
++				retval = lowest_latency;
++			}
++		} else if (bytes/packets > 2000) {
++			retval = bulk_latency;
++		} else if (packets <= 2 && bytes < 512) {
++			retval = lowest_latency;
++		}
++		break;
++	case bulk_latency: /* 250 usec aka 4000 ints/s */
++		if (bytes > 25000) {
++			if (packets > 35) {
++				retval = low_latency;
++			}
++		} else if (bytes < 6000) {
++			retval = low_latency;
++		}
++		break;
++	}
++
++update_itr_done:
++	return retval;
++}
++
++static void e1000_set_itr(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u16 current_itr;
++	u32 new_itr = adapter->itr;
++
++	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
++	if (adapter->link_speed != SPEED_1000) {
++		current_itr = 0;
++		new_itr = 4000;
++		goto set_itr_now;
++	}
++
++	adapter->tx_itr = e1000_update_itr(adapter,
++				    adapter->tx_itr,
++				    adapter->total_tx_packets,
++				    adapter->total_tx_bytes);
++	/* conservative mode (itr 3) eliminates the lowest_latency setting */
++	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
++		adapter->tx_itr = low_latency;
++
++	adapter->rx_itr = e1000_update_itr(adapter,
++				    adapter->rx_itr,
++				    adapter->total_rx_packets,
++				    adapter->total_rx_bytes);
++	/* conservative mode (itr 3) eliminates the lowest_latency setting */
++	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
++		adapter->rx_itr = low_latency;
++
++	current_itr = max(adapter->rx_itr, adapter->tx_itr);
++
++	switch (current_itr) {
++	/* counts and packets in update_itr are dependent on these numbers */
++	case lowest_latency:
++		new_itr = 70000;
++		break;
++	case low_latency:
++		new_itr = 20000; /* aka hwitr = ~200 */
++		break;
++	case bulk_latency:
++		new_itr = 4000;
++		break;
++	default:
++		break;
++	}
++
++set_itr_now:
++	if (new_itr != adapter->itr) {
++		/* this attempts to bias the interrupt rate towards Bulk
++		 * by adding intermediate steps when interrupt rate is
++		 * increasing */
++		new_itr = new_itr > adapter->itr ?
++			     min(adapter->itr + (new_itr >> 2), new_itr) :
++			     new_itr;
++		adapter->itr = new_itr;
++		ew32(ITR, 1000000000 / (new_itr * 256));
++	}
++}
++
++/**
++ * e1000_clean - NAPI Rx polling callback
++ * @adapter: board private structure
++ **/
++static int e1000_clean(struct net_device *poll_dev, int *budget)
++{
++	struct e1000_adapter *adapter;
++	int work_to_do = min(*budget, poll_dev->quota);
++	int tx_cleaned = 0, work_done = 0;
++
++	/* Must NOT use netdev_priv macro here. */
++	adapter = poll_dev->priv;
++
++	/* Keep link state information with original netdev */
++	if (!netif_carrier_ok(poll_dev))
++		goto quit_polling;
++
++	/* e1000_clean is called per-cpu.  This lock protects
++	 * tx_ring from being cleaned by multiple cpus
++	 * simultaneously.  A failure obtaining the lock means
++	 * tx_ring is currently being cleaned anyway. */
++	if (spin_trylock(&adapter->tx_queue_lock)) {
++		tx_cleaned = e1000_clean_tx_irq(adapter);
++		spin_unlock(&adapter->tx_queue_lock);
++	}
++
++	adapter->clean_rx(adapter, &work_done, work_to_do);
++	*budget -= work_done;
++	poll_dev->quota -= work_done;
++
++	/* If no Tx and not enough Rx work done, exit the polling mode */
++	if ((!tx_cleaned && (work_done == 0)) ||
++	   !netif_running(poll_dev)) {
++quit_polling:
++		if (adapter->itr_setting & 3)
++			e1000_set_itr(adapter);
++		netif_rx_complete(poll_dev);
++		if (test_bit(__E1000_DOWN, &adapter->state))
++			atomic_dec(&adapter->irq_sem);
++		else
++			e1000_irq_enable(adapter);
++		return 0;
++	}
++
++	return 1;
++}
++
++static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	u32 vfta, index;
++
++	/* don't update vlan cookie if already programmed */
++	if ((adapter->hw.mng_cookie.status &
++	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
++	    (vid == adapter->mng_vlan_id))
++		return;
++	/* add VID to filter table */
++	index = (vid >> 5) & 0x7F;
++	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
++	vfta |= (1 << (vid & 0x1F));
++	e1000_write_vfta(hw, index, vfta);
++}
++
++static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	u32 vfta, index;
++
++	e1000_irq_disable(adapter);
++	vlan_group_set_device(adapter->vlgrp, vid, NULL);
++	e1000_irq_enable(adapter);
++
++	if ((adapter->hw.mng_cookie.status &
++	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
++	    (vid == adapter->mng_vlan_id)) {
++		/* release control to f/w */
++		e1000_release_hw_control(adapter);
++		return;
++	}
++
++	/* remove VID from filter table */
++	index = (vid >> 5) & 0x7F;
++	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
++	vfta &= ~(1 << (vid & 0x1F));
++	e1000_write_vfta(hw, index, vfta);
++}
++
++static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
++{
++	struct net_device *netdev = adapter->netdev;
++	u16 vid = adapter->hw.mng_cookie.vlan_id;
++	u16 old_vid = adapter->mng_vlan_id;
++
++	if (!adapter->vlgrp)
++		return;
++
++	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
++		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
++		if (adapter->hw.mng_cookie.status &
++			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
++			e1000_vlan_rx_add_vid(netdev, vid);
++			adapter->mng_vlan_id = vid;
++		}
++
++		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
++				(vid != old_vid) &&
++		    !vlan_group_get_device(adapter->vlgrp, old_vid))
++			e1000_vlan_rx_kill_vid(netdev, old_vid);
++	} else {
++		adapter->mng_vlan_id = vid;
++	}
++}
++
++
++static void e1000_vlan_rx_register(struct net_device *netdev,
++				   struct vlan_group *grp)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	u32 ctrl, rctl;
++
++	e1000_irq_disable(adapter);
++	adapter->vlgrp = grp;
++
++	if (grp) {
++		/* enable VLAN tag insert/strip */
++		ctrl = er32(CTRL);
++		ctrl |= E1000_CTRL_VME;
++		ew32(CTRL, ctrl);
++
++		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
++			/* enable VLAN receive filtering */
++			rctl = er32(RCTL);
++			rctl |= E1000_RCTL_VFE;
++			rctl &= ~E1000_RCTL_CFIEN;
++			ew32(RCTL, rctl);
++			e1000_update_mng_vlan(adapter);
++		}
++	} else {
++		/* disable VLAN tag insert/strip */
++		ctrl = er32(CTRL);
++		ctrl &= ~E1000_CTRL_VME;
++		ew32(CTRL, ctrl);
++
++		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
++			/* disable VLAN filtering */
++			rctl = er32(RCTL);
++			rctl &= ~E1000_RCTL_VFE;
++			ew32(RCTL, rctl);
++			if (adapter->mng_vlan_id !=
++			    (u16)E1000_MNG_VLAN_NONE) {
++				e1000_vlan_rx_kill_vid(netdev,
++						       adapter->mng_vlan_id);
++				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
++			}
++		}
++	}
++
++	e1000_irq_enable(adapter);
++}
++
++static void e1000_restore_vlan(struct e1000_adapter *adapter)
++{
++	u16 vid;
++
++	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
++
++	if (!adapter->vlgrp)
++		return;
++
++	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
++		if (!vlan_group_get_device(adapter->vlgrp, vid))
++			continue;
++		e1000_vlan_rx_add_vid(adapter->netdev, vid);
++	}
++}
++
++static void e1000_init_manageability(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u32 manc, manc2h;
++
++	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
++		return;
++
++	manc = er32(MANC);
++
++	/* disable hardware interception of ARP */
++	manc &= ~(E1000_MANC_ARP_EN);
++
++	/* enable receiving management packets to the host. this will probably
++	 * generate destination unreachable messages from the host OS, but
++	 * the packets will be handled on SMBUS */
++	manc |= E1000_MANC_EN_MNG2HOST;
++	manc2h = er32(MANC2H);
++#define E1000_MNG2HOST_PORT_623 (1 << 5)
++#define E1000_MNG2HOST_PORT_664 (1 << 6)
++	manc2h |= E1000_MNG2HOST_PORT_623;
++	manc2h |= E1000_MNG2HOST_PORT_664;
++	ew32(MANC2H, manc2h);
++	ew32(MANC, manc);
++}
++
++/**
++ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
++ * @adapter: board private structure
++ *
++ * Configure the Tx unit of the MAC after a reset.
++ **/
++static void e1000_configure_tx(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	u64 tdba;
++	u32 tdlen, tctl, tipg, tarc;
++	u32 ipgr1, ipgr2;
++
++	/* Setup the HW Tx Head and Tail descriptor pointers */
++	tdba = tx_ring->dma;
++	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
++	ew32(TDBAL, (tdba & DMA_32BIT_MASK));
++	ew32(TDBAH, (tdba >> 32));
++	ew32(TDLEN, tdlen);
++	ew32(TDH, 0);
++	ew32(TDT, 0);
++	tx_ring->head = E1000_TDH;
++	tx_ring->tail = E1000_TDT;
++
++	/* Set the default values for the Tx Inter Packet Gap timer */
++	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
++	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
++	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
++
++	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
++		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
++
++	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
++	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
++	ew32(TIPG, tipg);
++
++	/* Set the Tx Interrupt Delay register */
++	ew32(TIDV, adapter->tx_int_delay);
++	/* tx irq moderation */
++	ew32(TADV, adapter->tx_abs_int_delay);
++
++	/* Program the Transmit Control Register */
++	tctl = er32(TCTL);
++	tctl &= ~E1000_TCTL_CT;
++	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
++		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
++
++	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
++		tarc = er32(TARC0);
++		/* set the speed mode bit, we'll clear it if we're not at
++		 * gigabit link later */
++#define SPEED_MODE_BIT (1 << 21)
++		tarc |= SPEED_MODE_BIT;
++		ew32(TARC0, tarc);
++	}
++
++	/* errata: program both queues to unweighted RR */
++	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
++		tarc = er32(TARC0);
++		tarc |= 1;
++		ew32(TARC0, tarc);
++		tarc = er32(TARC1);
++		tarc |= 1;
++		ew32(TARC1, tarc);
++	}
++
++	e1000_config_collision_dist(hw);
++
++	/* Setup Transmit Descriptor Settings for eop descriptor */
++	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
++
++	/* only set IDE if we are delaying interrupts using the timers */
++	if (adapter->tx_int_delay)
++		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
++
++	/* enable Report Status bit */
++	adapter->txd_cmd |= E1000_TXD_CMD_RS;
++
++	ew32(TCTL, tctl);
++
++	adapter->tx_queue_len = adapter->netdev->tx_queue_len;
++}
++
++/**
++ * e1000_setup_rctl - configure the receive control registers
++ * @adapter: Board private structure
++ **/
++#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
++			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
++static void e1000_setup_rctl(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u32 rctl, rfctl;
++	u32 psrctl = 0;
++	u32 pages = 0;
++
++	/* Program MC offset vector base */
++	rctl = er32(RCTL);
++	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
++	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
++		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
++		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
++
++	/* Do not Store bad packets */
++	rctl &= ~E1000_RCTL_SBP;
++
++	/* Enable Long Packet receive */
++	if (adapter->netdev->mtu <= ETH_DATA_LEN)
++		rctl &= ~E1000_RCTL_LPE;
++	else
++		rctl |= E1000_RCTL_LPE;
++
++	/* Setup buffer sizes */
++	rctl &= ~E1000_RCTL_SZ_4096;
++	rctl |= E1000_RCTL_BSEX;
++	switch (adapter->rx_buffer_len) {
++	case 256:
++		rctl |= E1000_RCTL_SZ_256;
++		rctl &= ~E1000_RCTL_BSEX;
++		break;
++	case 512:
++		rctl |= E1000_RCTL_SZ_512;
++		rctl &= ~E1000_RCTL_BSEX;
++		break;
++	case 1024:
++		rctl |= E1000_RCTL_SZ_1024;
++		rctl &= ~E1000_RCTL_BSEX;
++		break;
++	case 2048:
++	default:
++		rctl |= E1000_RCTL_SZ_2048;
++		rctl &= ~E1000_RCTL_BSEX;
++		break;
++	case 4096:
++		rctl |= E1000_RCTL_SZ_4096;
++		break;
++	case 8192:
++		rctl |= E1000_RCTL_SZ_8192;
++		break;
++	case 16384:
++		rctl |= E1000_RCTL_SZ_16384;
++		break;
++	}
++
++#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
++	/*
++	 * 82571 and greater support packet-split where the protocol
++	 * header is placed in skb->data and the packet data is
++	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
++	 * In the case of a non-split, skb->data is linearly filled,
++	 * followed by the page buffers.  Therefore, skb->data is
++	 * sized to hold the largest protocol header.
++	 *
++	 * allocations using alloc_page take too long for regular MTU
++	 * so only enable packet split for jumbo frames
++	 *
++	 * Using pages when the page size is greater than 16k wastes
++	 * a lot of memory, since we allocate 3 pages at all times
++	 * per packet.
++	 */
++	adapter->rx_ps_pages = 0;
++	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
++	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
++		adapter->rx_ps_pages = pages;
++#endif
++	if (adapter->rx_ps_pages) {
++		/* Configure extra packet-split registers */
++		rfctl = er32(RFCTL);
++		rfctl |= E1000_RFCTL_EXTEN;
++		/* disable packet split support for IPv6 extension headers,
++		 * because some malformed IPv6 headers can hang the RX */
++		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
++			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
++
++		ew32(RFCTL, rfctl);
++
++		/* disable the stripping of CRC because it breaks
++		 * BMC firmware connected over SMBUS */
++		rctl |= E1000_RCTL_DTYP_PS /* | E1000_RCTL_SECRC */;
++
++		psrctl |= adapter->rx_ps_bsize0 >>
++			E1000_PSRCTL_BSIZE0_SHIFT;
++
++		switch (adapter->rx_ps_pages) {
++		case 3:
++			psrctl |= PAGE_SIZE <<
++				E1000_PSRCTL_BSIZE3_SHIFT;
++		case 2:
++			psrctl |= PAGE_SIZE <<
++				E1000_PSRCTL_BSIZE2_SHIFT;
++		case 1:
++			psrctl |= PAGE_SIZE >>
++				E1000_PSRCTL_BSIZE1_SHIFT;
++			break;
++		}
++
++		ew32(PSRCTL, psrctl);
++	}
++
++	ew32(RCTL, rctl);
++}
++
++/**
++ * e1000_configure_rx - Configure Receive Unit after Reset
++ * @adapter: board private structure
++ *
++ * Configure the Rx unit of the MAC after a reset.
++ **/
++static void e1000_configure_rx(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct e1000_ring *rx_ring = adapter->rx_ring;
++	u64 rdba;
++	u32 rdlen, rctl, rxcsum, ctrl_ext;
++
++	if (adapter->rx_ps_pages) {
++		/* this is a 32 byte descriptor */
++		rdlen = rx_ring->count *
++			sizeof(union e1000_rx_desc_packet_split);
++		adapter->clean_rx = e1000_clean_rx_irq_ps;
++		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
++	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + VLAN_HLEN + 4) {
++		rdlen = rx_ring->count *
++			sizeof(struct e1000_rx_desc);
++		adapter->clean_rx = e1000_clean_rx_irq_jumbo;
++		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_jumbo;
++	} else {
++		rdlen = rx_ring->count *
++			sizeof(struct e1000_rx_desc);
++		adapter->clean_rx = e1000_clean_rx_irq;
++		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
++	}
++
++	/* disable receives while setting up the descriptors */
++	rctl = er32(RCTL);
++	ew32(RCTL, rctl & ~E1000_RCTL_EN);
++	e1e_flush();
++	msleep(10);
++
++	/* set the Receive Delay Timer Register */
++	ew32(RDTR, adapter->rx_int_delay);
++
++	/* irq moderation */
++	ew32(RADV, adapter->rx_abs_int_delay);
++	if (adapter->itr_setting != 0)
++		ew32(ITR,
++			1000000000 / (adapter->itr * 256));
++
++	ctrl_ext = er32(CTRL_EXT);
++	/* Reset delay timers after every interrupt */
++	ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
++	/* Auto-Mask interrupts upon ICR access */
++	ctrl_ext |= E1000_CTRL_EXT_IAME;
++	ew32(IAM, 0xffffffff);
++	ew32(CTRL_EXT, ctrl_ext);
++	e1e_flush();
++
++	/* Setup the HW Rx Head and Tail Descriptor Pointers and
++	 * the Base and Length of the Rx Descriptor Ring */
++	rdba = rx_ring->dma;
++	ew32(RDBAL, (rdba & DMA_32BIT_MASK));
++	ew32(RDBAH, (rdba >> 32));
++	ew32(RDLEN, rdlen);
++	ew32(RDH, 0);
++	ew32(RDT, 0);
++	rx_ring->head = E1000_RDH;
++	rx_ring->tail = E1000_RDT;
++
++	/* Enable Receive Checksum Offload for TCP and UDP */
++	rxcsum = er32(RXCSUM);
++	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
++		rxcsum |= E1000_RXCSUM_TUOFL;
++
++		/* IPv4 payload checksum for UDP fragments must be
++		 * used in conjunction with packet-split. */
++		if (adapter->rx_ps_pages)
++			rxcsum |= E1000_RXCSUM_IPPCSE;
++	} else {
++		rxcsum &= ~E1000_RXCSUM_TUOFL;
++		/* no need to clear IPPCSE as it defaults to 0 */
++	}
++	ew32(RXCSUM, rxcsum);
++
++	/* Enable early receives on supported devices, only takes effect when
++	 * packet size is equal or larger than the specified value (in 8 byte
++	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
++	if ((adapter->flags & FLAG_HAS_ERT) &&
++	    (adapter->netdev->mtu > ETH_DATA_LEN))
++		ew32(ERT, E1000_ERT_2048);
++
++	/* Enable Receives */
++	ew32(RCTL, rctl);
++}
++
++/**
++ *  e1000_mc_addr_list_update - Update Multicast addresses
++ *  @hw: pointer to the HW structure
++ *  @mc_addr_list: array of multicast addresses to program
++ *  @mc_addr_count: number of multicast addresses to program
++ *  @rar_used_count: the first RAR register free to program
++ *  @rar_count: total number of supported Receive Address Registers
++ *
++ *  Updates the Receive Address Registers and Multicast Table Array.
++ *  The caller must have a packed mc_addr_list of multicast addresses.
++ *  The parameter rar_count will usually be hw->mac.rar_entry_count
++ *  unless there are workarounds that change this.  Currently no func pointer
++ *  exists and all implementations are handled in the generic version of this
++ *  function.
++ **/
++static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
++			       u32 mc_addr_count, u32 rar_used_count,
++			       u32 rar_count)
++{
++	hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
++				        rar_used_count, rar_count);
++}
++
++/**
++ * e1000_set_multi - Multicast and Promiscuous mode set
++ * @netdev: network interface device structure
++ *
++ * The set_multi entry point is called whenever the multicast address
++ * list or the network interface flags are updated.  This routine is
++ * responsible for configuring the hardware for proper multicast,
++ * promiscuous mode, and all-multi behavior.
++ **/
++static void e1000_set_multi(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	struct e1000_mac_info *mac = &hw->mac;
++	struct dev_mc_list *mc_ptr;
++	u8  *mta_list;
++	u32 rctl;
++	int i;
++
++	/* Check for Promiscuous and All Multicast modes */
++
++	rctl = er32(RCTL);
++
++	if (netdev->flags & IFF_PROMISC) {
++		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
++	} else if (netdev->flags & IFF_ALLMULTI) {
++		rctl |= E1000_RCTL_MPE;
++		rctl &= ~E1000_RCTL_UPE;
++	} else {
++		rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
++	}
++
++	ew32(RCTL, rctl);
++
++	if (netdev->mc_count) {
++		mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
++		if (!mta_list)
++			return;
++
++		/* prepare a packed array of only addresses. */
++		mc_ptr = netdev->mc_list;
++
++		for (i = 0; i < netdev->mc_count; i++) {
++			if (!mc_ptr)
++				break;
++			memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
++			       ETH_ALEN);
++			mc_ptr = mc_ptr->next;
++		}
++
++		e1000_mc_addr_list_update(hw, mta_list, i, 1,
++					  mac->rar_entry_count);
++		kfree(mta_list);
++	} else {
++		/*
++		 * if we're called from probe, we might not have
++		 * anything to do here, so clear out the list
++		 */
++		e1000_mc_addr_list_update(hw, NULL, 0, 1,
++					  mac->rar_entry_count);
++	}
++}
++
++/**
++ * e1000_configure - configure the hardware for RX and TX
++ * @adapter: private board structure
++ **/
++static void e1000_configure(struct e1000_adapter *adapter)
++{
++	e1000_set_multi(adapter->netdev);
++
++	e1000_restore_vlan(adapter);
++	e1000_init_manageability(adapter);
++
++	e1000_configure_tx(adapter);
++	e1000_setup_rctl(adapter);
++	e1000_configure_rx(adapter);
++	adapter->alloc_rx_buf(adapter,
++			      e1000_desc_unused(adapter->rx_ring));
++}
++
++/**
++ * e1000_power_up_phy - restore link in case the phy was powered down
++ * @adapter: address of board private structure
++ *
++ * The phy may be powered down to save power and turn off link when the
++ * driver is unloaded and wake on lan is not enabled (among others)
++ * *** this routine MUST be followed by a call to e1000_reset ***
++ **/
++void e1000_power_up_phy(struct e1000_adapter *adapter)
++{
++	u16 mii_reg = 0;
++
++	/* Just clear the power down bit to wake the phy back up */
++	if (adapter->hw.media_type == e1000_media_type_copper) {
++		/* according to the manual, the phy will retain its
++		 * settings across a power-down/up cycle */
++		e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
++		mii_reg &= ~MII_CR_POWER_DOWN;
++		e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
++	}
++
++	adapter->hw.mac.ops.setup_link(&adapter->hw);
++}
++
++/**
++ * e1000_power_down_phy - Power down the PHY
++ *
++ * Power down the PHY so no link is implied when interface is down
++ * The PHY cannot be powered down is management or WoL is active
++ */
++static void e1000_power_down_phy(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	u16 mii_reg;
++
++	/* WoL is enabled */
++	if (!adapter->wol)
++		return;
++
++	/* non-copper PHY? */
++	if (adapter->hw.media_type != e1000_media_type_copper)
++		return;
++
++	/* reset is blocked because of a SoL/IDER session */
++	if (e1000_check_mng_mode(hw) ||
++	    e1000_check_reset_block(hw))
++		return;
++
++	/* managebility (AMT) is enabled */
++	if (er32(MANC) & E1000_MANC_SMBUS_EN)
++		return;
++
++	/* power down the PHY */
++	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
++	mii_reg |= MII_CR_POWER_DOWN;
++	e1e_wphy(hw, PHY_CONTROL, mii_reg);
++	mdelay(1);
++}
++
++/**
++ * e1000_reset - bring the hardware into a known good state
++ *
++ * This function boots the hardware and enables some settings that
++ * require a configuration cycle of the hardware - those cannot be
++ * set/changed during runtime. After reset the device needs to be
++ * properly configured for rx, tx etc.
++ */
++void e1000_reset(struct e1000_adapter *adapter)
++{
++	struct e1000_mac_info *mac = &adapter->hw.mac;
++	struct e1000_hw *hw = &adapter->hw;
++	u32 tx_space, min_tx_space, min_rx_space;
++	u16 hwm;
++
++	if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
++		/* To maintain wire speed transmits, the Tx FIFO should be
++		 * large enough to accommodate two full transmit packets,
++		 * rounded up to the next 1KB and expressed in KB.  Likewise,
++		 * the Rx FIFO should be large enough to accommodate at least
++		 * one full receive packet and is similarly rounded up and
++		 * expressed in KB. */
++		adapter->pba = er32(PBA);
++		/* upper 16 bits has Tx packet buffer allocation size in KB */
++		tx_space = adapter->pba >> 16;
++		/* lower 16 bits has Rx packet buffer allocation size in KB */
++		adapter->pba &= 0xffff;
++		/* the tx fifo also stores 16 bytes of information about the tx
++		 * but don't include ethernet FCS because hardware appends it */
++		min_tx_space = (mac->max_frame_size +
++				sizeof(struct e1000_tx_desc) -
++				ETH_FCS_LEN) * 2;
++		min_tx_space = ALIGN(min_tx_space, 1024);
++		min_tx_space >>= 10;
++		/* software strips receive CRC, so leave room for it */
++		min_rx_space = mac->max_frame_size;
++		min_rx_space = ALIGN(min_rx_space, 1024);
++		min_rx_space >>= 10;
++
++		/* If current Tx allocation is less than the min Tx FIFO size,
++		 * and the min Tx FIFO size is less than the current Rx FIFO
++		 * allocation, take space away from current Rx allocation */
++		if (tx_space < min_tx_space &&
++		    ((min_tx_space - tx_space) < adapter->pba)) {
++			adapter->pba -= - (min_tx_space - tx_space);
++
++			/* if short on rx space, rx wins and must trump tx
++			 * adjustment or use Early Receive if available */
++			if ((adapter->pba < min_rx_space) &&
++			    (!(adapter->flags & FLAG_HAS_ERT)))
++				/* ERT enabled in e1000_configure_rx */
++				adapter->pba = min_rx_space;
++		}
++	}
++
++	ew32(PBA, adapter->pba);
++
++	/* flow control settings */
++	/* The high water mark must be low enough to fit one full frame
++	 * (or the size used for early receive) above it in the Rx FIFO.
++	 * Set it to the lower of:
++	 * - 90% of the Rx FIFO size, and
++	 * - the full Rx FIFO size minus the early receive size (for parts
++	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
++	 * - the full Rx FIFO size minus one full frame */
++	if (adapter->flags & FLAG_HAS_ERT)
++		hwm = min(((adapter->pba << 10) * 9 / 10),
++			  ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
++	else
++		hwm = min(((adapter->pba << 10) * 9 / 10),
++			  ((adapter->pba << 10) - mac->max_frame_size));
++
++	mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
++	mac->fc_low_water = mac->fc_high_water - 8;
++
++	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
++		mac->fc_pause_time = 0xFFFF;
++	else
++		mac->fc_pause_time = E1000_FC_PAUSE_TIME;
++	mac->fc = mac->original_fc;
++
++	/* Allow time for pending master requests to run */
++	mac->ops.reset_hw(hw);
++	ew32(WUC, 0);
++
++	if (mac->ops.init_hw(hw))
++		ndev_err(adapter->netdev, "Hardware Error\n");
++
++	e1000_update_mng_vlan(adapter);
++
++	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
++	ew32(VET, ETH_P_8021Q);
++
++	e1000_reset_adaptive(hw);
++	e1000_get_phy_info(hw);
++
++	if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
++		u16 phy_data = 0;
++		/* speed up time to link by disabling smart power down, ignore
++		 * the return value of this function because there is nothing
++		 * different we would do if it failed */
++		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
++		phy_data &= ~IGP02E1000_PM_SPD;
++		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
++	}
++
++	e1000_release_manageability(adapter);
++}
++
++int e1000_up(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++
++	/* hardware has been reset, we need to reload some things */
++	e1000_configure(adapter);
++
++	clear_bit(__E1000_DOWN, &adapter->state);
++
++	netif_poll_enable(adapter->netdev);
++	e1000_irq_enable(adapter);
++
++	/* fire a link change interrupt to start the watchdog */
++	ew32(ICS, E1000_ICS_LSC);
++	return 0;
++}
++
++void e1000_down(struct e1000_adapter *adapter)
++{
++	struct net_device *netdev = adapter->netdev;
++	struct e1000_hw *hw = &adapter->hw;
++	u32 tctl, rctl;
++
++	/* signal that we're down so the interrupt handler does not
++	 * reschedule our watchdog timer */
++	set_bit(__E1000_DOWN, &adapter->state);
++
++	/* disable receives in the hardware */
++	rctl = er32(RCTL);
++	ew32(RCTL, rctl & ~E1000_RCTL_EN);
++	/* flush and sleep below */
++
++	netif_stop_queue(netdev);
++
++	/* disable transmits in the hardware */
++	tctl = er32(TCTL);
++	tctl &= ~E1000_TCTL_EN;
++	ew32(TCTL, tctl);
++	/* flush both disables and wait for them to finish */
++	e1e_flush();
++	msleep(10);
++
++	netif_poll_disable(netdev);
++	e1000_irq_disable(adapter);
++
++	del_timer_sync(&adapter->watchdog_timer);
++	del_timer_sync(&adapter->phy_info_timer);
++
++	netdev->tx_queue_len = adapter->tx_queue_len;
++	netif_carrier_off(netdev);
++	adapter->link_speed = 0;
++	adapter->link_duplex = 0;
++
++	e1000_reset(adapter);
++	e1000_clean_tx_ring(adapter);
++	e1000_clean_rx_ring(adapter);
++
++	/*
++	 * TODO: for power management, we could drop the link and
++	 * pci_disable_device here.
++	 */
++}
++
++void e1000_reinit_locked(struct e1000_adapter *adapter)
++{
++	might_sleep();
++	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++		msleep(1);
++	e1000_down(adapter);
++	e1000_up(adapter);
++	clear_bit(__E1000_RESETTING, &adapter->state);
++}
++
++/**
++ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
++ * @adapter: board private structure to initialize
++ *
++ * e1000_sw_init initializes the Adapter private data structure.
++ * Fields are initialized based on PCI device information and
++ * OS network device settings (MTU size).
++ **/
++static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct net_device *netdev = adapter->netdev;
++
++	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
++	adapter->rx_ps_bsize0 = 128;
++	hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
++	hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
++
++	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
++	if (!adapter->tx_ring)
++		goto err;
++
++	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
++	if (!adapter->rx_ring)
++		goto err;
++
++	spin_lock_init(&adapter->tx_queue_lock);
++
++	/* Explicitly disable IRQ since the NIC can be in any state. */
++	atomic_set(&adapter->irq_sem, 0);
++	e1000_irq_disable(adapter);
++
++	spin_lock_init(&adapter->stats_lock);
++
++	set_bit(__E1000_DOWN, &adapter->state);
++	return 0;
++
++err:
++	ndev_err(netdev, "Unable to allocate memory for queues\n");
++	kfree(adapter->rx_ring);
++	kfree(adapter->tx_ring);
++	return -ENOMEM;
++}
++
++/**
++ * e1000_open - Called when a network interface is made active
++ * @netdev: network interface device structure
++ *
++ * Returns 0 on success, negative value on failure
++ *
++ * The open entry point is called when a network interface is made
++ * active by the system (IFF_UP).  At this point all resources needed
++ * for transmit and receive operations are allocated, the interrupt
++ * handler is registered with the OS, the watchdog timer is started,
++ * and the stack is notified that the interface is ready.
++ **/
++static int e1000_open(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	int err;
++
++	/* disallow open during test */
++	if (test_bit(__E1000_TESTING, &adapter->state))
++		return -EBUSY;
++
++	/* allocate transmit descriptors */
++	err = e1000_setup_tx_resources(adapter);
++	if (err)
++		goto err_setup_tx;
++
++	/* allocate receive descriptors */
++	err = e1000_setup_rx_resources(adapter);
++	if (err)
++		goto err_setup_rx;
++
++	e1000_power_up_phy(adapter);
++
++	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
++	if ((adapter->hw.mng_cookie.status &
++	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
++		e1000_update_mng_vlan(adapter);
++
++	/* If AMT is enabled, let the firmware know that the network
++	 * interface is now open */
++	if ((adapter->flags & FLAG_HAS_AMT) &&
++	    e1000_check_mng_mode(&adapter->hw))
++		e1000_get_hw_control(adapter);
++
++	/* before we allocate an interrupt, we must be ready to handle it.
++	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
++	 * as soon as we call pci_request_irq, so we have to setup our
++	 * clean_rx handler before we do so.  */
++	e1000_configure(adapter);
++
++	err = e1000_request_irq(adapter);
++	if (err)
++		goto err_req_irq;
++
++	/* From here on the code is the same as e1000_up() */
++	clear_bit(__E1000_DOWN, &adapter->state);
++
++	netif_poll_enable(netdev);
++
++	e1000_irq_enable(adapter);
++
++	/* fire a link status change interrupt to start the watchdog */
++	ew32(ICS, E1000_ICS_LSC);
++
++	return E1000_SUCCESS;
++
++err_req_irq:
++	e1000_release_hw_control(adapter);
++	e1000_power_down_phy(adapter);
++	e1000_free_rx_resources(adapter);
++err_setup_rx:
++	e1000_free_tx_resources(adapter);
++err_setup_tx:
++	e1000_reset(adapter);
++
++	return err;
++}
++
++/**
++ * e1000_close - Disables a network interface
++ * @netdev: network interface device structure
++ *
++ * Returns 0, this is not allowed to fail
++ *
++ * The close entry point is called when an interface is de-activated
++ * by the OS.  The hardware is still under the drivers control, but
++ * needs to be disabled.  A global MAC reset is issued to stop the
++ * hardware, and all transmit and receive resources are freed.
++ **/
++static int e1000_close(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
++	e1000_down(adapter);
++	e1000_power_down_phy(adapter);
++	e1000_free_irq(adapter);
++
++	e1000_free_tx_resources(adapter);
++	e1000_free_rx_resources(adapter);
++
++	/* kill manageability vlan ID if supported, but not if a vlan with
++	 * the same ID is registered on the host OS (let 8021q kill it) */
++	if ((adapter->hw.mng_cookie.status &
++			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
++	     !(adapter->vlgrp &&
++	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
++		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
++
++	/* If AMT is enabled, let the firmware know that the network
++	 * interface is now closed */
++	if ((adapter->flags & FLAG_HAS_AMT) &&
++	    e1000_check_mng_mode(&adapter->hw))
++		e1000_release_hw_control(adapter);
++
++	return 0;
++}
++/**
++ * e1000_set_mac - Change the Ethernet Address of the NIC
++ * @netdev: network interface device structure
++ * @p: pointer to an address structure
++ *
++ * Returns 0 on success, negative on failure
++ **/
++static int e1000_set_mac(struct net_device *netdev, void *p)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct sockaddr *addr = p;
++
++	if (!is_valid_ether_addr(addr->sa_data))
++		return -EADDRNOTAVAIL;
++
++	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
++	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
++
++	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
++
++	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
++		/* activate the work around */
++		e1000_set_laa_state_82571(&adapter->hw, 1);
++
++		/* Hold a copy of the LAA in RAR[14] This is done so that
++		 * between the time RAR[0] gets clobbered  and the time it
++		 * gets fixed (in e1000_watchdog), the actual LAA is in one
++		 * of the RARs and no incoming packets directed to this port
++		 * are dropped. Eventually the LAA will be in RAR[0] and
++		 * RAR[14] */
++		e1000_rar_set(&adapter->hw,
++			      adapter->hw.mac.addr,
++			      adapter->hw.mac.rar_entry_count - 1);
++	}
++
++	return 0;
++}
++
++/* Need to wait a few seconds after link up to get diagnostic information from
++ * the phy */
++static void e1000_update_phy_info(unsigned long data)
++{
++	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
++	e1000_get_phy_info(&adapter->hw);
++}
++
++/**
++ * e1000_update_stats - Update the board statistics counters
++ * @adapter: board private structure
++ **/
++void e1000_update_stats(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct pci_dev *pdev = adapter->pdev;
++	unsigned long irq_flags;
++	u16 phy_tmp;
++
++#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
++
++	/*
++	 * Prevent stats update while adapter is being reset, or if the pci
++	 * connection is down.
++	 */
++	if (adapter->link_speed == 0)
++		return;
++	if (pci_channel_offline(pdev))
++		return;
++
++	spin_lock_irqsave(&adapter->stats_lock, irq_flags);
++
++	/* these counters are modified from e1000_adjust_tbi_stats,
++	 * called from the interrupt context, so they must only
++	 * be written while holding adapter->stats_lock
++	 */
++
++	adapter->stats.crcerrs += er32(CRCERRS);
++	adapter->stats.gprc += er32(GPRC);
++	adapter->stats.gorcl += er32(GORCL);
++	adapter->stats.gorch += er32(GORCH);
++	adapter->stats.bprc += er32(BPRC);
++	adapter->stats.mprc += er32(MPRC);
++	adapter->stats.roc += er32(ROC);
++
++	if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
++		adapter->stats.prc64 += er32(PRC64);
++		adapter->stats.prc127 += er32(PRC127);
++		adapter->stats.prc255 += er32(PRC255);
++		adapter->stats.prc511 += er32(PRC511);
++		adapter->stats.prc1023 += er32(PRC1023);
++		adapter->stats.prc1522 += er32(PRC1522);
++		adapter->stats.symerrs += er32(SYMERRS);
++		adapter->stats.sec += er32(SEC);
++	}
++
++	adapter->stats.mpc += er32(MPC);
++	adapter->stats.scc += er32(SCC);
++	adapter->stats.ecol += er32(ECOL);
++	adapter->stats.mcc += er32(MCC);
++	adapter->stats.latecol += er32(LATECOL);
++	adapter->stats.dc += er32(DC);
++	adapter->stats.rlec += er32(RLEC);
++	adapter->stats.xonrxc += er32(XONRXC);
++	adapter->stats.xontxc += er32(XONTXC);
++	adapter->stats.xoffrxc += er32(XOFFRXC);
++	adapter->stats.xofftxc += er32(XOFFTXC);
++	adapter->stats.fcruc += er32(FCRUC);
++	adapter->stats.gptc += er32(GPTC);
++	adapter->stats.gotcl += er32(GOTCL);
++	adapter->stats.gotch += er32(GOTCH);
++	adapter->stats.rnbc += er32(RNBC);
++	adapter->stats.ruc += er32(RUC);
++	adapter->stats.rfc += er32(RFC);
++	adapter->stats.rjc += er32(RJC);
++	adapter->stats.torl += er32(TORL);
++	adapter->stats.torh += er32(TORH);
++	adapter->stats.totl += er32(TOTL);
++	adapter->stats.toth += er32(TOTH);
++	adapter->stats.tpr += er32(TPR);
++
++	if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
++		adapter->stats.ptc64 += er32(PTC64);
++		adapter->stats.ptc127 += er32(PTC127);
++		adapter->stats.ptc255 += er32(PTC255);
++		adapter->stats.ptc511 += er32(PTC511);
++		adapter->stats.ptc1023 += er32(PTC1023);
++		adapter->stats.ptc1522 += er32(PTC1522);
++	}
++
++	adapter->stats.mptc += er32(MPTC);
++	adapter->stats.bptc += er32(BPTC);
++
++	/* used for adaptive IFS */
++
++	hw->mac.tx_packet_delta = er32(TPT);
++	adapter->stats.tpt += hw->mac.tx_packet_delta;
++	hw->mac.collision_delta = er32(COLC);
++	adapter->stats.colc += hw->mac.collision_delta;
++
++	adapter->stats.algnerrc += er32(ALGNERRC);
++	adapter->stats.rxerrc += er32(RXERRC);
++	adapter->stats.tncrs += er32(TNCRS);
++	adapter->stats.cexterr += er32(CEXTERR);
++	adapter->stats.tsctc += er32(TSCTC);
++	adapter->stats.tsctfc += er32(TSCTFC);
++
++	adapter->stats.iac += er32(IAC);
++
++	if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
++		adapter->stats.icrxoc += er32(ICRXOC);
++		adapter->stats.icrxptc += er32(ICRXPTC);
++		adapter->stats.icrxatc += er32(ICRXATC);
++		adapter->stats.ictxptc += er32(ICTXPTC);
++		adapter->stats.ictxatc += er32(ICTXATC);
++		adapter->stats.ictxqec += er32(ICTXQEC);
++		adapter->stats.ictxqmtc += er32(ICTXQMTC);
++		adapter->stats.icrxdmtc += er32(ICRXDMTC);
++	}
++
++	/* Fill out the OS statistics structure */
++	adapter->net_stats.rx_packets = adapter->stats.gprc;
++	adapter->net_stats.tx_packets = adapter->stats.gptc;
++	adapter->net_stats.rx_bytes = adapter->stats.gorcl;
++	adapter->net_stats.tx_bytes = adapter->stats.gotcl;
++	adapter->net_stats.multicast = adapter->stats.mprc;
++	adapter->net_stats.collisions = adapter->stats.colc;
++
++	/* Rx Errors */
++
++	/* RLEC on some newer hardware can be incorrect so build
++	* our own version based on RUC and ROC */
++	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
++		adapter->stats.crcerrs + adapter->stats.algnerrc +
++		adapter->stats.ruc + adapter->stats.roc +
++		adapter->stats.cexterr;
++	adapter->net_stats.rx_length_errors = adapter->stats.ruc +
++					      adapter->stats.roc;
++	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
++	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
++	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
++
++	/* Tx Errors */
++	adapter->net_stats.tx_errors = adapter->stats.ecol +
++				       adapter->stats.latecol;
++	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
++	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
++	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
++
++	/* Tx Dropped needs to be maintained elsewhere */
++
++	/* Phy Stats */
++	if (hw->media_type == e1000_media_type_copper) {
++		if ((adapter->link_speed == SPEED_1000) &&
++		   (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
++			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
++			adapter->phy_stats.idle_errors += phy_tmp;
++		}
++	}
++
++	/* Management Stats */
++	adapter->stats.mgptc += er32(MGTPTC);
++	adapter->stats.mgprc += er32(MGTPRC);
++	adapter->stats.mgpdc += er32(MGTPDC);
++
++	spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
++}
++
++static void e1000_print_link_info(struct e1000_adapter *adapter)
++{
++	struct net_device *netdev = adapter->netdev;
++	struct e1000_hw *hw = &adapter->hw;
++	u32 ctrl = er32(CTRL);
++
++	ndev_info(netdev,
++		"Link is Up %d Mbps %s, Flow Control: %s\n",
++		adapter->link_speed,
++		(adapter->link_duplex == FULL_DUPLEX) ?
++				"Full Duplex" : "Half Duplex",
++		((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
++				"RX/TX" :
++		((ctrl & E1000_CTRL_RFCE) ? "RX" :
++		((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
++}
++
++/**
++ * e1000_watchdog - Timer Call-back
++ * @data: pointer to adapter cast into an unsigned long
++ **/
++static void e1000_watchdog(unsigned long data)
++{
++	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
++
++	/* Do the rest outside of interrupt context */
++	schedule_work(&adapter->watchdog_task);
++
++	/* TODO: make this use queue_delayed_work() */
++}
++
++static void e1000_watchdog_task(struct work_struct *work)
++{
++	struct e1000_adapter *adapter = container_of(work,
++					struct e1000_adapter, watchdog_task);
++
++	struct net_device *netdev = adapter->netdev;
++	struct e1000_mac_info *mac = &adapter->hw.mac;
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	struct e1000_hw *hw = &adapter->hw;
++	u32 link, tctl;
++	s32 ret_val;
++	int tx_pending = 0;
++
++	if ((netif_carrier_ok(netdev)) &&
++	    (er32(STATUS) & E1000_STATUS_LU))
++		goto link_up;
++
++	ret_val = mac->ops.check_for_link(hw);
++	if ((ret_val == E1000_ERR_PHY) &&
++	    (adapter->hw.phy.type == e1000_phy_igp_3) &&
++	    (er32(CTRL) &
++	     E1000_PHY_CTRL_GBE_DISABLE)) {
++		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
++		ndev_info(netdev,
++			"Gigabit has been disabled, downgrading speed\n");
++	}
++
++	if ((e1000_enable_tx_pkt_filtering(hw)) &&
++	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
++		e1000_update_mng_vlan(adapter);
++
++	if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
++	   !(er32(TXCW) & E1000_TXCW_ANE))
++		link = adapter->hw.mac.serdes_has_link;
++	else
++		link = er32(STATUS) & E1000_STATUS_LU;
++
++	if (link) {
++		if (!netif_carrier_ok(netdev)) {
++			bool txb2b = 1;
++			mac->ops.get_link_up_info(&adapter->hw,
++						   &adapter->link_speed,
++						   &adapter->link_duplex);
++			e1000_print_link_info(adapter);
++			/* tweak tx_queue_len according to speed/duplex
++			 * and adjust the timeout factor */
++			netdev->tx_queue_len = adapter->tx_queue_len;
++			adapter->tx_timeout_factor = 1;
++			switch (adapter->link_speed) {
++			case SPEED_10:
++				txb2b = 0;
++				netdev->tx_queue_len = 10;
++				adapter->tx_timeout_factor = 14;
++				break;
++			case SPEED_100:
++				txb2b = 0;
++				netdev->tx_queue_len = 100;
++				/* maybe add some timeout factor ? */
++				break;
++			}
++
++			/* workaround: re-program speed mode bit after
++			 * link-up event */
++			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
++			    !txb2b) {
++				u32 tarc0;
++				tarc0 = er32(TARC0);
++				tarc0 &= ~SPEED_MODE_BIT;
++				ew32(TARC0, tarc0);
++			}
++
++			/* disable TSO for pcie and 10/100 speeds, to avoid
++			 * some hardware issues */
++			if (!(adapter->flags & FLAG_TSO_FORCE)) {
++				switch (adapter->link_speed) {
++				case SPEED_10:
++				case SPEED_100:
++					ndev_info(netdev,
++					"10/100 speed: disabling TSO\n");
++					netdev->features &= ~NETIF_F_TSO;
++					netdev->features &= ~NETIF_F_TSO6;
++					break;
++				case SPEED_1000:
++					netdev->features |= NETIF_F_TSO;
++					netdev->features |= NETIF_F_TSO6;
++					break;
++				default:
++					/* oops */
++					break;
++				}
++			}
++
++			/* enable transmits in the hardware, need to do this
++			 * after setting TARC0 */
++			tctl = er32(TCTL);
++			tctl |= E1000_TCTL_EN;
++			ew32(TCTL, tctl);
++
++			netif_carrier_on(netdev);
++			netif_wake_queue(netdev);
++
++			if (!test_bit(__E1000_DOWN, &adapter->state))
++				mod_timer(&adapter->phy_info_timer,
++					  round_jiffies(jiffies + 2 * HZ));
++		} else {
++			/* make sure the receive unit is started */
++			if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
++				struct e1000_hw *hw = &adapter->hw;
++				u32 rctl = er32(RCTL);
++				ew32(RCTL, rctl |
++						E1000_RCTL_EN);
++			}
++		}
++	} else {
++		if (netif_carrier_ok(netdev)) {
++			adapter->link_speed = 0;
++			adapter->link_duplex = 0;
++			ndev_info(netdev, "Link is Down\n");
++			netif_carrier_off(netdev);
++			netif_stop_queue(netdev);
++			if (!test_bit(__E1000_DOWN, &adapter->state))
++				mod_timer(&adapter->phy_info_timer,
++					  round_jiffies(jiffies + 2 * HZ));
++
++			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
++				schedule_work(&adapter->reset_task);
++		}
++	}
++
++link_up:
++	e1000_update_stats(adapter);
++
++	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
++	adapter->tpt_old = adapter->stats.tpt;
++	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
++	adapter->colc_old = adapter->stats.colc;
++
++	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
++	adapter->gorcl_old = adapter->stats.gorcl;
++	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
++	adapter->gotcl_old = adapter->stats.gotcl;
++
++	e1000_update_adaptive(&adapter->hw);
++
++	if (!netif_carrier_ok(netdev)) {
++		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
++			       tx_ring->count);
++		if (tx_pending) {
++			/* We've lost link, so the controller stops DMA,
++			 * but we've got queued Tx work that's never going
++			 * to get done, so reset controller to flush Tx.
++			 * (Do the reset outside of interrupt context). */
++			adapter->tx_timeout_count++;
++			schedule_work(&adapter->reset_task);
++		}
++	}
++
++	/* Cause software interrupt to ensure rx ring is cleaned */
++	ew32(ICS, E1000_ICS_RXDMT0);
++
++	/* Force detection of hung controller every watchdog period */
++	adapter->detect_tx_hung = 1;
++
++	/* With 82571 controllers, LAA may be overwritten due to controller
++	 * reset from the other port. Set the appropriate LAA in RAR[0] */
++	if (e1000_get_laa_state_82571(hw))
++		e1000_rar_set(hw, adapter->hw.mac.addr, 0);
++
++	/* Reset the timer */
++	if (!test_bit(__E1000_DOWN, &adapter->state))
++		mod_timer(&adapter->watchdog_timer,
++			  round_jiffies(jiffies + 2 * HZ));
++}
++
++#define E1000_TX_FLAGS_CSUM		0x00000001
++#define E1000_TX_FLAGS_VLAN		0x00000002
++#define E1000_TX_FLAGS_TSO		0x00000004
++#define E1000_TX_FLAGS_IPV4		0x00000008
++#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
++#define E1000_TX_FLAGS_VLAN_SHIFT	16
++
++static int e1000_tso(struct e1000_adapter *adapter,
++		     struct sk_buff *skb)
++{
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	struct e1000_context_desc *context_desc;
++	struct e1000_buffer *buffer_info;
++	unsigned int i;
++	u32 cmd_length = 0;
++	u16 ipcse = 0, tucse, mss;
++	u8 ipcss, ipcso, tucss, tucso, hdr_len;
++	int err;
++
++	if (skb_is_gso(skb)) {
++		if (skb_header_cloned(skb)) {
++			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
++			if (err)
++				return err;
++		}
++
++		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
++		mss = skb_shinfo(skb)->gso_size;
++		if (skb->protocol == htons(ETH_P_IP)) {
++			struct iphdr *iph = ip_hdr(skb);
++			iph->tot_len = 0;
++			iph->check = 0;
++			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
++								 iph->daddr, 0,
++								 IPPROTO_TCP,
++								 0);
++			cmd_length = E1000_TXD_CMD_IP;
++			ipcse = skb_transport_offset(skb) - 1;
++		} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
++			ipv6_hdr(skb)->payload_len = 0;
++			tcp_hdr(skb)->check =
++				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
++						 &ipv6_hdr(skb)->daddr,
++						 0, IPPROTO_TCP, 0);
++			ipcse = 0;
++		}
++		ipcss = skb_network_offset(skb);
++		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
++		tucss = skb_transport_offset(skb);
++		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
++		tucse = 0;
++
++		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
++			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
++
++		i = tx_ring->next_to_use;
++		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
++		buffer_info = &tx_ring->buffer_info[i];
++
++		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
++		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
++		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
++		context_desc->upper_setup.tcp_fields.tucss = tucss;
++		context_desc->upper_setup.tcp_fields.tucso = tucso;
++		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
++		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
++		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
++		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
++
++		buffer_info->time_stamp = jiffies;
++		buffer_info->next_to_watch = i;
++
++		i++;
++		if (i == tx_ring->count)
++			i = 0;
++		tx_ring->next_to_use = i;
++
++		return 1;
++	}
++
++	return 0;
++}
++
++static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
++{
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	struct e1000_context_desc *context_desc;
++	struct e1000_buffer *buffer_info;
++	unsigned int i;
++	u8 css;
++
++	if (skb->ip_summed == CHECKSUM_PARTIAL) {
++		css = skb_transport_offset(skb);
++
++		i = tx_ring->next_to_use;
++		buffer_info = &tx_ring->buffer_info[i];
++		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
++
++		context_desc->lower_setup.ip_config = 0;
++		context_desc->upper_setup.tcp_fields.tucss = css;
++		context_desc->upper_setup.tcp_fields.tucso =
++					css + skb->csum_offset;
++		context_desc->upper_setup.tcp_fields.tucse = 0;
++		context_desc->tcp_seg_setup.data = 0;
++		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
++
++		buffer_info->time_stamp = jiffies;
++		buffer_info->next_to_watch = i;
++
++		i++;
++		if (i == tx_ring->count)
++			i = 0;
++		tx_ring->next_to_use = i;
++
++		return 1;
++	}
++
++	return 0;
++}
++
++#define E1000_MAX_PER_TXD	8192
++#define E1000_MAX_TXD_PWR	12
++
++static int e1000_tx_map(struct e1000_adapter *adapter,
++			struct sk_buff *skb, unsigned int first,
++			unsigned int max_per_txd, unsigned int nr_frags,
++			unsigned int mss)
++{
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	struct e1000_buffer *buffer_info;
++	unsigned int len = skb->len - skb->data_len;
++	unsigned int offset = 0, size, count = 0, i;
++	unsigned int f;
++
++	i = tx_ring->next_to_use;
++
++	while (len) {
++		buffer_info = &tx_ring->buffer_info[i];
++		size = min(len, max_per_txd);
++		/* Workaround for Controller erratum --
++		 * descriptor for non-tso packet in a linear SKB that follows a
++		 * tso gets written back prematurely before the data is fully
++		 * DMA'd to the controller */
++		if (tx_ring->last_tx_tso && !skb_is_gso(skb)) {
++			tx_ring->last_tx_tso = 0;
++			if (!skb->data_len)
++				size -= 4;
++		}
++
++		/* Workaround for premature desc write-backs
++		 * in TSO mode.  Append 4-byte sentinel desc */
++		if (mss && !nr_frags && size == len && size > 8)
++			size -= 4;
++
++		buffer_info->length = size;
++		/* set time_stamp *before* dma to help avoid a possible race */
++		buffer_info->time_stamp = jiffies;
++		buffer_info->dma =
++			pci_map_single(adapter->pdev,
++				skb->data + offset,
++				size,
++				PCI_DMA_TODEVICE);
++		buffer_info->next_to_watch = i;
++
++		len -= size;
++		offset += size;
++		count++;
++		i++;
++		if (i == tx_ring->count)
++			i = 0;
++	}
++
++	for (f = 0; f < nr_frags; f++) {
++		struct skb_frag_struct *frag;
++
++		frag = &skb_shinfo(skb)->frags[f];
++		len = frag->size;
++		offset = frag->page_offset;
++
++		while (len) {
++			buffer_info = &tx_ring->buffer_info[i];
++			size = min(len, max_per_txd);
++			/* Workaround for premature desc write-backs
++			 * in TSO mode.  Append 4-byte sentinel desc */
++			if (mss && f == (nr_frags-1) && size == len && size > 8)
++				size -= 4;
++
++			buffer_info->length = size;
++			buffer_info->time_stamp = jiffies;
++			buffer_info->dma =
++				pci_map_page(adapter->pdev,
++					frag->page,
++					offset,
++					size,
++					PCI_DMA_TODEVICE);
++			buffer_info->next_to_watch = i;
++
++			len -= size;
++			offset += size;
++			count++;
++
++			i++;
++			if (i == tx_ring->count)
++				i = 0;
++		}
++	}
++
++	if (i == 0)
++		i = tx_ring->count - 1;
++	else
++		i--;
++
++	tx_ring->buffer_info[i].skb = skb;
++	tx_ring->buffer_info[first].next_to_watch = i;
++
++	return count;
++}
++
++static void e1000_tx_queue(struct e1000_adapter *adapter,
++			   int tx_flags, int count)
++{
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	struct e1000_tx_desc *tx_desc = NULL;
++	struct e1000_buffer *buffer_info;
++	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
++	unsigned int i;
++
++	if (tx_flags & E1000_TX_FLAGS_TSO) {
++		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
++			     E1000_TXD_CMD_TSE;
++		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
++
++		if (tx_flags & E1000_TX_FLAGS_IPV4)
++			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
++	}
++
++	if (tx_flags & E1000_TX_FLAGS_CSUM) {
++		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
++		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
++	}
++
++	if (tx_flags & E1000_TX_FLAGS_VLAN) {
++		txd_lower |= E1000_TXD_CMD_VLE;
++		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
++	}
++
++	i = tx_ring->next_to_use;
++
++	while (count--) {
++		buffer_info = &tx_ring->buffer_info[i];
++		tx_desc = E1000_TX_DESC(*tx_ring, i);
++		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
++		tx_desc->lower.data =
++			cpu_to_le32(txd_lower | buffer_info->length);
++		tx_desc->upper.data = cpu_to_le32(txd_upper);
++
++		i++;
++		if (i == tx_ring->count)
++			i = 0;
++	}
++
++	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
++
++	/* Force memory writes to complete before letting h/w
++	 * know there are new descriptors to fetch.  (Only
++	 * applicable for weak-ordered memory model archs,
++	 * such as IA-64). */
++	wmb();
++
++	tx_ring->next_to_use = i;
++	writel(i, adapter->hw.hw_addr + tx_ring->tail);
++	/* we need this if more than one processor can write to our tail
++	 * at a time, it synchronizes IO on IA64/Altix systems */
++	mmiowb();
++}
++
++#define MINIMUM_DHCP_PACKET_SIZE 282
++static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
++				    struct sk_buff *skb)
++{
++	struct e1000_hw *hw =  &adapter->hw;
++	u16 length, offset;
++
++	if (vlan_tx_tag_present(skb)) {
++		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
++		    && (adapter->hw.mng_cookie.status &
++			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
++			return 0;
++	}
++
++	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
++		return 0;
++
++	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
++		return 0;
++
++	{
++		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
++		struct udphdr *udp;
++
++		if (ip->protocol != IPPROTO_UDP)
++			return 0;
++
++		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
++		if (ntohs(udp->dest) != 67)
++			return 0;
++
++		offset = (u8 *)udp + 8 - skb->data;
++		length = skb->len - offset;
++		return e1000_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
++	}
++
++	return 0;
++}
++
++static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	netif_stop_queue(netdev);
++	/* Herbert's original patch had:
++	 *  smp_mb__after_netif_stop_queue();
++	 * but since that doesn't exist yet, just open code it. */
++	smp_mb();
++
++	/* We need to check again in a case another CPU has just
++	 * made room available. */
++	if (e1000_desc_unused(adapter->tx_ring) < size)
++		return -EBUSY;
++
++	/* A reprieve! */
++	netif_start_queue(netdev);
++	++adapter->restart_queue;
++	return 0;
++}
++
++static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	if (e1000_desc_unused(adapter->tx_ring) >= size)
++		return 0;
++	return __e1000_maybe_stop_tx(netdev, size);
++}
++
++#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
++static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_ring *tx_ring = adapter->tx_ring;
++	unsigned int first;
++	unsigned int max_per_txd = E1000_MAX_PER_TXD;
++	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
++	unsigned int tx_flags = 0;
++	unsigned int len = skb->len;
++	unsigned long irq_flags;
++	unsigned int nr_frags = 0;
++	unsigned int mss = 0;
++	int count = 0;
++	int tso;
++	unsigned int f;
++	len -= skb->data_len;
++
++	if (test_bit(__E1000_DOWN, &adapter->state)) {
++		dev_kfree_skb_any(skb);
++		return NETDEV_TX_OK;
++	}
++
++	if (skb->len <= 0) {
++		dev_kfree_skb_any(skb);
++		return NETDEV_TX_OK;
++	}
++
++	mss = skb_shinfo(skb)->gso_size;
++	/* The controller does a simple calculation to
++	 * make sure there is enough room in the FIFO before
++	 * initiating the DMA for each buffer.  The calc is:
++	 * 4 = ceil(buffer len/mss).  To make sure we don't
++	 * overrun the FIFO, adjust the max buffer len if mss
++	 * drops. */
++	if (mss) {
++		u8 hdr_len;
++		max_per_txd = min(mss << 2, max_per_txd);
++		max_txd_pwr = fls(max_per_txd) - 1;
++
++		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
++		* points to just header, pull a few bytes of payload from
++		* frags into skb->data */
++		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
++		if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
++			unsigned int pull_size;
++
++			pull_size = min((unsigned int)4, skb->data_len);
++			if (!__pskb_pull_tail(skb, pull_size)) {
++				ndev_err(netdev,
++					 "__pskb_pull_tail failed.\n");
++				dev_kfree_skb_any(skb);
++				return NETDEV_TX_OK;
++			}
++			len = skb->len - skb->data_len;
++		}
++	}
++
++	/* reserve a descriptor for the offload context */
++	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
++		count++;
++	count++;
++
++	/* Controller Erratum workaround */
++	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
++		count++;
++
++	count += TXD_USE_COUNT(len, max_txd_pwr);
++
++	nr_frags = skb_shinfo(skb)->nr_frags;
++	for (f = 0; f < nr_frags; f++)
++		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
++				       max_txd_pwr);
++
++	if (adapter->hw.mac.tx_pkt_filtering)
++		e1000_transfer_dhcp_info(adapter, skb);
++
++	if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
++		/* Collision - tell upper layer to requeue */
++		return NETDEV_TX_LOCKED;
++
++	/* need: count + 2 desc gap to keep tail from touching
++	 * head, otherwise try next time */
++	if (e1000_maybe_stop_tx(netdev, count + 2)) {
++		spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
++		return NETDEV_TX_BUSY;
++	}
++
++	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
++		tx_flags |= E1000_TX_FLAGS_VLAN;
++		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
++	}
++
++	first = tx_ring->next_to_use;
++
++	tso = e1000_tso(adapter, skb);
++	if (tso < 0) {
++		dev_kfree_skb_any(skb);
++		spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
++		return NETDEV_TX_OK;
++	}
++
++	if (tso) {
++		tx_ring->last_tx_tso = 1;
++		tx_flags |= E1000_TX_FLAGS_TSO;
++	} else if (e1000_tx_csum(adapter, skb)) {
++		tx_flags |= E1000_TX_FLAGS_CSUM;
++	}
++
++	/* Old method was to assume IPv4 packet by default if TSO was enabled.
++	 * 82571 hardware supports TSO capabilities for IPv6 as well...
++	 * no longer assume, we must. */
++	if (skb->protocol == htons(ETH_P_IP))
++		tx_flags |= E1000_TX_FLAGS_IPV4;
++
++	e1000_tx_queue(adapter, tx_flags,
++		       e1000_tx_map(adapter, skb, first,
++				    max_per_txd, nr_frags, mss));
++
++	netdev->trans_start = jiffies;
++
++	/* Make sure there is space in the ring for the next send. */
++	e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
++
++	spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
++	return NETDEV_TX_OK;
++}
++
++/**
++ * e1000_tx_timeout - Respond to a Tx Hang
++ * @netdev: network interface device structure
++ **/
++static void e1000_tx_timeout(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	/* Do the reset outside of interrupt context */
++	adapter->tx_timeout_count++;
++	schedule_work(&adapter->reset_task);
++}
++
++static void e1000_reset_task(struct work_struct *work)
++{
++	struct e1000_adapter *adapter;
++	adapter = container_of(work, struct e1000_adapter, reset_task);
++
++	e1000_reinit_locked(adapter);
++}
++
++/**
++ * e1000_get_stats - Get System Network Statistics
++ * @netdev: network interface device structure
++ *
++ * Returns the address of the device statistics structure.
++ * The statistics are actually updated from the timer callback.
++ **/
++static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	/* only return the current stats */
++	return &adapter->net_stats;
++}
++
++/**
++ * e1000_change_mtu - Change the Maximum Transfer Unit
++ * @netdev: network interface device structure
++ * @new_mtu: new value for maximum frame size
++ *
++ * Returns 0 on success, negative on failure
++ **/
++static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
++
++	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
++	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
++		ndev_err(netdev, "Invalid MTU setting\n");
++		return -EINVAL;
++	}
++
++	/* Jumbo frame size limits */
++	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
++		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
++			ndev_err(netdev, "Jumbo Frames not supported.\n");
++			return -EINVAL;
++		}
++		if (adapter->hw.phy.type == e1000_phy_ife) {
++			ndev_err(netdev, "Jumbo Frames not supported.\n");
++			return -EINVAL;
++		}
++	}
++
++#define MAX_STD_JUMBO_FRAME_SIZE 9234
++	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
++		ndev_err(netdev, "MTU > 9216 not supported.\n");
++		return -EINVAL;
++	}
++
++	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
++		msleep(1);
++	/* e1000_down has a dependency on max_frame_size */
++	adapter->hw.mac.max_frame_size = max_frame;
++	if (netif_running(netdev))
++		e1000_down(adapter);
++
++	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
++	 * means we reserve 2 more, this pushes us to allocate from the next
++	 * larger slab size.
++	 * i.e. RXBUFFER_2048 --> size-4096 slab
++	 *  however with the new *_jumbo* routines, jumbo receives will use
++	 *  fragmented skbs */
++
++	if (max_frame <= 256)
++		adapter->rx_buffer_len = 256;
++	else if (max_frame <= 512)
++		adapter->rx_buffer_len = 512;
++	else if (max_frame <= 1024)
++		adapter->rx_buffer_len = 1024;
++	else if (max_frame <= 2048)
++		adapter->rx_buffer_len = 2048;
++	else
++		adapter->rx_buffer_len = 4096;
++
++	/* adjust allocation if LPE protects us, and we aren't using SBP */
++	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
++	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
++		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
++					 + ETH_FCS_LEN ;
++
++	ndev_info(netdev, "changing MTU from %d to %d\n",
++		netdev->mtu, new_mtu);
++	netdev->mtu = new_mtu;
++
++	if (netif_running(netdev))
++		e1000_up(adapter);
++	else
++		e1000_reset(adapter);
++
++	clear_bit(__E1000_RESETTING, &adapter->state);
++
++	return 0;
++}
++
++static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
++			   int cmd)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct mii_ioctl_data *data = if_mii(ifr);
++	unsigned long irq_flags;
++
++	if (adapter->hw.media_type != e1000_media_type_copper)
++		return -EOPNOTSUPP;
++
++	switch (cmd) {
++	case SIOCGMIIPHY:
++		data->phy_id = adapter->hw.phy.addr;
++		break;
++	case SIOCGMIIREG:
++		if (!capable(CAP_NET_ADMIN))
++			return -EPERM;
++		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
++		if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
++				   &data->val_out)) {
++			spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
++			return -EIO;
++		}
++		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
++		break;
++	case SIOCSMIIREG:
++	default:
++		return -EOPNOTSUPP;
++	}
++	return E1000_SUCCESS;
++}
++
++static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
++{
++	switch (cmd) {
++	case SIOCGMIIPHY:
++	case SIOCGMIIREG:
++	case SIOCSMIIREG:
++		return e1000_mii_ioctl(netdev, ifr, cmd);
++	default:
++		return -EOPNOTSUPP;
++	}
++}
++
++static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
++{
++	struct net_device *netdev = pci_get_drvdata(pdev);
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	u32 ctrl, ctrl_ext, rctl, status;
++	u32 wufc = adapter->wol;
++	int retval = 0;
++
++	netif_device_detach(netdev);
++
++	if (netif_running(netdev)) {
++		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
++		e1000_down(adapter);
++		e1000_free_irq(adapter);
++	}
++
++	retval = pci_save_state(pdev);
++	if (retval)
++		return retval;
++
++	status = er32(STATUS);
++	if (status & E1000_STATUS_LU)
++		wufc &= ~E1000_WUFC_LNKC;
++
++	if (wufc) {
++		e1000_setup_rctl(adapter);
++		e1000_set_multi(netdev);
++
++		/* turn on all-multi mode if wake on multicast is enabled */
++		if (wufc & E1000_WUFC_MC) {
++			rctl = er32(RCTL);
++			rctl |= E1000_RCTL_MPE;
++			ew32(RCTL, rctl);
++		}
++
++		ctrl = er32(CTRL);
++		/* advertise wake from D3Cold */
++		#define E1000_CTRL_ADVD3WUC 0x00100000
++		/* phy power management enable */
++		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
++		ctrl |= E1000_CTRL_ADVD3WUC |
++			E1000_CTRL_EN_PHY_PWR_MGMT;
++		ew32(CTRL, ctrl);
++
++		if (adapter->hw.media_type == e1000_media_type_fiber ||
++		   adapter->hw.media_type == e1000_media_type_internal_serdes) {
++			/* keep the laser running in D3 */
++			ctrl_ext = er32(CTRL_EXT);
++			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
++			ew32(CTRL_EXT, ctrl_ext);
++		}
++
++		/* Allow time for pending master requests to run */
++		e1000_disable_pcie_master(&adapter->hw);
++
++		ew32(WUC, E1000_WUC_PME_EN);
++		ew32(WUFC, wufc);
++		pci_enable_wake(pdev, PCI_D3hot, 1);
++		pci_enable_wake(pdev, PCI_D3cold, 1);
++	} else {
++		ew32(WUC, 0);
++		ew32(WUFC, 0);
++		pci_enable_wake(pdev, PCI_D3hot, 0);
++		pci_enable_wake(pdev, PCI_D3cold, 0);
++	}
++
++	e1000_release_manageability(adapter);
++
++	/* make sure adapter isn't asleep if manageability is enabled */
++	if (adapter->flags & FLAG_MNG_PT_ENABLED) {
++		pci_enable_wake(pdev, PCI_D3hot, 1);
++		pci_enable_wake(pdev, PCI_D3cold, 1);
++	}
++
++	if (adapter->hw.phy.type == e1000_phy_igp_3)
++		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
++
++	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
++	 * would have already happened in close and is redundant. */
++	e1000_release_hw_control(adapter);
++
++	pci_disable_device(pdev);
++
++	pci_set_power_state(pdev, pci_choose_state(pdev, state));
++
++	return 0;
++}
++
++#ifdef CONFIG_PM
++static int e1000_resume(struct pci_dev *pdev)
++{
++	struct net_device *netdev = pci_get_drvdata(pdev);
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++	u32 err;
++
++	pci_set_power_state(pdev, PCI_D0);
++	pci_restore_state(pdev);
++	err = pci_enable_device(pdev);
++	if (err) {
++		dev_err(&pdev->dev,
++			"Cannot enable PCI device from suspend\n");
++		return err;
++	}
++
++	pci_set_master(pdev);
++
++	pci_enable_wake(pdev, PCI_D3hot, 0);
++	pci_enable_wake(pdev, PCI_D3cold, 0);
++
++	if (netif_running(netdev)) {
++		err = e1000_request_irq(adapter);
++		if (err)
++			return err;
++	}
++
++	e1000_power_up_phy(adapter);
++	e1000_reset(adapter);
++	ew32(WUS, ~0);
++
++	e1000_init_manageability(adapter);
++
++	if (netif_running(netdev))
++		e1000_up(adapter);
++
++	netif_device_attach(netdev);
++
++	/* If the controller has AMT, do not set DRV_LOAD until the interface
++	 * is up.  For all other cases, let the f/w know that the h/w is now
++	 * under the control of the driver. */
++	if (!(adapter->flags & FLAG_HAS_AMT) || !e1000_check_mng_mode(&adapter->hw))
++		e1000_get_hw_control(adapter);
++
++	return 0;
++}
++#endif
++
++static void e1000_shutdown(struct pci_dev *pdev)
++{
++	e1000_suspend(pdev, PMSG_SUSPEND);
++}
++
++#ifdef CONFIG_NET_POLL_CONTROLLER
++/*
++ * Polling 'interrupt' - used by things like netconsole to send skbs
++ * without having to re-enable interrupts. It's not called while
++ * the interrupt routine is executing.
++ */
++static void e1000_netpoll(struct net_device *netdev)
++{
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	disable_irq(adapter->pdev->irq);
++	e1000_intr(adapter->pdev->irq, netdev);
++
++	e1000_clean_tx_irq(adapter);
++
++	enable_irq(adapter->pdev->irq);
++}
++#endif
++
++/**
++ * e1000_io_error_detected - called when PCI error is detected
++ * @pdev: Pointer to PCI device
++ * @state: The current pci connection state
++ *
++ * This function is called after a PCI bus error affecting
++ * this device has been detected.
++ */
++static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
++						pci_channel_state_t state)
++{
++	struct net_device *netdev = pci_get_drvdata(pdev);
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	netif_device_detach(netdev);
++
++	if (netif_running(netdev))
++		e1000_down(adapter);
++	pci_disable_device(pdev);
++
++	/* Request a slot slot reset. */
++	return PCI_ERS_RESULT_NEED_RESET;
++}
++
++/**
++ * e1000_io_slot_reset - called after the pci bus has been reset.
++ * @pdev: Pointer to PCI device
++ *
++ * Restart the card from scratch, as if from a cold-boot. Implementation
++ * resembles the first-half of the e1000_resume routine.
++ */
++static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
++{
++	struct net_device *netdev = pci_get_drvdata(pdev);
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++	struct e1000_hw *hw = &adapter->hw;
++
++	if (pci_enable_device(pdev)) {
++		dev_err(&pdev->dev,
++			"Cannot re-enable PCI device after reset.\n");
++		return PCI_ERS_RESULT_DISCONNECT;
++	}
++	pci_set_master(pdev);
++
++	pci_enable_wake(pdev, PCI_D3hot, 0);
++	pci_enable_wake(pdev, PCI_D3cold, 0);
++
++	e1000_reset(adapter);
++	ew32(WUS, ~0);
++
++	return PCI_ERS_RESULT_RECOVERED;
++}
++
++/**
++ * e1000_io_resume - called when traffic can start flowing again.
++ * @pdev: Pointer to PCI device
++ *
++ * This callback is called when the error recovery driver tells us that
++ * its OK to resume normal operation. Implementation resembles the
++ * second-half of the e1000_resume routine.
++ */
++static void e1000_io_resume(struct pci_dev *pdev)
++{
++	struct net_device *netdev = pci_get_drvdata(pdev);
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	e1000_init_manageability(adapter);
++
++	if (netif_running(netdev)) {
++		if (e1000_up(adapter)) {
++			dev_err(&pdev->dev,
++				"can't bring device back up after reset\n");
++			return;
++		}
++	}
++
++	netif_device_attach(netdev);
++
++	/* If the controller has AMT, do not set DRV_LOAD until the interface
++	 * is up.  For all other cases, let the f/w know that the h/w is now
++	 * under the control of the driver. */
++	if (!(adapter->flags & FLAG_HAS_AMT) ||
++	    !e1000_check_mng_mode(&adapter->hw))
++		e1000_get_hw_control(adapter);
++
++}
++
++static void e1000_print_device_info(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct net_device *netdev = adapter->netdev;
++
++	/* print bus type/speed/width info */
++	ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
++		  "%02x:%02x:%02x:%02x:%02x:%02x\n",
++		  /* bus width */
++		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
++		  "Width x1"),
++		  /* MAC address */
++		  netdev->dev_addr[0], netdev->dev_addr[1],
++		  netdev->dev_addr[2], netdev->dev_addr[3],
++		  netdev->dev_addr[4], netdev->dev_addr[5]);
++	ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
++		  (hw->phy.type == e1000_phy_ife)
++		   ? "10/100" : "1000");
++}
++
++/**
++ * e1000_probe - Device Initialization Routine
++ * @pdev: PCI device information struct
++ * @ent: entry in e1000_pci_tbl
++ *
++ * Returns 0 on success, negative on failure
++ *
++ * e1000_probe initializes an adapter identified by a pci_dev structure.
++ * The OS initialization, configuring of the adapter private structure,
++ * and a hardware reset occur.
++ **/
++static int __devinit e1000_probe(struct pci_dev *pdev,
++				 const struct pci_device_id *ent)
++{
++	struct net_device *netdev;
++	struct e1000_adapter *adapter;
++	struct e1000_hw *hw;
++	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
++	unsigned long mmio_start, mmio_len;
++	unsigned long flash_start, flash_len;
++
++	static int cards_found;
++	int i, err, pci_using_dac;
++	u16 eeprom_data = 0;
++	u16 eeprom_apme_mask = E1000_EEPROM_APME;
++
++	err = pci_enable_device(pdev);
++	if (err)
++		return err;
++
++	pci_using_dac = 0;
++	err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
++	if (!err) {
++		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
++		if (!err)
++			pci_using_dac = 1;
++	} else {
++		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
++		if (err) {
++			err = pci_set_consistent_dma_mask(pdev,
++							  DMA_32BIT_MASK);
++			if (err) {
++				dev_err(&pdev->dev, "No usable DMA "
++					"configuration, aborting\n");
++				goto err_dma;
++			}
++		}
++	}
++
++	err = pci_request_regions(pdev, e1000_driver_name);
++	if (err)
++		goto err_pci_reg;
++
++	pci_set_master(pdev);
++
++	err = -ENOMEM;
++	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
++	if (!netdev)
++		goto err_alloc_etherdev;
++
++	SET_MODULE_OWNER(netdev);
++	SET_NETDEV_DEV(netdev, &pdev->dev);
++
++	pci_set_drvdata(pdev, netdev);
++	adapter = netdev_priv(netdev);
++	hw = &adapter->hw;
++	adapter->netdev = netdev;
++	adapter->pdev = pdev;
++	adapter->ei = ei;
++	adapter->pba = ei->pba;
++	adapter->flags = ei->flags;
++	adapter->hw.adapter = adapter;
++	adapter->hw.mac.type = ei->mac;
++	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
++
++	mmio_start = pci_resource_start(pdev, 0);
++	mmio_len = pci_resource_len(pdev, 0);
++
++	err = -EIO;
++	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
++	if (!adapter->hw.hw_addr)
++		goto err_ioremap;
++
++	if ((adapter->flags & FLAG_HAS_FLASH) &&
++	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
++		flash_start = pci_resource_start(pdev, 1);
++		flash_len = pci_resource_len(pdev, 1);
++		adapter->hw.flash_address = ioremap(flash_start, flash_len);
++		if (!adapter->hw.flash_address)
++			goto err_flashmap;
++	}
++
++	/* construct the net_device struct */
++	netdev->open			= &e1000_open;
++	netdev->stop			= &e1000_close;
++	netdev->hard_start_xmit		= &e1000_xmit_frame;
++	netdev->get_stats		= &e1000_get_stats;
++	netdev->set_multicast_list	= &e1000_set_multi;
++	netdev->set_mac_address		= &e1000_set_mac;
++	netdev->change_mtu		= &e1000_change_mtu;
++	netdev->do_ioctl		= &e1000_ioctl;
++	e1000_set_ethtool_ops(netdev);
++	netdev->tx_timeout		= &e1000_tx_timeout;
++	netdev->watchdog_timeo		= 5 * HZ;
++	netdev->poll			= &e1000_clean;
++	netdev->weight			= 64;
++	netdev->vlan_rx_register	= e1000_vlan_rx_register;
++	netdev->vlan_rx_add_vid		= e1000_vlan_rx_add_vid;
++	netdev->vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid;
++#ifdef CONFIG_NET_POLL_CONTROLLER
++	netdev->poll_controller		= e1000_netpoll;
++#endif
++	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
++
++	netdev->mem_start = mmio_start;
++	netdev->mem_end = mmio_start + mmio_len;
++
++	adapter->bd_number = cards_found++;
++
++	/* setup adapter struct */
++	err = e1000_sw_init(adapter);
++	if (err)
++		goto err_sw_init;
++
++	err = -EIO;
++
++	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
++	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
++	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
++
++	err = ei->get_invariants(adapter);
++	if (err)
++		goto err_hw_init;
++
++	hw->mac.ops.get_bus_info(&adapter->hw);
++
++	adapter->hw.phy.wait_for_link = 0;
++
++	/* Copper options */
++	if (adapter->hw.media_type == e1000_media_type_copper) {
++		adapter->hw.phy.mdix = AUTO_ALL_MODES;
++		adapter->hw.phy.disable_polarity_correction = 0;
++		adapter->hw.phy.ms_type = e1000_ms_hw_default;
++	}
++
++	if (e1000_check_reset_block(&adapter->hw))
++		ndev_info(netdev,
++			  "PHY reset is blocked due to SOL/IDER session.\n");
++
++	netdev->features = NETIF_F_SG |
++			   NETIF_F_HW_CSUM |
++			   NETIF_F_HW_VLAN_TX |
++			   NETIF_F_HW_VLAN_RX;
++
++	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
++		netdev->features |= NETIF_F_HW_VLAN_FILTER;
++
++	netdev->features |= NETIF_F_TSO;
++	netdev->features |= NETIF_F_TSO6;
++
++	if (pci_using_dac)
++		netdev->features |= NETIF_F_HIGHDMA;
++
++	/* We should not be using LLTX anymore, but we are still TX faster with
++	 * it. */
++	netdev->features |= NETIF_F_LLTX;
++
++	if (e1000_enable_mng_pass_thru(&adapter->hw))
++		adapter->flags |= FLAG_MNG_PT_ENABLED;
++
++	/* before reading the NVM, reset the controller to
++	 * put the device in a known good starting state */
++	adapter->hw.mac.ops.reset_hw(&adapter->hw);
++
++	/*
++	 * systems with ASPM and others may see the checksum fail on the first
++	 * attempt. Let's give it a few tries
++	 */
++	for (i = 0;; i++) {
++		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
++			break;
++		if (i == 2) {
++			ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
++			err = -EIO;
++			goto err_eeprom;
++		}
++	}
++
++	/* copy the MAC address out of the NVM */
++	if (e1000_read_mac_addr(&adapter->hw))
++		ndev_err(netdev, "NVM Read Error while reading MAC address\n");
++
++	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
++	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
++
++	if (!is_valid_ether_addr(netdev->perm_addr)) {
++		ndev_err(netdev, "Invalid MAC Address: "
++			 "%02x:%02x:%02x:%02x:%02x:%02x\n",
++			 netdev->perm_addr[0], netdev->perm_addr[1],
++			 netdev->perm_addr[2], netdev->perm_addr[3],
++			 netdev->perm_addr[4], netdev->perm_addr[5]);
++		err = -EIO;
++		goto err_eeprom;
++	}
++
++	init_timer(&adapter->watchdog_timer);
++	adapter->watchdog_timer.function = &e1000_watchdog;
++	adapter->watchdog_timer.data = (unsigned long) adapter;
++
++	init_timer(&adapter->phy_info_timer);
++	adapter->phy_info_timer.function = &e1000_update_phy_info;
++	adapter->phy_info_timer.data = (unsigned long) adapter;
++
++	INIT_WORK(&adapter->reset_task, e1000_reset_task);
++	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
++
++	e1000_check_options(adapter);
++
++	/* Initialize link parameters. User can change them with ethtool */
++	adapter->hw.mac.autoneg = 1;
++	adapter->hw.mac.original_fc = e1000_fc_default;
++	adapter->hw.mac.fc = e1000_fc_default;
++	adapter->hw.phy.autoneg_advertised = 0x2f;
++
++	/* ring size defaults */
++	adapter->rx_ring->count = 256;
++	adapter->tx_ring->count = 256;
++
++	/*
++	 * Initial Wake on LAN setting - If APM wake is enabled in
++	 * the EEPROM, enable the ACPI Magic Packet filter
++	 */
++	if (adapter->flags & FLAG_APME_IN_WUC) {
++		/* APME bit in EEPROM is mapped to WUC.APME */
++		eeprom_data = er32(WUC);
++		eeprom_apme_mask = E1000_WUC_APME;
++	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
++		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
++		    (adapter->hw.bus.func == 1))
++			e1000_read_nvm(&adapter->hw,
++				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
++		else
++			e1000_read_nvm(&adapter->hw,
++				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
++	}
++
++	/* fetch WoL from EEPROM */
++	if (eeprom_data & eeprom_apme_mask)
++		adapter->eeprom_wol |= E1000_WUFC_MAG;
++
++	/*
++	 * now that we have the eeprom settings, apply the special cases
++	 * where the eeprom may be wrong or the board simply won't support
++	 * wake on lan on a particular port
++	 */
++	if (!(adapter->flags & FLAG_HAS_WOL))
++		adapter->eeprom_wol = 0;
++
++	/* initialize the wol settings based on the eeprom settings */
++	adapter->wol = adapter->eeprom_wol;
++
++	/* reset the hardware with the new settings */
++	e1000_reset(adapter);
++
++	/* If the controller has AMT, do not set DRV_LOAD until the interface
++	 * is up.  For all other cases, let the f/w know that the h/w is now
++	 * under the control of the driver. */
++	if (!(adapter->flags & FLAG_HAS_AMT) ||
++	    !e1000_check_mng_mode(&adapter->hw))
++		e1000_get_hw_control(adapter);
++
++	/* tell the stack to leave us alone until e1000_open() is called */
++	netif_carrier_off(netdev);
++	netif_stop_queue(netdev);
++	netif_poll_disable(netdev);
++
++	strcpy(netdev->name, "eth%d");
++	err = register_netdev(netdev);
++	if (err)
++		goto err_register;
++
++	e1000_print_device_info(adapter);
++
++	return 0;
++
++err_register:
++err_hw_init:
++	e1000_release_hw_control(adapter);
++err_eeprom:
++	if (!e1000_check_reset_block(&adapter->hw))
++		e1000_phy_hw_reset(&adapter->hw);
++
++	if (adapter->hw.flash_address)
++		iounmap(adapter->hw.flash_address);
++
++err_flashmap:
++	kfree(adapter->tx_ring);
++	kfree(adapter->rx_ring);
++err_sw_init:
++	iounmap(adapter->hw.hw_addr);
++err_ioremap:
++	free_netdev(netdev);
++err_alloc_etherdev:
++	pci_release_regions(pdev);
++err_pci_reg:
++err_dma:
++	pci_disable_device(pdev);
++	return err;
++}
++
++/**
++ * e1000_remove - Device Removal Routine
++ * @pdev: PCI device information struct
++ *
++ * e1000_remove is called by the PCI subsystem to alert the driver
++ * that it should release a PCI device.  The could be caused by a
++ * Hot-Plug event, or because the driver is going to be removed from
++ * memory.
++ **/
++static void __devexit e1000_remove(struct pci_dev *pdev)
++{
++	struct net_device *netdev = pci_get_drvdata(pdev);
++	struct e1000_adapter *adapter = netdev_priv(netdev);
++
++	/* flush_scheduled work may reschedule our watchdog task, so
++	 * explicitly disable watchdog tasks from being rescheduled  */
++	set_bit(__E1000_DOWN, &adapter->state);
++	del_timer_sync(&adapter->watchdog_timer);
++	del_timer_sync(&adapter->phy_info_timer);
++
++	flush_scheduled_work();
++
++	e1000_release_manageability(adapter);
++
++	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
++	 * would have already happened in close and is redundant. */
++	e1000_release_hw_control(adapter);
++
++	unregister_netdev(netdev);
++
++	if (!e1000_check_reset_block(&adapter->hw))
++		e1000_phy_hw_reset(&adapter->hw);
++
++	kfree(adapter->tx_ring);
++	kfree(adapter->rx_ring);
++
++	iounmap(adapter->hw.hw_addr);
++	if (adapter->hw.flash_address)
++		iounmap(adapter->hw.flash_address);
++	pci_release_regions(pdev);
++
++	free_netdev(netdev);
++
++	pci_disable_device(pdev);
++}
++
++/* PCI Error Recovery (ERS) */
++static struct pci_error_handlers e1000_err_handler = {
++	.error_detected = e1000_io_error_detected,
++	.slot_reset = e1000_io_slot_reset,
++	.resume = e1000_io_resume,
++};
++
++static struct pci_device_id e1000e_pci_tbl[] = {
++	/*
++	 * Support for 82571/2/3, es2lan and ich8 will be phased in
++	 * stepwise.
++
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
++	  board_80003es2lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
++	  board_80003es2lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
++	  board_80003es2lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
++	  board_80003es2lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
++	*/
++
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
++	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
++
++	{ }	/* terminate list */
++};
++MODULE_DEVICE_TABLE(pci, e1000e_pci_tbl);
++
++/* PCI Device API Driver */
++static struct pci_driver e1000_driver = {
++	.name     = e1000_driver_name,
++	.id_table = e1000e_pci_tbl,
++	.probe    = e1000_probe,
++	.remove   = __devexit_p(e1000_remove),
++#ifdef CONFIG_PM
++	/* Power Managment Hooks */
++	.suspend  = e1000_suspend,
++	.resume   = e1000_resume,
++#endif
++	.shutdown = e1000_shutdown,
++	.err_handler = &e1000_err_handler
++};
++
++/**
++ * e1000_init_module - Driver Registration Routine
++ *
++ * e1000_init_module is the first routine called when the driver is
++ * loaded. All it does is register with the PCI subsystem.
++ **/
++static int __init e1000e_init_module(void)
++{
++	int ret;
++	printk(KERN_INFO "Intel(R) PRO/1000 Network Driver - %s\n",
++	       e1000_driver_version);
++	printk(KERN_INFO "Copyright (c) 1999-2007 Intel Corporation.\n");
++	ret = pci_register_driver(&e1000_driver);
++
++	return ret;
++}
++module_init(e1000e_init_module);
++
++/**
++ * e1000_exit_module - Driver Exit Cleanup Routine
++ *
++ * e1000_exit_module is called just before the driver is removed
++ * from memory.
++ **/
++static void __exit e1000e_exit_module(void)
++{
++	pci_unregister_driver(&e1000_driver);
++}
++module_exit(e1000e_exit_module);
++
++
++MODULE_AUTHOR("Intel Corporation, <linux.nics at intel.com>");
++MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
++MODULE_LICENSE("GPL");
++MODULE_VERSION(DRV_VERSION);
++
++/* e1000_main.c */
+diff --git a/drivers/net/e1000e/param.c b/drivers/net/e1000e/param.c
+new file mode 100644
+index 0000000..9a70d22
+--- /dev/null
++++ b/drivers/net/e1000e/param.c
+@@ -0,0 +1,382 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#include <linux/netdevice.h>
++
++#include "e1000.h"
++
++/* This is the only thing that needs to be changed to adjust the
++ * maximum number of ports that the driver can manage.
++ */
++
++#define E1000_MAX_NIC 32
++
++#define OPTION_UNSET   -1
++#define OPTION_DISABLED 0
++#define OPTION_ENABLED  1
++
++#define COPYBREAK_DEFAULT 256
++unsigned int copybreak = COPYBREAK_DEFAULT;
++module_param(copybreak, uint, 0644);
++MODULE_PARM_DESC(copybreak,
++	"Maximum size of packet that is copied to a new buffer on receive");
++
++/* All parameters are treated the same, as an integer array of values.
++ * This macro just reduces the need to repeat the same declaration code
++ * over and over (plus this helps to avoid typo bugs).
++ */
++
++#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
++#define E1000_PARAM(X, desc) \
++	static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
++	static int num_##X; \
++	module_param_array_named(X, X, int, &num_##X, 0); \
++	MODULE_PARM_DESC(X, desc);
++
++
++/* Transmit Interrupt Delay in units of 1.024 microseconds
++ *  Tx interrupt delay needs to typically be set to something non zero
++ *
++ * Valid Range: 0-65535
++ */
++E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
++#define DEFAULT_TIDV 8
++#define MAX_TXDELAY 0xFFFF
++#define MIN_TXDELAY 0
++
++/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
++ *
++ * Valid Range: 0-65535
++ */
++E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
++#define DEFAULT_TADV 32
++#define MAX_TXABSDELAY 0xFFFF
++#define MIN_TXABSDELAY 0
++
++/* Receive Interrupt Delay in units of 1.024 microseconds
++ *   hardware will likely hang if you set this to anything but zero.
++ *
++ * Valid Range: 0-65535
++ */
++E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
++#define DEFAULT_RDTR 0
++#define MAX_RXDELAY 0xFFFF
++#define MIN_RXDELAY 0
++
++/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
++ *
++ * Valid Range: 0-65535
++ */
++E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
++#define DEFAULT_RADV 8
++#define MAX_RXABSDELAY 0xFFFF
++#define MIN_RXABSDELAY 0
++
++/* Interrupt Throttle Rate (interrupts/sec)
++ *
++ * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
++ */
++E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
++#define DEFAULT_ITR 3
++#define MAX_ITR 100000
++#define MIN_ITR 100
++
++/* Enable Smart Power Down of the PHY
++ *
++ * Valid Range: 0, 1
++ *
++ * Default Value: 0 (disabled)
++ */
++E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
++
++/* Enable Kumeran Lock Loss workaround
++ *
++ * Valid Range: 0, 1
++ *
++ * Default Value: 1 (enabled)
++ */
++E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
++
++struct e1000_option {
++	enum { enable_option, range_option, list_option } type;
++	char *name;
++	char *err;
++	int  def;
++	union {
++		struct { /* range_option info */
++			int min;
++			int max;
++		} r;
++		struct { /* list_option info */
++			int nr;
++			struct e1000_opt_list { int i; char *str; } *p;
++		} l;
++	} arg;
++};
++
++static int __devinit e1000_validate_option(int *value,
++					   struct e1000_option *opt,
++					   struct e1000_adapter *adapter)
++{
++	if (*value == OPTION_UNSET) {
++		*value = opt->def;
++		return 0;
++	}
++
++	switch (opt->type) {
++	case enable_option:
++		switch (*value) {
++		case OPTION_ENABLED:
++			ndev_info(adapter->netdev, "%s Enabled\n", opt->name);
++			return 0;
++		case OPTION_DISABLED:
++			ndev_info(adapter->netdev, "%s Disabled\n", opt->name);
++			return 0;
++		}
++		break;
++	case range_option:
++		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
++			ndev_info(adapter->netdev,
++					"%s set to %i\n", opt->name, *value);
++			return 0;
++		}
++		break;
++	case list_option: {
++		int i;
++		struct e1000_opt_list *ent;
++
++		for (i = 0; i < opt->arg.l.nr; i++) {
++			ent = &opt->arg.l.p[i];
++			if (*value == ent->i) {
++				if (ent->str[0] != '\0')
++					ndev_info(adapter->netdev, "%s\n",
++						  ent->str);
++				return 0;
++			}
++		}
++	}
++		break;
++	default:
++		BUG();
++	}
++
++	ndev_info(adapter->netdev, "Invalid %s value specified (%i) %s\n",
++	       opt->name, *value, opt->err);
++	*value = opt->def;
++	return -1;
++}
++
++/**
++ * e1000_check_options - Range Checking for Command Line Parameters
++ * @adapter: board private structure
++ *
++ * This routine checks all command line parameters for valid user
++ * input.  If an invalid value is given, or if no user specified
++ * value exists, a default value is used.  The final value is stored
++ * in a variable in the adapter structure.
++ **/
++void __devinit e1000_check_options(struct e1000_adapter *adapter)
++{
++	struct e1000_hw *hw = &adapter->hw;
++	struct net_device *netdev = adapter->netdev;
++	int bd = adapter->bd_number;
++
++	if (bd >= E1000_MAX_NIC) {
++		ndev_notice(netdev,
++		       "Warning: no configuration for board #%i\n", bd);
++		ndev_notice(netdev, "Using defaults for all values\n");
++	}
++
++	{ /* Transmit Interrupt Delay */
++		struct e1000_option opt = {
++			.type = range_option,
++			.name = "Transmit Interrupt Delay",
++			.err  = "using default of "
++				__MODULE_STRING(DEFAULT_TIDV),
++			.def  = DEFAULT_TIDV,
++			.arg  = { .r = { .min = MIN_TXDELAY,
++					 .max = MAX_TXDELAY } }
++		};
++
++		if (num_TxIntDelay > bd) {
++			adapter->tx_int_delay = TxIntDelay[bd];
++			e1000_validate_option(&adapter->tx_int_delay, &opt,
++					      adapter);
++		} else {
++			adapter->tx_int_delay = opt.def;
++		}
++	}
++	{ /* Transmit Absolute Interrupt Delay */
++		struct e1000_option opt = {
++			.type = range_option,
++			.name = "Transmit Absolute Interrupt Delay",
++			.err  = "using default of "
++				__MODULE_STRING(DEFAULT_TADV),
++			.def  = DEFAULT_TADV,
++			.arg  = { .r = { .min = MIN_TXABSDELAY,
++					 .max = MAX_TXABSDELAY } }
++		};
++
++		if (num_TxAbsIntDelay > bd) {
++			adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
++			e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
++					      adapter);
++		} else {
++			adapter->tx_abs_int_delay = opt.def;
++		}
++	}
++	{ /* Receive Interrupt Delay */
++		struct e1000_option opt = {
++			.type = range_option,
++			.name = "Receive Interrupt Delay",
++			.err  = "using default of "
++				__MODULE_STRING(DEFAULT_RDTR),
++			.def  = DEFAULT_RDTR,
++			.arg  = { .r = { .min = MIN_RXDELAY,
++					 .max = MAX_RXDELAY } }
++		};
++
++		/* modify min and default if 82573 for slow ping w/a,
++		 * a value greater than 8 needs to be set for RDTR */
++		if (adapter->flags & FLAG_HAS_ASPM) {
++			opt.def = 32;
++			opt.arg.r.min = 8;
++		}
++
++		if (num_RxIntDelay > bd) {
++			adapter->rx_int_delay = RxIntDelay[bd];
++			e1000_validate_option(&adapter->rx_int_delay, &opt,
++					      adapter);
++		} else {
++			adapter->rx_int_delay = opt.def;
++		}
++	}
++	{ /* Receive Absolute Interrupt Delay */
++		struct e1000_option opt = {
++			.type = range_option,
++			.name = "Receive Absolute Interrupt Delay",
++			.err  = "using default of "
++				__MODULE_STRING(DEFAULT_RADV),
++			.def  = DEFAULT_RADV,
++			.arg  = { .r = { .min = MIN_RXABSDELAY,
++					 .max = MAX_RXABSDELAY } }
++		};
++
++		if (num_RxAbsIntDelay > bd) {
++			adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
++			e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
++					      adapter);
++		} else {
++			adapter->rx_abs_int_delay = opt.def;
++		}
++	}
++	{ /* Interrupt Throttling Rate */
++		struct e1000_option opt = {
++			.type = range_option,
++			.name = "Interrupt Throttling Rate (ints/sec)",
++			.err  = "using default of "
++				__MODULE_STRING(DEFAULT_ITR),
++			.def  = DEFAULT_ITR,
++			.arg  = { .r = { .min = MIN_ITR,
++					 .max = MAX_ITR } }
++		};
++
++		if (num_InterruptThrottleRate > bd) {
++			adapter->itr = InterruptThrottleRate[bd];
++			switch (adapter->itr) {
++			case 0:
++				ndev_info(netdev, "%s turned off\n",
++					opt.name);
++				break;
++			case 1:
++				ndev_info(netdev,
++					  "%s set to dynamic mode\n",
++					  opt.name);
++				adapter->itr_setting = adapter->itr;
++				adapter->itr = 20000;
++				break;
++			case 3:
++				ndev_info(netdev,
++					"%s set to dynamic conservative mode\n",
++					opt.name);
++				adapter->itr_setting = adapter->itr;
++				adapter->itr = 20000;
++				break;
++			default:
++				e1000_validate_option(&adapter->itr, &opt,
++					adapter);
++				/*
++				 * save the setting, because the dynamic bits
++				 * change itr. clear the lower two bits
++				 * because they are used as control
++				 */
++				adapter->itr_setting = adapter->itr & ~3;
++				break;
++			}
++		} else {
++			adapter->itr_setting = opt.def;
++			adapter->itr = 20000;
++		}
++	}
++	{ /* Smart Power Down */
++		struct e1000_option opt = {
++			.type = enable_option,
++			.name = "PHY Smart Power Down",
++			.err  = "defaulting to Disabled",
++			.def  = OPTION_DISABLED
++		};
++
++		if (num_SmartPowerDownEnable > bd) {
++			int spd = SmartPowerDownEnable[bd];
++			e1000_validate_option(&spd, &opt, adapter);
++			if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN)
++			    && spd)
++				adapter->flags |= FLAG_SMART_POWER_DOWN;
++		}
++	}
++	{ /* Kumeran Lock Loss Workaround */
++		struct e1000_option opt = {
++			.type = enable_option,
++			.name = "Kumeran Lock Loss Workaround",
++			.err  = "defaulting to Enabled",
++			.def  = OPTION_ENABLED
++		};
++
++		if (num_KumeranLockLoss > bd) {
++			int kmrn_lock_loss = KumeranLockLoss[bd];
++			e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
++			if (hw->mac.type == e1000_ich8lan)
++				e1000_set_kmrn_lock_loss_workaround_ich8lan(hw,
++								kmrn_lock_loss);
++		} else {
++			if (hw->mac.type == e1000_ich8lan)
++				e1000_set_kmrn_lock_loss_workaround_ich8lan(hw,
++								       opt.def);
++		}
++	}
++}
+diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
+new file mode 100644
+index 0000000..6fd55e7
+--- /dev/null
++++ b/drivers/net/e1000e/phy.c
+@@ -0,0 +1,1821 @@
++/*******************************************************************************
++
++  Intel PRO/1000 Linux driver
++  Copyright(c) 1999 - 2007 Intel Corporation.
++
++  This program is free software; you can redistribute it and/or modify it
++  under the terms and conditions of the GNU General Public License,
++  version 2, as published by the Free Software Foundation.
++
++  This program is distributed in the hope it will be useful, but WITHOUT
++  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
++  more details.
++
++  You should have received a copy of the GNU General Public License along with
++  this program; if not, write to the Free Software Foundation, Inc.,
++  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
++
++  The full GNU General Public License is included in this distribution in
++  the file called "COPYING".
++
++  Contact Information:
++  Linux NICS <linux.nics at intel.com>
++  e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
++  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
++
++*******************************************************************************/
++
++#include "e1000.h"
++
++static s32  e1000_get_phy_cfg_done(struct e1000_hw *hw);
++static s32  e1000_phy_force_speed_duplex(struct e1000_hw *hw);
++
++/* Cable length tables */
++static const u16 e1000_m88_cable_length_table[] =
++	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
++
++static const u16 e1000_igp_2_cable_length_table[] =
++	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
++	  6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
++	  26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
++	  44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
++	  66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
++	  87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
++	  100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
++	  124};
++#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
++		(sizeof(e1000_igp_2_cable_length_table) / \
++		 sizeof(e1000_igp_2_cable_length_table[0]))
++
++/**
++ *  e1000_check_reset_block_generic - Check if PHY reset is blocked
++ *  @hw: pointer to the HW structure
++ *
++ *  Read the PHY management control register and check whether a PHY reset
++ *  is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
++ *  return E1000_BLK_PHY_RESET (12).
++ **/
++s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
++{
++	u32 manc;
++
++	manc = er32(MANC);
++
++	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
++	       E1000_BLK_PHY_RESET : E1000_SUCCESS;
++}
++
++/**
++ *  e1000_get_phy_id - Retrieve the PHY ID and revision
++ *  @hw: pointer to the HW structure
++ *
++ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
++ *  revision in the hardware structure.
++ **/
++s32 e1000_get_phy_id(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val = E1000_SUCCESS;
++	u16 phy_id;
++
++	ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
++	if (ret_val)
++		goto out;
++
++	phy->id = (u32)(phy_id << 16);
++	udelay(20);
++	ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
++	if (ret_val)
++		goto out;
++
++	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
++	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_reset_dsp - Reset PHY DSP
++ *  @hw: pointer to the HW structure
++ *
++ *  Reset the digital signal processor.
++ **/
++s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
++{
++	s32 ret_val;
++
++	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_read_phy_reg_mdic - Read MDI control register
++ *  @hw: pointer to the HW structure
++ *  @offset: register offset to be read
++ *  @data: pointer to the read data
++ *
++ *  Reads the MDI control regsiter in the PHY at offset and stores the
++ *  information read to data.
++ **/
++static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	u32 i, mdic = 0;
++	s32 ret_val = E1000_SUCCESS;
++
++	if (offset > MAX_PHY_REG_ADDRESS) {
++		hw_dbg(hw, "PHY Address %d is out of range\n", offset);
++		ret_val = -E1000_ERR_PARAM;
++		goto out;
++	}
++
++	/* Set up Op-code, Phy Address, and register offset in the MDI
++	 * Control register.  The MAC will take care of interfacing with the
++	 * PHY to retrieve the desired data.
++	 */
++	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
++		(phy->addr << E1000_MDIC_PHY_SHIFT) |
++		(E1000_MDIC_OP_READ));
++
++	ew32(MDIC, mdic);
++
++	/* Poll the ready bit to see if the MDI read completed */
++	for (i = 0; i < 64; i++) {
++		udelay(50);
++		mdic = er32(MDIC);
++		if (mdic & E1000_MDIC_READY)
++			break;
++	}
++	if (!(mdic & E1000_MDIC_READY)) {
++		hw_dbg(hw, "MDI Read did not complete\n");
++		ret_val = -E1000_ERR_PHY;
++		goto out;
++	}
++	if (mdic & E1000_MDIC_ERROR) {
++		hw_dbg(hw, "MDI Error\n");
++		ret_val = -E1000_ERR_PHY;
++		goto out;
++	}
++	*data = (u16) mdic;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_phy_reg_mdic - Write MDI control register
++ *  @hw: pointer to the HW structure
++ *  @offset: register offset to write to
++ *  @data: data to write to register at offset
++ *
++ *  Writes data to MDI control register in the PHY at offset.
++ **/
++static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	u32 i, mdic = 0;
++	s32 ret_val = E1000_SUCCESS;
++
++	if (offset > MAX_PHY_REG_ADDRESS) {
++		hw_dbg(hw, "PHY Address %d is out of range\n", offset);
++		ret_val = -E1000_ERR_PARAM;
++		goto out;
++	}
++
++	/* Set up Op-code, Phy Address, and register offset in the MDI
++	 * Control register.  The MAC will take care of interfacing with the
++	 * PHY to retrieve the desired data.
++	 */
++	mdic = (((u32)data) |
++		(offset << E1000_MDIC_REG_SHIFT) |
++		(phy->addr << E1000_MDIC_PHY_SHIFT) |
++		(E1000_MDIC_OP_WRITE));
++
++	ew32(MDIC, mdic);
++
++	/* Poll the ready bit to see if the MDI read completed */
++	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
++		udelay(5);
++		mdic = er32(MDIC);
++		if (mdic & E1000_MDIC_READY)
++			break;
++	}
++	if (!(mdic & E1000_MDIC_READY)) {
++		hw_dbg(hw, "MDI Write did not complete\n");
++		ret_val = -E1000_ERR_PHY;
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_read_phy_reg_m88 - Read m88 PHY register
++ *  @hw: pointer to the HW structure
++ *  @offset: register offset to be read
++ *  @data: pointer to the read data
++ *
++ *  Acquires semaphore, if necessary, then reads the PHY register at offset
++ *  and storing the retrieved information in data.  Release any acquired
++ *  semaphores before exiting.
++ **/
++s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++	s32 ret_val;
++
++	ret_val = hw->phy.ops.acquire_phy(hw);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1000_read_phy_reg_mdic(hw,
++					  MAX_PHY_REG_ADDRESS & offset,
++					  data);
++
++	hw->phy.ops.release_phy(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_phy_reg_m88 - Write m88 PHY register
++ *  @hw: pointer to the HW structure
++ *  @offset: register offset to write to
++ *  @data: data to write at register offset
++ *
++ *  Acquires semaphore, if necessary, then writes the data to PHY register
++ *  at the offset.  Release any acquired semaphores before exiting.
++ **/
++s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
++{
++	s32 ret_val;
++
++	ret_val = hw->phy.ops.acquire_phy(hw);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1000_write_phy_reg_mdic(hw,
++					   MAX_PHY_REG_ADDRESS & offset,
++					   data);
++
++	hw->phy.ops.release_phy(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_read_phy_reg_igp - Read igp PHY register
++ *  @hw: pointer to the HW structure
++ *  @offset: register offset to be read
++ *  @data: pointer to the read data
++ *
++ *  Acquires semaphore, if necessary, then reads the PHY register at offset
++ *  and storing the retrieved information in data.  Release any acquired
++ *  semaphores before exiting.
++ **/
++s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++	s32 ret_val;
++
++	ret_val = hw->phy.ops.acquire_phy(hw);
++	if (ret_val)
++		goto out;
++
++	if (offset > MAX_PHY_MULTI_PAGE_REG) {
++		ret_val = e1000_write_phy_reg_mdic(hw,
++						   IGP01E1000_PHY_PAGE_SELECT,
++						   (u16)offset);
++		if (ret_val) {
++			hw->phy.ops.release_phy(hw);
++			goto out;
++		}
++	}
++
++	ret_val = e1000_read_phy_reg_mdic(hw,
++					  MAX_PHY_REG_ADDRESS & offset,
++					  data);
++
++	hw->phy.ops.release_phy(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_phy_reg_igp - Write igp PHY register
++ *  @hw: pointer to the HW structure
++ *  @offset: register offset to write to
++ *  @data: data to write at register offset
++ *
++ *  Acquires semaphore, if necessary, then writes the data to PHY register
++ *  at the offset.  Release any acquired semaphores before exiting.
++ **/
++s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
++{
++	s32 ret_val;
++
++	ret_val = hw->phy.ops.acquire_phy(hw);
++	if (ret_val)
++		goto out;
++
++	if (offset > MAX_PHY_MULTI_PAGE_REG) {
++		ret_val = e1000_write_phy_reg_mdic(hw,
++						   IGP01E1000_PHY_PAGE_SELECT,
++						   (u16)offset);
++		if (ret_val) {
++			hw->phy.ops.release_phy(hw);
++			goto out;
++		}
++	}
++
++	ret_val = e1000_write_phy_reg_mdic(hw,
++					   MAX_PHY_REG_ADDRESS & offset,
++					   data);
++
++	hw->phy.ops.release_phy(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_read_kmrn_reg - Read kumeran register
++ *  @hw: pointer to the HW structure
++ *  @offset: register offset to be read
++ *  @data: pointer to the read data
++ *
++ *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
++ *  using the kumeran interface.  The information retrieved is stored in data.
++ *  Release any acquired semaphores before exiting.
++ **/
++s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
++{
++	u32 kmrnctrlsta;
++	s32 ret_val;
++
++	ret_val = hw->phy.ops.acquire_phy(hw);
++	if (ret_val)
++		goto out;
++
++	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
++		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
++	ew32(KMRNCTRLSTA, kmrnctrlsta);
++
++	udelay(2);
++
++	kmrnctrlsta = er32(KMRNCTRLSTA);
++	*data = (u16)kmrnctrlsta;
++
++	hw->phy.ops.release_phy(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_write_kmrn_reg - Write kumeran register
++ *  @hw: pointer to the HW structure
++ *  @offset: register offset to write to
++ *  @data: data to write at register offset
++ *
++ *  Acquires semaphore, if necessary.  Then write the data to PHY register
++ *  at the offset using the kumeran interface.  Release any acquired semaphores
++ *  before exiting.
++ **/
++s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
++{
++	u32 kmrnctrlsta;
++	s32 ret_val;
++
++	ret_val = hw->phy.ops.acquire_phy(hw);
++	if (ret_val)
++		goto out;
++
++	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
++		       E1000_KMRNCTRLSTA_OFFSET) | data;
++	ew32(KMRNCTRLSTA, kmrnctrlsta);
++
++	udelay(2);
++	hw->phy.ops.release_phy(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
++ *  @hw: pointer to the HW structure
++ *
++ *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
++ *  and downshift values are set also.
++ **/
++s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 phy_data;
++
++	/* Enable CRS on TX. This must be set for half-duplex operation. */
++	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
++
++	/* Options:
++	 *   MDI/MDI-X = 0 (default)
++	 *   0 - Auto for all speeds
++	 *   1 - MDI mode
++	 *   2 - MDI-X mode
++	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
++	 */
++	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
++
++	switch (phy->mdix) {
++	case 1:
++		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
++		break;
++	case 2:
++		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
++		break;
++	case 3:
++		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
++		break;
++	case 0:
++	default:
++		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
++		break;
++	}
++
++	/* Options:
++	 *   disable_polarity_correction = 0 (default)
++	 *       Automatic Correction for Reversed Cable Polarity
++	 *   0 - Disabled
++	 *   1 - Enabled
++	 */
++	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
++	if (phy->disable_polarity_correction == 1)
++		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
++
++	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
++	if (ret_val)
++		goto out;
++
++	if (phy->revision < 4) {
++		/* Force TX_CLK in the Extended PHY Specific Control Register
++		 * to 25MHz clock.
++		 */
++		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
++		if (ret_val)
++			goto out;
++
++		phy_data |= M88E1000_EPSCR_TX_CLK_25;
++
++		if ((phy->revision == 2) &&
++		    (phy->id == M88E1111_I_PHY_ID)) {
++			/* 82573L PHY - set the downshift counter to 5x. */
++			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
++			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
++		} else {
++			/* Configure Master and Slave downshift values */
++			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
++				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
++			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
++				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
++		}
++		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
++		if (ret_val)
++			goto out;
++	}
++
++	/* Commit the changes. */
++	ret_val = e1000_commit_phy(hw);
++	if (ret_val) {
++		hw_dbg(hw, "Error committing the PHY changes\n");
++		goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_copper_link_setup_igp - Setup igp PHY's for copper link
++ *  @hw: pointer to the HW structure
++ *
++ *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
++ *  igp PHY's.
++ **/
++s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 data;
++
++	ret_val = e1000_phy_hw_reset(hw);
++	if (ret_val) {
++		hw_dbg(hw, "Error resetting the PHY.\n");
++		goto out;
++	}
++
++	/* Wait 15ms for MAC to configure PHY from NVM settings. */
++	msleep(15);
++
++	/* disable lplu d0 during driver init */
++	ret_val = e1000_set_d0_lplu_state(hw, 0);
++	if (ret_val) {
++		hw_dbg(hw, "Error Disabling LPLU D0\n");
++		goto out;
++	}
++	/* Configure mdi-mdix settings */
++	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
++	if (ret_val)
++		goto out;
++
++	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
++
++	switch (phy->mdix) {
++	case 1:
++		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
++		break;
++	case 2:
++		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
++		break;
++	case 0:
++	default:
++		data |= IGP01E1000_PSCR_AUTO_MDIX;
++		break;
++	}
++	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
++	if (ret_val)
++		goto out;
++
++	/* set auto-master slave resolution settings */
++	if (hw->mac.autoneg) {
++		/* when autonegotiation advertisement is only 1000Mbps then we
++		 * should disable SmartSpeed and enable Auto MasterSlave
++		 * resolution as hardware default. */
++		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
++			/* Disable SmartSpeed */
++			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     &data);
++			if (ret_val)
++				goto out;
++
++			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     data);
++			if (ret_val)
++				goto out;
++
++			/* Set auto Master/Slave resolution process */
++			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
++			if (ret_val)
++				goto out;
++
++			data &= ~CR_1000T_MS_ENABLE;
++			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
++			if (ret_val)
++				goto out;
++		}
++
++		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
++		if (ret_val)
++			goto out;
++
++		/* load defaults for future use */
++		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
++			((data & CR_1000T_MS_VALUE) ?
++			e1000_ms_force_master :
++			e1000_ms_force_slave) :
++			e1000_ms_auto;
++
++		switch (phy->ms_type) {
++		case e1000_ms_force_master:
++			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
++			break;
++		case e1000_ms_force_slave:
++			data |= CR_1000T_MS_ENABLE;
++			data &= ~(CR_1000T_MS_VALUE);
++			break;
++		case e1000_ms_auto:
++			data &= ~CR_1000T_MS_ENABLE;
++		default:
++			break;
++		}
++		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
++		if (ret_val)
++			goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
++ *  @hw: pointer to the HW structure
++ *
++ *  Reads the MII auto-neg advertisement register and/or the 1000T control
++ *  register and if the PHY is already setup for auto-negotiation, then
++ *  return successful.  Otherwise, setup advertisement and flow control to
++ *  the appropriate values for the wanted auto-negotiation.
++ **/
++static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 mii_autoneg_adv_reg;
++	u16 mii_1000t_ctrl_reg = 0;
++
++	phy->autoneg_advertised &= phy->autoneg_mask;
++
++	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
++	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
++	if (ret_val)
++		goto out;
++
++	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
++		/* Read the MII 1000Base-T Control Register (Address 9). */
++		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
++		if (ret_val)
++			goto out;
++	}
++
++	/* Need to parse both autoneg_advertised and fc and set up
++	 * the appropriate PHY registers.  First we will parse for
++	 * autoneg_advertised software override.  Since we can advertise
++	 * a plethora of combinations, we need to check each bit
++	 * individually.
++	 */
++
++	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
++	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
++	 * the  1000Base-T Control Register (Address 9).
++	 */
++	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
++				 NWAY_AR_100TX_HD_CAPS |
++				 NWAY_AR_10T_FD_CAPS   |
++				 NWAY_AR_10T_HD_CAPS);
++	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
++
++	hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
++
++	/* Do we want to advertise 10 Mb Half Duplex? */
++	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
++		hw_dbg(hw, "Advertise 10mb Half duplex\n");
++		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
++	}
++
++	/* Do we want to advertise 10 Mb Full Duplex? */
++	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
++		hw_dbg(hw, "Advertise 10mb Full duplex\n");
++		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
++	}
++
++	/* Do we want to advertise 100 Mb Half Duplex? */
++	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
++		hw_dbg(hw, "Advertise 100mb Half duplex\n");
++		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
++	}
++
++	/* Do we want to advertise 100 Mb Full Duplex? */
++	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
++		hw_dbg(hw, "Advertise 100mb Full duplex\n");
++		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
++	}
++
++	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
++	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
++		hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
++
++	/* Do we want to advertise 1000 Mb Full Duplex? */
++	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
++		hw_dbg(hw, "Advertise 1000mb Full duplex\n");
++		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
++	}
++
++	/* Check for a software override of the flow control settings, and
++	 * setup the PHY advertisement registers accordingly.  If
++	 * auto-negotiation is enabled, then software will have to set the
++	 * "PAUSE" bits to the correct value in the Auto-Negotiation
++	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
++	 * negotiation.
++	 *
++	 * The possible values of the "fc" parameter are:
++	 *      0:  Flow control is completely disabled
++	 *      1:  Rx flow control is enabled (we can receive pause frames
++	 *	  but not send pause frames).
++	 *      2:  Tx flow control is enabled (we can send pause frames
++	 *	  but we do not support receiving pause frames).
++	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
++	 *  other:  No software override.  The flow control configuration
++	 *	  in the EEPROM is used.
++	 */
++	switch (hw->mac.fc) {
++	case e1000_fc_none:
++		/* Flow control (RX & TX) is completely disabled by a
++		 * software over-ride.
++		 */
++		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
++		break;
++	case e1000_fc_rx_pause:
++		/* RX Flow control is enabled, and TX Flow control is
++		 * disabled, by a software over-ride.
++		 */
++		/* Since there really isn't a way to advertise that we are
++		 * capable of RX Pause ONLY, we will advertise that we
++		 * support both symmetric and asymmetric RX PAUSE.  Later
++		 * (in e1000_config_fc_after_link_up) we will disable the
++		 * hw's ability to send PAUSE frames.
++		 */
++		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
++		break;
++	case e1000_fc_tx_pause:
++		/* TX Flow control is enabled, and RX Flow control is
++		 * disabled, by a software over-ride.
++		 */
++		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
++		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
++		break;
++	case e1000_fc_full:
++		/* Flow control (both RX and TX) is enabled by a software
++		 * over-ride.
++		 */
++		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
++		break;
++	default:
++		hw_dbg(hw, "Flow control param set incorrectly\n");
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++	}
++
++	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
++	if (ret_val)
++		goto out;
++
++	hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
++
++	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
++		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
++		if (ret_val)
++			goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
++ *  @hw: pointer to the HW structure
++ *
++ *  Performs initial bounds checking on autoneg advertisement parameter, then
++ *  configure to advertise the full capability.  Setup the PHY to autoneg
++ *  and restart the negotiation process between the link partner.  If
++ *  wait_for_link, then wait for autoneg to complete before exiting.
++ **/
++static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 phy_ctrl;
++
++	/* Perform some bounds checking on the autoneg advertisement
++	 * parameter.
++	 */
++	phy->autoneg_advertised &= phy->autoneg_mask;
++
++	/* If autoneg_advertised is zero, we assume it was not defaulted
++	 * by the calling code so we set to advertise full capability.
++	 */
++	if (phy->autoneg_advertised == 0)
++		phy->autoneg_advertised = phy->autoneg_mask;
++
++	hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
++	ret_val = e1000_phy_setup_autoneg(hw);
++	if (ret_val) {
++		hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
++		goto out;
++	}
++	hw_dbg(hw, "Restarting Auto-Neg\n");
++
++	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
++	 * the Auto Neg Restart bit in the PHY control register.
++	 */
++	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
++	if (ret_val)
++		goto out;
++
++	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
++	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
++	if (ret_val)
++		goto out;
++
++	/* Does the user want to wait for Auto-Neg to complete here, or
++	 * check at a later time (for example, callback routine).
++	 */
++	if (phy->wait_for_link) {
++		ret_val = e1000_wait_autoneg(hw);
++		if (ret_val) {
++			hw_dbg(hw, "Error while waiting for "
++				 "autoneg to complete\n");
++			goto out;
++		}
++	}
++
++	hw->mac.get_link_status = 1;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_setup_copper_link - Configure copper link settings
++ *  @hw: pointer to the HW structure
++ *
++ *  Calls the appropriate function to configure the link for auto-neg or forced
++ *  speed and duplex.  Then we check for link, once link is established calls
++ *  to configure collision distance and flow control are called.  If link is
++ *  not established, we return -E1000_ERR_PHY (-2).
++ **/
++s32 e1000_setup_copper_link(struct e1000_hw *hw)
++{
++	s32 ret_val;
++	bool link;
++
++	if (hw->mac.autoneg) {
++		/* Setup autoneg and flow control advertisement and perform
++		 * autonegotiation. */
++		ret_val = e1000_copper_link_autoneg(hw);
++		if (ret_val)
++			goto out;
++	} else {
++		/* PHY will be set to 10H, 10F, 100H or 100F
++		 * depending on user settings. */
++		hw_dbg(hw, "Forcing Speed and Duplex\n");
++		ret_val = e1000_phy_force_speed_duplex(hw);
++		if (ret_val) {
++			hw_dbg(hw, "Error Forcing Speed and Duplex\n");
++			goto out;
++		}
++	}
++
++	/* Check link status. Wait up to 100 microseconds for link to become
++	 * valid.
++	 */
++	ret_val = e1000_phy_has_link_generic(hw,
++					     COPPER_LINK_UP_LIMIT,
++					     10,
++					     &link);
++	if (ret_val)
++		goto out;
++
++	if (link) {
++		hw_dbg(hw, "Valid link established!!!\n");
++		e1000_config_collision_dist(hw);
++		ret_val = e1000_config_fc_after_link_up(hw);
++	} else {
++		hw_dbg(hw, "Unable to establish link!!!\n");
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
++ *  @hw: pointer to the HW structure
++ *
++ *  Calls the PHY setup function to force speed and duplex.  Clears the
++ *  auto-crossover to force MDI manually.  Waits for link and returns
++ *  successful if link up is successful, else -E1000_ERR_PHY (-2).
++ **/
++s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 phy_data;
++	bool link;
++
++	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
++
++	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
++	if (ret_val)
++		goto out;
++
++	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
++	 * forced whenever speed and duplex are forced.
++	 */
++	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
++	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
++
++	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
++	if (ret_val)
++		goto out;
++
++	hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
++
++	udelay(1);
++
++	if (phy->wait_for_link) {
++		hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
++
++		ret_val = e1000_phy_has_link_generic(hw,
++						     PHY_FORCE_LIMIT,
++						     100000,
++						     &link);
++		if (ret_val)
++			goto out;
++
++		if (!link)
++			hw_dbg(hw, "Link taking longer than expected.\n");
++
++		/* Try once more */
++		ret_val = e1000_phy_has_link_generic(hw,
++						     PHY_FORCE_LIMIT,
++						     100000,
++						     &link);
++		if (ret_val)
++			goto out;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
++ *  @hw: pointer to the HW structure
++ *
++ *  Calls the PHY setup function to force speed and duplex.  Clears the
++ *  auto-crossover to force MDI manually.  Resets the PHY to commit the
++ *  changes.  If time expires while waiting for link up, we reset the DSP.
++ *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
++ *  successful completion, else return corresponding error code.
++ **/
++s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 phy_data;
++	bool link;
++
++	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
++	 * forced whenever speed and duplex are forced.
++	 */
++	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
++	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
++	if (ret_val)
++		goto out;
++
++	hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
++
++	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
++
++	/* Reset the phy to commit changes. */
++	phy_data |= MII_CR_RESET;
++
++	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
++	if (ret_val)
++		goto out;
++
++	udelay(1);
++
++	if (phy->wait_for_link) {
++		hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
++
++		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++						     100000, &link);
++		if (ret_val)
++			goto out;
++
++		if (!link) {
++			/* We didn't get link.
++			 * Reset the DSP and cross our fingers.
++			 */
++			ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
++			if (ret_val)
++				goto out;
++			ret_val = e1000_phy_reset_dsp(hw);
++			if (ret_val)
++				goto out;
++		}
++
++		/* Try once more */
++		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++						     100000, &link);
++		if (ret_val)
++			goto out;
++	}
++
++	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	/* Resetting the phy means we need to re-force TX_CLK in the
++	 * Extended PHY Specific Control Register to 25MHz clock from
++	 * the reset value of 2.5MHz.
++	 */
++	phy_data |= M88E1000_EPSCR_TX_CLK_25;
++	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
++	if (ret_val)
++		goto out;
++
++	/* In addition, we must re-enable CRS on Tx for both half and full
++	 * duplex.
++	 */
++	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
++	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
++ *  @hw: pointer to the HW structure
++ *  @phy_ctrl: pointer to current value of PHY_CONTROL
++ *
++ *  Forces speed and duplex on the PHY by doing the following: disable flow
++ *  control, force speed/duplex on the MAC, disable auto speed detection,
++ *  disable auto-negotiation, configure duplex, configure speed, configure
++ *  the collision distance, write configuration to CTRL register.  The
++ *  caller must write to the PHY_CONTROL register for these settings to
++ *  take affect.
++ **/
++void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
++{
++	struct e1000_mac_info *mac = &hw->mac;
++	u32 ctrl;
++
++	/* Turn off flow control when forcing speed/duplex */
++	mac->fc = e1000_fc_none;
++
++	/* Force speed/duplex on the mac */
++	ctrl = er32(CTRL);
++	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++	ctrl &= ~E1000_CTRL_SPD_SEL;
++
++	/* Disable Auto Speed Detection */
++	ctrl &= ~E1000_CTRL_ASDE;
++
++	/* Disable autoneg on the phy */
++	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
++
++	/* Forcing Full or Half Duplex? */
++	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
++		ctrl &= ~E1000_CTRL_FD;
++		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
++		hw_dbg(hw, "Half Duplex\n");
++	} else {
++		ctrl |= E1000_CTRL_FD;
++		*phy_ctrl |= MII_CR_FULL_DUPLEX;
++		hw_dbg(hw, "Full Duplex\n");
++	}
++
++	/* Forcing 10mb or 100mb? */
++	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
++		ctrl |= E1000_CTRL_SPD_100;
++		*phy_ctrl |= MII_CR_SPEED_100;
++		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
++		hw_dbg(hw, "Forcing 100mb\n");
++	} else {
++		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
++		*phy_ctrl |= MII_CR_SPEED_10;
++		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
++		hw_dbg(hw, "Forcing 10mb\n");
++	}
++
++	e1000_config_collision_dist(hw);
++
++	ew32(CTRL, ctrl);
++}
++
++/**
++ *  e1000_set_d3_lplu_state - Sets low power link up state for D3
++ *  @hw: pointer to the HW structure
++ *  @active: boolean used to enable/disable lplu
++ *
++ *  Success returns 0, Failure returns 1
++ *
++ *  The low power link up (lplu) state is set to the power management level D3
++ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
++ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
++ *  is used during Dx states where the power conservation is most important.
++ *  During driver activity, SmartSpeed should be enabled so performance is
++ *  maintained.
++ **/
++s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 data;
++
++	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
++	if (ret_val)
++		goto out;
++
++	if (!active) {
++		data &= ~IGP02E1000_PM_D3_LPLU;
++		ret_val = e1e_wphy(hw,
++					     IGP02E1000_PHY_POWER_MGMT,
++					     data);
++		if (ret_val)
++			goto out;
++		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
++		 * during Dx states where the power conservation is most
++		 * important.  During driver activity we should enable
++		 * SmartSpeed, so performance is maintained. */
++		if (phy->smart_speed == e1000_smart_speed_on) {
++			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						    &data);
++			if (ret_val)
++				goto out;
++
++			data |= IGP01E1000_PSCFR_SMART_SPEED;
++			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     data);
++			if (ret_val)
++				goto out;
++		} else if (phy->smart_speed == e1000_smart_speed_off) {
++			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     &data);
++			if (ret_val)
++				goto out;
++
++			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
++						     data);
++			if (ret_val)
++				goto out;
++		}
++	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
++		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
++		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
++		data |= IGP02E1000_PM_D3_LPLU;
++		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
++		if (ret_val)
++			goto out;
++
++		/* When LPLU is enabled, we should disable SmartSpeed */
++		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
++		if (ret_val)
++			goto out;
++
++		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
++		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_check_downshift - Checks whether a downshift in speed occured
++ *  @hw: pointer to the HW structure
++ *
++ *  Success returns 0, Failure returns 1
++ *
++ *  A downshift is detected by querying the PHY link health.
++ **/
++s32 e1000_check_downshift(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 phy_data, offset, mask;
++
++	switch (phy->type) {
++	case e1000_phy_m88:
++	case e1000_phy_gg82563:
++		offset	= M88E1000_PHY_SPEC_STATUS;
++		mask	= M88E1000_PSSR_DOWNSHIFT;
++		break;
++	case e1000_phy_igp_2:
++	case e1000_phy_igp_3:
++		offset	= IGP01E1000_PHY_LINK_HEALTH;
++		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
++		break;
++	default:
++		/* speed downshift not supported */
++		phy->speed_downgraded = 0;
++		ret_val = E1000_SUCCESS;
++		goto out;
++	}
++
++	ret_val = e1e_rphy(hw, offset, &phy_data);
++
++	if (!ret_val)
++		phy->speed_downgraded = (phy_data & mask);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_check_polarity_m88 - Checks the polarity.
++ *  @hw: pointer to the HW structure
++ *
++ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
++ *
++ *  Polarity is determined based on the PHY specific status register.
++ **/
++static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 data;
++
++	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
++
++	if (!ret_val)
++		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
++				      ? e1000_rev_polarity_reversed
++				      : e1000_rev_polarity_normal;
++
++	return ret_val;
++}
++
++/**
++ *  e1000_check_polarity_igp - Checks the polarity.
++ *  @hw: pointer to the HW structure
++ *
++ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
++ *
++ *  Polarity is determined based on the PHY port status register, and the
++ *  current speed (since there is no polarity at 100Mbps).
++ **/
++static  s32 e1000_check_polarity_igp(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 data, offset, mask;
++
++	/* Polarity is determined based on the speed of
++	 * our connection. */
++	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
++	if (ret_val)
++		goto out;
++
++	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
++	    IGP01E1000_PSSR_SPEED_1000MBPS) {
++		offset	= IGP01E1000_PHY_PCS_INIT_REG;
++		mask	= IGP01E1000_PHY_POLARITY_MASK;
++	} else {
++		/* This really only applies to 10Mbps since
++		 * there is no polarity for 100Mbps (always 0).
++		 */
++		offset	= IGP01E1000_PHY_PORT_STATUS;
++		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
++	}
++
++	ret_val = e1e_rphy(hw, offset, &data);
++
++	if (!ret_val)
++		phy->cable_polarity = (data & mask)
++				      ? e1000_rev_polarity_reversed
++				      : e1000_rev_polarity_normal;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_wait_autoneg - Wait for auto-neg compeletion
++ *  @hw: pointer to the HW structure
++ *
++ *  Waits for auto-negotiation to complete or for the auto-negotiation time
++ *  limit to expire, which ever happens first.
++ **/
++s32 e1000_wait_autoneg(struct e1000_hw *hw)
++{
++	s32 ret_val = E1000_SUCCESS;
++	u16 i, phy_status;
++
++	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
++	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
++		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
++		if (ret_val)
++			break;
++		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
++		if (ret_val)
++			break;
++		if (phy_status & MII_SR_AUTONEG_COMPLETE)
++			break;
++		msleep(100);
++	}
++
++	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
++	 * has completed.
++	 */
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_has_link_generic - Polls PHY for link
++ *  @hw: pointer to the HW structure
++ *  @iterations: number of times to poll for link
++ *  @usec_interval: delay between polling attempts
++ *  @success: pointer to whether polling was successful or not
++ *
++ *  Polls the PHY status register for link, 'iterations' number of times.
++ **/
++s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
++			       u32 usec_interval, bool *success)
++{
++	s32 ret_val = E1000_SUCCESS;
++	u16 i, phy_status;
++
++	for (i = 0; i < iterations; i++) {
++		/* Some PHYs require the PHY_STATUS register to be read
++		 * twice due to the link bit being sticky.  No harm doing
++		 * it across the board.
++		 */
++		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
++		if (ret_val)
++			break;
++		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
++		if (ret_val)
++			break;
++		if (phy_status & MII_SR_LINK_STATUS)
++			break;
++		if (usec_interval >= 1000)
++			mdelay(usec_interval/1000);
++		else
++			udelay(usec_interval);
++	}
++
++	*success = (i < iterations);
++
++	return ret_val;
++}
++
++/**
++ *  e1000_get_cable_length_m88 - Determine cable length for m88 PHY
++ *  @hw: pointer to the HW structure
++ *
++ *  Reads the PHY specific status register to retrieve the cable length
++ *  information.  The cable length is determined by averaging the minimum and
++ *  maximum values to get the "average" cable length.  The m88 PHY has four
++ *  possible cable length values, which are:
++ *	Register Value		Cable Length
++ *	0			< 50 meters
++ *	1			50 - 80 meters
++ *	2			80 - 110 meters
++ *	3			110 - 140 meters
++ *	4			> 140 meters
++ **/
++s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 phy_data, index;
++
++	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
++	if (ret_val)
++		goto out;
++
++	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
++		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
++	phy->min_cable_length = e1000_m88_cable_length_table[index];
++	phy->max_cable_length = e1000_m88_cable_length_table[index+1];
++
++	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
++ *  @hw: pointer to the HW structure
++ *
++ *  The automatic gain control (agc) normalizes the amplitude of the
++ *  received signal, adjusting for the attenuation produced by the
++ *  cable.  By reading the AGC registers, which reperesent the
++ *  cobination of course and fine gain value, the value can be put
++ *  into a lookup table to obtain the approximate cable length
++ *  for each channel.
++ **/
++s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 phy_data, i, agc_value = 0;
++	u16 cur_agc_index, max_agc_index = 0;
++	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
++	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
++							 {IGP02E1000_PHY_AGC_A,
++							  IGP02E1000_PHY_AGC_B,
++							  IGP02E1000_PHY_AGC_C,
++							  IGP02E1000_PHY_AGC_D};
++
++	/* Read the AGC registers for all channels */
++	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
++		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
++		if (ret_val)
++			goto out;
++
++		/* Getting bits 15:9, which represent the combination of
++		 * course and fine gain values.  The result is a number
++		 * that can be put into the lookup table to obtain the
++		 * approximate cable length. */
++		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
++				IGP02E1000_AGC_LENGTH_MASK;
++
++		/* Array index bound check. */
++		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
++		    (cur_agc_index == 0)) {
++			ret_val = -E1000_ERR_PHY;
++			goto out;
++		}
++
++		/* Remove min & max AGC values from calculation. */
++		if (e1000_igp_2_cable_length_table[min_agc_index] >
++		    e1000_igp_2_cable_length_table[cur_agc_index])
++			min_agc_index = cur_agc_index;
++		if (e1000_igp_2_cable_length_table[max_agc_index] <
++		    e1000_igp_2_cable_length_table[cur_agc_index])
++			max_agc_index = cur_agc_index;
++
++		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
++	}
++
++	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
++		      e1000_igp_2_cable_length_table[max_agc_index]);
++	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
++
++	/* Calculate cable length with the error range of +/- 10 meters. */
++	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
++				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
++	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
++
++	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_phy_info_m88 - Retrieve PHY information
++ *  @hw: pointer to the HW structure
++ *
++ *  Valid for only copper links.  Read the PHY status register (sticky read)
++ *  to verify that link is up.  Read the PHY special control register to
++ *  determine the polarity and 10base-T extended distance.  Read the PHY
++ *  special status register to determine MDI/MDIx and current speed.  If
++ *  speed is 1000, then determine cable length, local and remote receiver.
++ **/
++s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32  ret_val;
++	u16 phy_data;
++	bool link;
++
++	if (hw->media_type != e1000_media_type_copper) {
++		hw_dbg(hw, "Phy info is only valid for copper media\n");
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++	}
++
++	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	if (ret_val)
++		goto out;
++
++	if (!link) {
++		hw_dbg(hw, "Phy info is only valid if link is up\n");
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++	}
++
++	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
++	if (ret_val)
++		goto out;
++
++	phy->polarity_correction = (phy_data &
++				    M88E1000_PSCR_POLARITY_REVERSAL);
++
++	ret_val = e1000_check_polarity_m88(hw);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
++	if (ret_val)
++		goto out;
++
++	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
++
++	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
++		ret_val = e1000_get_cable_length(hw);
++		if (ret_val)
++			goto out;
++
++		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
++		if (ret_val)
++			goto out;
++
++		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
++				? e1000_1000t_rx_status_ok
++				: e1000_1000t_rx_status_not_ok;
++
++		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
++				 ? e1000_1000t_rx_status_ok
++				 : e1000_1000t_rx_status_not_ok;
++	} else {
++		/* Set values to "undefined" */
++		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
++		phy->local_rx = e1000_1000t_rx_status_undefined;
++		phy->remote_rx = e1000_1000t_rx_status_undefined;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_phy_info_igp - Retrieve igp PHY information
++ *  @hw: pointer to the HW structure
++ *
++ *  Read PHY status to determine if link is up.  If link is up, then
++ *  set/determine 10base-T extended distance and polarity correction.  Read
++ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
++ *  determine on the cable length, local and remote receiver.
++ **/
++s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
++	u16 data;
++	bool link;
++
++	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	if (ret_val)
++		goto out;
++
++	if (!link) {
++		hw_dbg(hw, "Phy info is only valid if link is up\n");
++		ret_val = -E1000_ERR_CONFIG;
++		goto out;
++	}
++
++	phy->polarity_correction = 1;
++
++	ret_val = e1000_check_polarity_igp(hw);
++	if (ret_val)
++		goto out;
++
++	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
++	if (ret_val)
++		goto out;
++
++	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
++
++	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
++	    IGP01E1000_PSSR_SPEED_1000MBPS) {
++		ret_val = e1000_get_cable_length(hw);
++		if (ret_val)
++			goto out;
++
++		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
++		if (ret_val)
++			goto out;
++
++		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
++				? e1000_1000t_rx_status_ok
++				: e1000_1000t_rx_status_not_ok;
++
++		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
++				 ? e1000_1000t_rx_status_ok
++				 : e1000_1000t_rx_status_not_ok;
++	} else {
++		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
++		phy->local_rx = e1000_1000t_rx_status_undefined;
++		phy->remote_rx = e1000_1000t_rx_status_undefined;
++	}
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_sw_reset - PHY software reset
++ *  @hw: pointer to the HW structure
++ *
++ *  Does a software reset of the PHY by reading the PHY control register and
++ *  setting/write the control register reset bit to the PHY.
++ **/
++s32 e1000_phy_sw_reset(struct e1000_hw *hw)
++{
++	s32 ret_val;
++	u16 phy_ctrl;
++
++	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
++	if (ret_val)
++		goto out;
++
++	phy_ctrl |= MII_CR_RESET;
++	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
++	if (ret_val)
++		goto out;
++
++	udelay(1);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_phy_hw_reset_generic - PHY hardware reset
++ *  @hw: pointer to the HW structure
++ *
++ *  Verify the reset block is not blocking us from resetting.  Acquire
++ *  semaphore (if necessary) and read/set/write the device control reset
++ *  bit in the PHY.  Wait the appropriate delay time for the device to
++ *  reset and relase the semaphore (if necessary).
++ **/
++s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
++{
++	struct e1000_phy_info *phy = &hw->phy;
++	s32  ret_val;
++	u32 ctrl;
++
++	ret_val = e1000_check_reset_block(hw);
++	if (ret_val) {
++		ret_val = E1000_SUCCESS;
++		goto out;
++	}
++
++	ret_val = phy->ops.acquire_phy(hw);
++	if (ret_val)
++		goto out;
++
++	ctrl = er32(CTRL);
++	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
++	e1e_flush();
++
++	udelay(phy->reset_delay_us);
++
++	ew32(CTRL, ctrl);
++	e1e_flush();
++
++	udelay(150);
++
++	phy->ops.release_phy(hw);
++
++	ret_val = e1000_get_phy_cfg_done(hw);
++
++out:
++	return ret_val;
++}
++
++/**
++ *  e1000_get_cfg_done - Generic configuration done
++ *  @hw: pointer to the HW structure
++ *
++ *  Generic function to wait 10 milli-seconds for configuration to complete
++ *  and return success.
++ **/
++s32 e1000_get_cfg_done(struct e1000_hw *hw)
++{
++	mdelay(10);
++
++	return E1000_SUCCESS;
++}
++
++/* Internal function pointers */
++
++/**
++ *  e1000_get_phy_cfg_done - Generic PHY configuration done
++ *  @hw: pointer to the HW structure
++ *
++ *  Return success if silicon family did not implement a family specific
++ *  get_cfg_done function.
++ **/
++static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
++{
++	if (hw->phy.ops.get_cfg_done)
++		return hw->phy.ops.get_cfg_done(hw);
++	else
++		return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
++ *  @hw: pointer to the HW structure
++ *
++ *  When the silicon family has not implemented a forced speed/duplex
++ *  function for the PHY, simply return E1000_SUCCESS.
++ **/
++static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
++{
++	if (hw->phy.ops.force_speed_duplex)
++		return hw->phy.ops.force_speed_duplex(hw);
++	else
++		return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_get_phy_type_from_id - Get PHY type from id
++ *  @phy_id: phy_id read from the phy
++ *
++ *  Returns the phy type from the id.
++ **/
++enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
++{
++	enum e1000_phy_type phy_type = e1000_phy_unknown;
++
++	switch (phy_id) {
++	case M88E1000_I_PHY_ID:
++	case M88E1000_E_PHY_ID:
++	case M88E1111_I_PHY_ID:
++	case M88E1011_I_PHY_ID:
++		phy_type = e1000_phy_m88;
++		break;
++	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
++		phy_type = e1000_phy_igp_2;
++		break;
++	case GG82563_E_PHY_ID:
++		phy_type = e1000_phy_gg82563;
++		break;
++	case IGP03E1000_E_PHY_ID:
++		phy_type = e1000_phy_igp_3;
++		break;
++	case IFE_E_PHY_ID:
++	case IFE_PLUS_E_PHY_ID:
++	case IFE_C_E_PHY_ID:
++		phy_type = e1000_phy_ife;
++		break;
++	default:
++		phy_type = e1000_phy_unknown;
++		break;
++	}
++	return phy_type;
++}
++
++/**
++ *  e1000_commit_phy - Soft PHY reset
++ *  @hw: pointer to the HW structure
++ *
++ *  Performs a soft PHY reset on those that apply. This is a function pointer
++ *  entry point called by drivers.
++ **/
++s32 e1000_commit_phy(struct e1000_hw *hw)
++{
++	if (hw->phy.ops.commit_phy)
++		return hw->phy.ops.commit_phy(hw);
++	else
++		return E1000_SUCCESS;
++}
++
++/**
++ *  e1000_set_d0_lplu_state - Sets low power link up state for D0
++ *  @hw: pointer to the HW structure
++ *  @active: boolean used to enable/disable lplu
++ *
++ *  Success returns 0, Failure returns 1
++ *
++ *  The low power link up (lplu) state is set to the power management level D0
++ *  and SmartSpeed is disabled when active is true, else clear lplu for D0
++ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
++ *  is used during Dx states where the power conservation is most important.
++ *  During driver activity, SmartSpeed should be enabled so performance is
++ *  maintained.  This is a function pointer entry point called by drivers.
++ **/
++s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
++{
++	if (hw->phy.ops.set_d0_lplu_state)
++		return hw->phy.ops.set_d0_lplu_state(hw, active);
++	else
++		return E1000_SUCCESS;
++}
+-- 
+1.5.0.6
+

Added: dists/trunk/linux-2.6/debian/patches/features/all/e1000e-fixes.patch
==============================================================================
--- (empty file)
+++ dists/trunk/linux-2.6/debian/patches/features/all/e1000e-fixes.patch	Wed Oct  3 19:18:52 2007
@@ -0,0 +1,8887 @@
+Return-Path: <netdev-owner at vger.kernel.org>
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Subject: [PATCH] e1000e: Remove unused or empty labels
+To: jeff at garzik.org
+Cc: andi at firstfloor.org, netdev at vger.kernel.org,
+	john.ronciak at intel.com
+Date:	Wed, 08 Aug 2007 10:21:52 -0700
+Message-ID: <20070808172152.12223.94635.stgit at localhost.localdomain>
+User-Agent: StGIT/0.12.1
+
+Remove labels with only return, remove E1000_SUCCESS code and
+replace with 0. Remove most goto's.
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+
+ drivers/net/e1000e/82571.c   |  138 +++++---------
+ drivers/net/e1000e/defines.h |    1 
+ drivers/net/e1000e/es2lan.c  |  162 +++++++----------
+ drivers/net/e1000e/ich8lan.c |  401 +++++++++++++++++-------------------------
+ drivers/net/e1000e/lib.c     |  314 +++++++++++++--------------------
+ drivers/net/e1000e/netdev.c  |    4 
+ drivers/net/e1000e/phy.c     |  278 ++++++++++++-----------------
+ 7 files changed, 521 insertions(+), 777 deletions(-)
+
+diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c
+index a1b9d16..ddf2303 100644
+--- a/drivers/net/e1000e/82571.c
++++ b/drivers/net/e1000e/82571.c
+@@ -67,11 +67,11 @@ static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	if (hw->media_type != e1000_media_type_copper) {
+ 		phy->type = e1000_phy_none;
+-		goto out;
++		return 0;
+ 	}
+ 
+ 	phy->addr			 = 1;
+@@ -87,8 +87,7 @@ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+ 		phy->type		 = e1000_phy_m88;
+ 		break;
+ 	default:
+-		ret_val = -E1000_ERR_PHY;
+-		goto out;
++		return -E1000_ERR_PHY;
+ 		break;
+ 	}
+ 
+@@ -99,25 +98,19 @@ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+ 	switch (hw->mac.type) {
+ 	case e1000_82571:
+ 	case e1000_82572:
+-		if (phy->id != IGP01E1000_I_PHY_ID) {
+-			ret_val = -E1000_ERR_PHY;
+-			goto out;
+-		}
++		if (phy->id != IGP01E1000_I_PHY_ID)
++			return -E1000_ERR_PHY;
+ 		break;
+ 	case e1000_82573:
+-		if (phy->id != M88E1111_I_PHY_ID) {
+-			ret_val = -E1000_ERR_PHY;
+-			goto out;
+-		}
++		if (phy->id != M88E1111_I_PHY_ID)
++			return -E1000_ERR_PHY;
+ 		break;
+ 	default:
+-		ret_val = -E1000_ERR_PHY;
+-		goto out;
++		return -E1000_ERR_PHY;
+ 		break;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -174,7 +167,7 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
+ 		break;
+ 	}
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -188,7 +181,6 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
+ 	struct e1000_hw *hw = &adapter->hw;
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	struct e1000_mac_operations *func = &mac->ops;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	/* Set media type */
+ 	switch (adapter->pdev->device) {
+@@ -232,13 +224,11 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
+ 		func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes;
+ 		break;
+ 	default:
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 		break;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
+@@ -306,7 +296,7 @@ static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
+ 		break;
+ 	}
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -319,7 +309,6 @@ static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
+ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	switch (hw->mac.type) {
+ 	case e1000_82571:
+@@ -331,14 +320,14 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+ 		phy->id = IGP01E1000_I_PHY_ID;
+ 		break;
+ 	case e1000_82573:
+-		ret_val = e1000_get_phy_id(hw);
++		return e1000_get_phy_id(hw);
+ 		break;
+ 	default:
+-		ret_val = -E1000_ERR_PHY;
++		return -E1000_ERR_PHY;
+ 		break;
+ 	}
+ 
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -350,7 +339,6 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+ static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+ {
+ 	u32 swsm;
+-	s32 ret_val = E1000_SUCCESS;
+ 	s32 timeout = hw->nvm.word_size + 1;
+ 	s32 i = 0;
+ 
+@@ -370,12 +358,10 @@ static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+ 		/* Release semaphores */
+ 		e1000_put_hw_semaphore(hw);
+ 		hw_dbg(hw, "Driver can't access the NVM\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -410,7 +396,7 @@ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+ 
+ 	ret_val = e1000_get_hw_semaphore_82571(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (hw->mac.type != e1000_82573)
+ 		ret_val = e1000_acquire_nvm(hw);
+@@ -418,7 +404,6 @@ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+ 	if (ret_val)
+ 		e1000_put_hw_semaphore_82571(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -449,7 +434,7 @@ static void e1000_release_nvm_82571(struct e1000_hw *hw)
+ static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+ 				 u16 *data)
+ {
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	switch (hw->mac.type) {
+ 	case e1000_82573:
+@@ -483,12 +468,12 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+ 
+ 	ret_val = e1000_update_nvm_checksum_generic(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* If our nvm is an EEPROM, then we're done
+ 	 * otherwise, commit the checksum to the flash NVM. */
+ 	if (hw->nvm.type != e1000_nvm_flash_hw)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Check for pending operations. */
+ 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+@@ -497,10 +482,8 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+ 			break;
+ 	}
+ 
+-	if (i == E1000_FLASH_UPDATES) {
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
+-	}
++	if (i == E1000_FLASH_UPDATES)
++		return -E1000_ERR_NVM;
+ 
+ 	/* Reset the firmware if using STM opcode. */
+ 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+@@ -522,13 +505,10 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+ 			break;
+ 	}
+ 
+-	if (i == E1000_FLASH_UPDATES) {
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
+-	}
++	if (i == E1000_FLASH_UPDATES)
++		return -E1000_ERR_NVM;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -573,8 +553,7 @@ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ 	    (words == 0)) {
+ 		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+ 	for (i = 0; i < words; i++) {
+@@ -593,7 +572,6 @@ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ 			break;
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -606,7 +584,6 @@ out:
+ static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+ {
+ 	s32 timeout = PHY_CFG_TIMEOUT;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	while (timeout) {
+ 		if (er32(EEMNGCTL) &
+@@ -617,12 +594,10 @@ static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+ 	}
+ 	if (!timeout) {
+ 		hw_dbg(hw, "MNG configuration cycle has not completed.\n");
+-		ret_val = -E1000_ERR_RESET;
+-		goto out;
++		return -E1000_ERR_RESET;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -644,20 +619,20 @@ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+ 
+ 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (active) {
+ 		data |= IGP02E1000_PM_D0_LPLU;
+ 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		/* When LPLU is enabled, we should disable SmartSpeed */
+ 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+ 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	} else {
+ 		data &= ~IGP02E1000_PM_D0_LPLU;
+ 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+@@ -669,29 +644,28 @@ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+ 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data |= IGP01E1000_PSCFR_SMART_SPEED;
+ 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		} else if (phy->smart_speed == e1000_smart_speed_off) {
+ 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		}
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -762,7 +736,7 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+ 	ret_val = e1000_get_auto_rd_done(hw);
+ 	if (ret_val)
+ 		/* We don't want to continue accessing MAC registers. */
+-		goto out;
++		return ret_val;
+ 
+ 	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+ 	 * Need to wait for Phy configuration completion before accessing
+@@ -775,8 +749,7 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+ 	ew32(IMC, 0xffffffff);
+ 	icr = er32(ICR);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -799,7 +772,7 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+ 	ret_val = e1000_id_led_init(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error initializing identification LED\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* Disabling VLAN filtering */
+@@ -851,7 +824,6 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+ 	 */
+ 	e1000_clear_hw_cntrs_82571(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1041,16 +1013,15 @@ static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+ 		ew32(LEDCTL, led_ctrl);
+ 		break;
+ 	default:
+-		ret_val = -E1000_ERR_PHY;
++		return -E1000_ERR_PHY;
+ 		break;
+ 	}
+ 
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1000_setup_copper_link(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1097,7 +1068,7 @@ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+ 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "NVM Read Error\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	if (hw->mac.type == e1000_82573 &&
+@@ -1107,8 +1078,7 @@ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+ 		 *data == ID_LED_RESERVED_FFFF)
+ 		*data = ID_LED_DEFAULT;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1135,7 +1105,7 @@ bool e1000_get_laa_state_82571(struct e1000_hw *hw)
+ void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+ {
+ 	if (hw->mac.type != e1000_82571)
+-		goto out;
++		return;
+ 
+ 	hw->dev_spec.e82571.laa_is_present = state;
+ 
+@@ -1148,9 +1118,6 @@ void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+ 		 * Eventually the LAA will be in RAR[0] and RAR[14].
+ 		 */
+ 		e1000_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
+-
+-out:
+-	return;
+ }
+ 
+ /**
+@@ -1166,18 +1133,18 @@ out:
+ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+ {
+ 	struct e1000_nvm_info *nvm = &hw->nvm;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 data;
+ 
+ 	if (nvm->type != e1000_nvm_flash_hw)
+-		goto out;
++		return 0;
+ 
+ 	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
+ 	 * 10h-12h.  Checksum may need to be fixed.
+ 	 */
+ 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (!(data & 0x10)) {
+ 		/* Read 0x23 and check bit 15.  This bit is a 1
+@@ -1189,19 +1156,18 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+ 		 */
+ 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		if (!(data & 0x8000)) {
+ 			data |= 0x8000;
+ 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 			ret_val = e1000_update_nvm_checksum(hw);
+ 		}
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+diff --git a/drivers/net/e1000e/defines.h b/drivers/net/e1000e/defines.h
+index e0a36f1..ca80fde 100644
+--- a/drivers/net/e1000e/defines.h
++++ b/drivers/net/e1000e/defines.h
+@@ -413,7 +413,6 @@
+ #define E1000_RAH_AV  0x80000000        /* Receive descriptor valid */
+ 
+ /* Error Codes */
+-#define E1000_SUCCESS      0
+ #define E1000_ERR_NVM      1
+ #define E1000_ERR_PHY      2
+ #define E1000_ERR_CONFIG   3
+diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c
+index b5143e9..5604c50 100644
+--- a/drivers/net/e1000e/es2lan.c
++++ b/drivers/net/e1000e/es2lan.c
+@@ -111,11 +111,11 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+ static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	if (hw->media_type != e1000_media_type_copper) {
+ 		phy->type	= e1000_phy_none;
+-		goto out;
++		return 0;
+ 	}
+ 
+ 	phy->addr		= 1;
+@@ -127,12 +127,9 @@ static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+ 	ret_val = e1000_get_phy_id(hw);
+ 
+ 	/* Verify phy id */
+-	if (phy->id != GG82563_E_PHY_ID) {
+-		ret_val = -E1000_ERR_PHY;
+-		goto out;
+-	}
++	if (phy->id != GG82563_E_PHY_ID)
++		return -E1000_ERR_PHY;
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -176,7 +173,7 @@ static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+ 	size += NVM_WORD_SIZE_BASE_SHIFT;
+ 	nvm->word_size	= 1 << size;
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -190,7 +187,6 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
+ 	struct e1000_hw *hw = &adapter->hw;
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	struct e1000_mac_operations *func = &mac->ops;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	/* Set media type */
+ 	switch (adapter->pdev->device) {
+@@ -225,13 +221,11 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
+ 		func->check_for_link = e1000_check_for_serdes_link;
+ 		break;
+ 	default:
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 		break;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
+@@ -251,7 +245,7 @@ static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
+ 	if (rc)
+ 		return rc;
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -298,14 +292,13 @@ static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1000_acquire_nvm(hw);
+ 
+ 	if (ret_val)
+ 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -335,15 +328,12 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ 	u32 swfw_sync;
+ 	u32 swmask = mask;
+ 	u32 fwmask = mask << 16;
+-	s32 ret_val = E1000_SUCCESS;
+ 	s32 i = 0;
+ 	s32 timeout = 200;
+ 
+ 	while (i < timeout) {
+-		if (e1000_get_hw_semaphore(hw)) {
+-			ret_val = -E1000_ERR_SWFW_SYNC;
+-			goto out;
+-		}
++		if (e1000_get_hw_semaphore(hw))
++			return -E1000_ERR_SWFW_SYNC;
+ 
+ 		swfw_sync = er32(SW_FW_SYNC);
+ 		if (!(swfw_sync & (fwmask | swmask)))
+@@ -359,8 +349,7 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ 	if (i == timeout) {
+ 		hw_dbg(hw,
+ 		       "Driver can't access resource, SW_FW_SYNC timeout.\n");
+-		ret_val = -E1000_ERR_SWFW_SYNC;
+-		goto out;
++		return -E1000_ERR_SWFW_SYNC;
+ 	}
+ 
+ 	swfw_sync |= swmask;
+@@ -368,8 +357,7 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ 
+ 	e1000_put_hw_semaphore(hw);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -384,7 +372,7 @@ static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ {
+ 	u32 swfw_sync;
+ 
+-	while (e1000_get_hw_semaphore(hw) != E1000_SUCCESS);
++	while (e1000_get_hw_semaphore(hw) != 0);
+ 	/* Empty */
+ 
+ 	swfw_sync = er32(SW_FW_SYNC);
+@@ -422,7 +410,7 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ 	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* The "ready" bit in the MDIC register may be incorrectly set
+ 	 * before the device has completed the "Page Select" MDI
+@@ -435,7 +423,7 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 
+ 	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+ 		ret_val = -E1000_ERR_PHY;
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	udelay(200);
+@@ -446,7 +434,6 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 
+ 	udelay(200);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -478,7 +465,7 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ 	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 
+ 	/* The "ready" bit in the MDIC register may be incorrectly set
+@@ -490,10 +477,8 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 	/* ...and verify the command was successful. */
+ 	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
+ 
+-	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+-		ret_val = -E1000_ERR_PHY;
+-		goto out;
+-	}
++	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
++		return -E1000_ERR_PHY;
+ 
+ 	udelay(200);
+ 
+@@ -503,7 +488,6 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 
+ 	udelay(200);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -533,7 +517,6 @@ static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+ static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+ {
+ 	s32 timeout = PHY_CFG_TIMEOUT;
+-	s32 ret_val = E1000_SUCCESS;
+ 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+ 
+ 	if (hw->bus.func == 1)
+@@ -547,12 +530,10 @@ static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+ 	}
+ 	if (!timeout) {
+ 		hw_dbg(hw, "MNG configuration cycle has not completed.\n");
+-		ret_val = -E1000_ERR_RESET;
+-		goto out;
++		return -E1000_ERR_RESET;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -573,18 +554,18 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ 	 */
+ 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+ 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
+ 
+ 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+ 
+@@ -593,7 +574,7 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	udelay(1);
+ 
+@@ -604,7 +585,7 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 						     100000, &link);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		if (!link) {
+ 			/* We didn't get link.
+@@ -612,19 +593,19 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ 			 */
+ 			ret_val = e1000_phy_reset_dsp(hw);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		}
+ 
+ 		/* Try once more */
+ 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 						     100000, &link);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+ 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Resetting the phy means we need to verify the TX_CLK corresponds
+ 	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
+@@ -641,7 +622,6 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ 	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -661,7 +641,7 @@ static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+ 	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+@@ -669,8 +649,7 @@ static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+ 
+ 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -692,7 +671,7 @@ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ 								    speed,
+ 								    duplex);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 		if (*speed == SPEED_1000)
+ 			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+ 		else
+@@ -704,7 +683,6 @@ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ 								  duplex);
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -745,14 +723,13 @@ static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+ 	ret_val = e1000_get_auto_rd_done(hw);
+ 	if (ret_val)
+ 		/* We don't want to continue accessing MAC registers. */
+-		goto out;
++		return ret_val;
+ 
+ 	/* Clear any pending interrupt events. */
+ 	ew32(IMC, 0xffffffff);
+ 	icr = er32(ICR);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -775,7 +752,7 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+ 	ret_val = e1000_id_led_init(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error initializing identification LED\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* Disabling VLAN filtering */
+@@ -833,7 +810,6 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+ 	 */
+ 	e1000_clear_hw_cntrs_80003es2lan(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -881,15 +857,15 @@ static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+  **/
+ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ {
+-	struct   e1000_phy_info *phy = &hw->phy;
+-	s32  ret_val;
++	struct e1000_phy_info *phy = &hw->phy;
++	s32 ret_val;
+ 	u32 ctrl_ext;
+ 	u16 data;
+ 
+ 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ 				     &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ 	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+@@ -898,7 +874,7 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ 				      data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Options:
+ 	 *   MDI/MDI-X = 0 (default)
+@@ -909,7 +885,7 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ 	 */
+ 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+ 
+@@ -938,13 +914,13 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* SW Reset the PHY so all changes take effect */
+ 	ret_val = e1000_commit_phy(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error Resetting the PHY\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* Bypass RX and TX FIFO's */
+@@ -953,16 +929,16 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ 				E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+ 					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+ 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ctrl_ext = er32(CTRL_EXT);
+ 	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+@@ -970,7 +946,7 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Do not init these registers when the HW is in IAMT mode, since the
+ 	 * firmware will have already initialized them.  We only initialize
+@@ -981,16 +957,16 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+ 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ 		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+ 	/* Workaround: Disable padding in Kumeran interface in the MAC
+@@ -998,15 +974,14 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ 	 */
+ 	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	data |= GG82563_ICR_DIS_PADDING;
+ 	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1019,7 +994,7 @@ out:
+ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+ {
+ 	u32 ctrl;
+-	s32  ret_val;
++	s32 ret_val;
+ 	u16 reg_data;
+ 
+ 	ctrl = er32(CTRL);
+@@ -1032,34 +1007,33 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+ 	 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
+ 	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 	reg_data |= 0x3F;
+ 	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 	ret_val = e1000_read_kmrn_reg(hw,
+ 				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ 				      &reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+ 	ret_val = e1000_write_kmrn_reg(hw,
+ 				       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ 				       reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1000_setup_copper_link(hw);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1072,7 +1046,7 @@ out:
+  **/
+ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+ {
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u32 tipg;
+ 	u16 reg_data;
+ 
+@@ -1081,7 +1055,7 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+ 				       E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ 				       reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Configure Transmit Inter-Packet Gap */
+ 	tipg = er32(TIPG);
+@@ -1091,7 +1065,7 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+ 
+ 	ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (duplex == HALF_DUPLEX)
+ 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+@@ -1100,8 +1074,7 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+ 
+ 	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1113,7 +1086,7 @@ out:
+  **/
+ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+ {
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 reg_data;
+ 	u32 tipg;
+ 
+@@ -1122,7 +1095,7 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+ 				       E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ 				       reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Configure Transmit Inter-Packet Gap */
+ 	tipg = er32(TIPG);
+@@ -1132,12 +1105,11 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ 	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c
+index 5967139..042abd4 100644
+--- a/drivers/net/e1000e/ich8lan.c
++++ b/drivers/net/e1000e/ich8lan.c
+@@ -187,7 +187,7 @@ static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
+ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 i = 0;
+ 
+ 	phy->addr			= 1;
+@@ -199,7 +199,7 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+ 		msleep(1);
+ 		ret_val = e1000_get_phy_id(hw);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+ 	/* Verify phy id */
+@@ -215,12 +215,11 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+ 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
+ 		break;
+ 	default:
+-		ret_val = -E1000_ERR_PHY;
+-		goto out;
++		return -E1000_ERR_PHY;
++		break;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -237,15 +236,13 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+ 	u32 gfpreg;
+ 	u32 sector_base_addr;
+ 	u32 sector_end_addr;
+-	s32 ret_val = E1000_SUCCESS;
+ 	u16 i;
+ 
+ 	/* Can't read flash registers if the register set isn't mapped.
+ 	 */
+ 	if (!hw->flash_address) {
+ 		hw_dbg(hw, "ERROR: Flash registers not mapped\n");
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 	}
+ 
+ 	nvm->type = e1000_nvm_flash_sw;
+@@ -277,8 +274,7 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+ 		dev_spec->shadow_ram[i].value    = 0xFFFF;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -309,7 +305,7 @@ static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
+ 	if (mac->type == e1000_ich8lan)
+ 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
+@@ -333,7 +329,7 @@ static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
+ 	    (adapter->hw.phy.type == e1000_phy_igp_3))
+ 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -348,7 +344,6 @@ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+ {
+ 	u32 extcnf_ctrl;
+ 	u32 timeout = PHY_CFG_TIMEOUT;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	while (timeout) {
+ 		extcnf_ctrl = er32(EXTCNF_CTRL);
+@@ -364,12 +359,10 @@ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+ 
+ 	if (!timeout) {
+ 		hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -403,8 +396,7 @@ static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+ 
+ 	fwsm = er32(FWSM);
+ 
+-	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
+-						: E1000_BLK_PHY_RESET;
++	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
+ }
+ 
+ /**
+@@ -424,30 +416,30 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+ 
+ 	if (phy->type != e1000_phy_ife) {
+ 		ret_val = e1000_phy_force_speed_duplex_igp(hw);
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	e1000_phy_force_speed_duplex_setup(hw, &data);
+ 
+ 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Disable MDI-X support for 10/100 */
+ 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	data &= ~IFE_PMC_AUTO_MDIX;
+ 	data &= ~IFE_PMC_FORCE_MDIX;
+ 
+ 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	hw_dbg(hw, "IFE PMC: %X\n", data);
+ 
+@@ -461,7 +453,7 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+ 						     100000,
+ 						     &link);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		if (!link)
+ 			hw_dbg(hw, "Link taking longer than expected.\n");
+@@ -472,11 +464,10 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+ 						     100000,
+ 						     &link);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -498,7 +489,7 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1000_phy_hw_reset_generic(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Initialize the PHY from the NVM on ICH platforms.  This
+ 	 * is needed due to an issue where the NVM configuration is
+@@ -518,7 +509,7 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+ 
+ 		data = er32(FEXTNVM);
+ 		if (!(data & sw_cfg_mask))
+-			goto out;
++			return 0;
+ 
+ 		/* Wait for basic configuration completes before proceeding*/
+ 		do {
+@@ -544,13 +535,13 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+ 		 * extended configuration before SW configuration */
+ 		data = er32(EXTCNF_CTRL);
+ 		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
+-			goto out;
++			return 0;
+ 
+ 		cnf_size = er32(EXTCNF_SIZE);
+ 		cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+ 		cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+ 		if (!cnf_size)
+-			goto out;
++			return 0;
+ 
+ 		cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+ 		cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+@@ -567,14 +558,14 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+ 						1,
+ 						&reg_data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			ret_val = e1000_read_nvm(hw,
+ 						(word_addr + i * 2 + 1),
+ 						1,
+ 						&reg_addr);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			/* Save off the PHY page for future writes. */
+ 			if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+@@ -586,12 +577,11 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+ 
+ 			ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		}
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -611,23 +601,22 @@ static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (!link) {
+ 		hw_dbg(hw, "Phy info is only valid if link is up\n");
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 	}
+ 
+ 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 	phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
+ 
+ 	if (phy->polarity_correction) {
+ 		ret_val = e1000_check_polarity_ife_ich8lan(hw);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	} else {
+ 		/* Polarity is forced */
+ 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
+@@ -637,7 +626,7 @@ static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
+ 
+@@ -646,8 +635,7 @@ static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
+ 	phy->local_rx = e1000_1000t_rx_status_undefined;
+ 	phy->remote_rx = e1000_1000t_rx_status_undefined;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -660,20 +648,18 @@ out:
+  **/
+ static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
+ {
+-	s32 ret_val = -E1000_ERR_PHY_TYPE;
+-
+ 	switch (hw->phy.type) {
+ 	case e1000_phy_ife:
+-		ret_val = e1000_get_phy_info_ife_ich8lan(hw);
++		return e1000_get_phy_info_ife_ich8lan(hw);
+ 		break;
+ 	case e1000_phy_igp_3:
+-		ret_val = e1000_get_phy_info_igp(hw);
++		return e1000_get_phy_info_igp(hw);
+ 		break;
+ 	default:
+ 		break;
+ 	}
+ 
+-	return ret_val;
++	return -E1000_ERR_PHY_TYPE;
+ }
+ 
+ /**
+@@ -728,11 +714,11 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	u32 phy_ctrl;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val = 0;
+ 	u16 data;
+ 
+ 	if (phy->type != e1000_phy_igp_3)
+-		goto out;
++		return ret_val;
+ 
+ 	phy_ctrl = er32(PHY_CTRL);
+ 
+@@ -751,7 +737,7 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+ 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	} else {
+ 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+ 		ew32(PHY_CTRL, phy_ctrl);
+@@ -764,29 +750,28 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+ 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						    &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data |= IGP01E1000_PSCFR_SMART_SPEED;
+ 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		} else if (phy->smart_speed == e1000_smart_speed_off) {
+ 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						    &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		}
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -806,7 +791,7 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	u32 phy_ctrl;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 data;
+ 
+ 	phy_ctrl = er32(PHY_CTRL);
+@@ -823,27 +808,27 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+ 						    IGP01E1000_PHY_PORT_CONFIG,
+ 						    &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data |= IGP01E1000_PSCFR_SMART_SPEED;
+ 			ret_val = e1e_wphy(hw,
+ 						     IGP01E1000_PHY_PORT_CONFIG,
+ 						     data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		} else if (phy->smart_speed == e1000_smart_speed_off) {
+ 			ret_val = e1e_rphy(hw,
+ 						    IGP01E1000_PHY_PORT_CONFIG,
+ 						    &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ 			ret_val = e1e_wphy(hw,
+ 						     IGP01E1000_PHY_PORT_CONFIG,
+ 						     data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		}
+ 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+@@ -862,7 +847,7 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+ 					    IGP01E1000_PHY_PORT_CONFIG,
+ 					    &data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ 		ret_val = e1e_wphy(hw,
+@@ -870,8 +855,7 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+ 					     data);
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -889,19 +873,18 @@ static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ 	struct e1000_nvm_info *nvm = &hw->nvm;
+ 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ 	u32 act_offset;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 i, word;
+ 
+ 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+ 	    (words == 0)) {
+ 		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+ 	ret_val = e1000_acquire_swflag_ich8lan(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Start with the bank offset, then add the relative offset. */
+ 	act_offset = (er32(EECD) & E1000_EECD_SEC1VAL)
+@@ -925,7 +908,6 @@ static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ 
+ 	e1000_release_swflag_ich8lan(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -948,7 +930,7 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+ 	if (hsfsts.hsf_status.fldesvalid == 0) {
+ 		hw_dbg(hw, "Flash descriptor invalid.  "
+ 			 "SW Sequencing must be used.");
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+ 	/* Clear FCERR and DAEL in hw status by writing 1 */
+@@ -971,19 +953,19 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+ 		/* Begin by setting Flash Cycle Done. */
+ 		hsfsts.hsf_status.flcdone = 1;
+ 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+-		ret_val = E1000_SUCCESS;
++		ret_val = 0;
+ 	} else {
+ 		/* otherwise poll for sometime so the current
+ 		 * cycle has a chance to end before giving up. */
+ 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+ 			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
+ 			if (hsfsts.hsf_status.flcinprog == 0) {
+-				ret_val = E1000_SUCCESS;
++				ret_val = 0;
+ 				break;
+ 			}
+ 			udelay(1);
+ 		}
+-		if (ret_val == E1000_SUCCESS) {
++		if (ret_val == 0) {
+ 			/* Successful in waiting for previous cycle to timeout,
+ 			 * now set the Flash Cycle Done. */
+ 			hsfsts.hsf_status.flcdone = 1;
+@@ -993,7 +975,6 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+ 		}
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1025,7 +1006,7 @@ static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+ 	} while (i++ < timeout);
+ 
+ 	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
+-		ret_val = E1000_SUCCESS;
++		return 0;
+ 
+ 	return ret_val;
+ }
+@@ -1042,20 +1023,10 @@ static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+ static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+ 					 u16 *data)
+ {
+-	s32 ret_val;
+-
+-	if (!data) {
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
+-	}
+-
+ 	/* Must convert offset into bytes. */
+ 	offset <<= 1;
+ 
+-	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+-
+-out:
+-	return ret_val;
++	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+ }
+ 
+ /**
+@@ -1078,7 +1049,7 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ 	u8 count = 0;
+ 
+ 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+-		goto out;
++		return -E1000_ERR_NVM;
+ 
+ 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ 			    hw->nvm.flash_base_addr;
+@@ -1087,7 +1058,7 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ 		udelay(1);
+ 		/* Steps */
+ 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+-		if (ret_val != E1000_SUCCESS)
++		if (ret_val != 0)
+ 			break;
+ 
+ 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+@@ -1105,7 +1076,7 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ 		 * and try the whole sequence a few more times, else
+ 		 * read in (shift in) the Flash Data0, the order is
+ 		 * least significant byte first msb to lsb */
+-		if (ret_val == E1000_SUCCESS) {
++		if (ret_val == 0) {
+ 			flash_data = er32flash(ICH_FLASH_FDATA0);
+ 			if (size == 1) {
+ 				*data = (u8)(flash_data & 0x000000FF);
+@@ -1131,7 +1102,6 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ 		}
+ 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1149,19 +1119,18 @@ static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ {
+ 	struct e1000_nvm_info *nvm = &hw->nvm;
+ 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 i;
+ 
+ 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+ 	    (words == 0)) {
+ 		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+ 	ret_val = e1000_acquire_swflag_ich8lan(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	for (i = 0; i < words; i++) {
+ 		dev_spec->shadow_ram[offset+i].modified = 1;
+@@ -1170,8 +1139,7 @@ static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ 
+ 	e1000_release_swflag_ich8lan(hw);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1195,14 +1163,14 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ 
+ 	ret_val = e1000_update_nvm_checksum_generic(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;;
+ 
+ 	if (nvm->type != e1000_nvm_flash_sw)
+-		goto out;
++		return ret_val;;
+ 
+ 	ret_val = e1000_acquire_swflag_ich8lan(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;;
+ 
+ 	/* We're writing to the opposite bank so if we're on bank 1,
+ 	 * write to bank 0 etc.  We also need to erase the segment that
+@@ -1262,7 +1230,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Flash commit failed.\n");
+ 		e1000_release_swflag_ich8lan(hw);
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* Finally validate the new segment by setting bit 15:14
+@@ -1277,7 +1245,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ 						       (u8)(data >> 8));
+ 	if (ret_val) {
+ 		e1000_release_swflag_ich8lan(hw);
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* And invalidate the previously valid segment by setting
+@@ -1288,7 +1256,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+ 	if (ret_val) {
+ 		e1000_release_swflag_ich8lan(hw);
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* Great!  Everything worked, we can now clear the cached entries. */
+@@ -1305,7 +1273,6 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ 	e1000_reload_nvm(hw);
+ 	msleep(10);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1319,7 +1286,7 @@ out:
+  **/
+ static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ {
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 data;
+ 
+ 	/* Read 0x19 and check bit 6.  If this bit is 0, the checksum
+@@ -1329,22 +1296,19 @@ static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ 	 */
+ 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if ((data & 0x40) == 0) {
+ 		data |= 0x40;
+ 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 		ret_val = e1000_update_nvm_checksum(hw);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+-	ret_val = e1000_validate_nvm_checksum_generic(hw);
+-
+-out:
+-	return ret_val;
++	return e1000_validate_nvm_checksum_generic(hw);
+ }
+ 
+ /**
+@@ -1363,12 +1327,12 @@ static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ 	union ich8_hws_flash_ctrl hsflctl;
+ 	u32 flash_linear_addr;
+ 	u32 flash_data = 0;
+-	s32 ret_val = -E1000_ERR_NVM;
++	s32 ret_val;
+ 	u8 count = 0;
+ 
+ 	if (size < 1 || size > 2 || data > size * 0xff ||
+ 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
+-		goto out;
++		return -E1000_ERR_NVM;
+ 
+ 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ 			    hw->nvm.flash_base_addr;
+@@ -1377,7 +1341,7 @@ static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ 		udelay(1);
+ 		/* Steps */
+ 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+-		if (ret_val != E1000_SUCCESS)
++		if (ret_val)
+ 			break;
+ 
+ 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+@@ -1399,27 +1363,25 @@ static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ 		 * and try the whole sequence a few more times else done */
+ 		ret_val = e1000_flash_cycle_ich8lan(hw,
+ 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+-		if (ret_val == E1000_SUCCESS) {
++		if (!ret_val)
++			break;
++
++		/* If we're here, then things are most likely
++		 * completely hosed, but if the error condition
++		 * is detected, it won't hurt to give it another
++		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
++		 */
++		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++		if (hsfsts.hsf_status.flcerr == 1)
++			/* Repeat for some time before giving up. */
++			continue;
++		if (hsfsts.hsf_status.flcdone == 0) {
++			hw_dbg(hw, "Timeout error - flash cycle "
++				 "did not complete.");
+ 			break;
+-		} else {
+-			/* If we're here, then things are most likely
+-			 * completely hosed, but if the error condition
+-			 * is detected, it won't hurt to give it another
+-			 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+-			 */
+-			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+-			if (hsfsts.hsf_status.flcerr == 1) {
+-				/* Repeat for some time before giving up. */
+-				continue;
+-			} else if (hsfsts.hsf_status.flcdone == 0) {
+-				hw_dbg(hw, "Timeout error - flash cycle "
+-					 "did not complete.");
+-				break;
+-			}
+ 		}
+ 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1455,23 +1417,20 @@ static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+ 	u16 program_retries;
+ 
+ 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+-	if (ret_val == E1000_SUCCESS)
+-		goto out;
++	if (!ret_val)
++		return ret_val;
+ 
+ 	for (program_retries = 0; program_retries < 100; program_retries++) {
+ 		hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
+ 		udelay(100);
+ 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+-		if (ret_val == E1000_SUCCESS)
++		if (!ret_val)
+ 			break;
+ 	}
+-	if (program_retries == 100) {
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
+-	}
++	if (program_retries == 100)
++		return -E1000_ERR_NVM;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1490,9 +1449,11 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+ 	u32 flash_linear_addr;
+ 	/* bank size is in 16bit words - adjust to bytes */
+ 	u32 flash_bank_size = nvm->flash_bank_size * 2;
+-	s32  ret_val = E1000_SUCCESS;
+-	s32  count = 0;
+-	s32  j, iteration, sector_size;
++	s32 ret_val;
++	s32 count = 0;
++	s32 iteration;
++	s32 sector_size;
++	s32 j;
+ 
+ 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+ 
+@@ -1523,8 +1484,7 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+ 			sector_size = ICH_FLASH_SEG_SIZE_8K;
+ 			iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
+ 		} else {
+-			ret_val = -E1000_ERR_NVM;
+-			goto out;
++			return -E1000_ERR_NVM;
+ 		}
+ 		break;
+ 	case 3:
+@@ -1532,8 +1492,7 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+ 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
+ 		break;
+ 	default:
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+ 	/* Start with the base address, then add the sector offset. */
+@@ -1545,7 +1504,7 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+ 			/* Steps */
+ 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			/* Write a value 11 (block Erase) in Flash
+ 			 * Cycle field in hw flash control */
+@@ -1562,25 +1521,23 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+ 
+ 			ret_val = e1000_flash_cycle_ich8lan(hw,
+ 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+-			if (ret_val == E1000_SUCCESS) {
++			if (ret_val == 0)
+ 				break;
+-			} else {
+-				/* Check if FCERR is set to 1.  If 1,
+-				 * clear it and try the whole sequence
+-				 * a few more times else Done */
+-				hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+-				if (hsfsts.hsf_status.flcerr == 1) {
+-					/* repeat for some time before
+-					 * giving up */
+-					continue;
+-				} else if (hsfsts.hsf_status.flcdone == 0)
+-					goto out;
+-			}
++
++			/* Check if FCERR is set to 1.  If 1,
++			 * clear it and try the whole sequence
++			 * a few more times else Done */
++			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
++			if (hsfsts.hsf_status.flcerr == 1)
++				/* repeat for some time before
++				 * giving up */
++				continue;
++			else if (hsfsts.hsf_status.flcdone == 0)
++				return ret_val;
+ 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1599,15 +1556,14 @@ static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
+ 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "NVM Read Error\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	if (*data == ID_LED_RESERVED_0000 ||
+ 	    *data == ID_LED_RESERVED_FFFF)
+ 		*data = ID_LED_DEFAULT_ICH8LAN;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1735,7 +1691,7 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+ 	ret_val = e1000_id_led_init(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error initializing identification LED\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* Setup the receive address. */
+@@ -1782,8 +1738,7 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+ 	 */
+ 	e1000_clear_hw_cntrs_ich8lan(hw);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ /**
+  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+@@ -1848,10 +1803,10 @@ static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+ static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	if (e1000_check_reset_block(hw))
+-		goto out;
++		return 0;
+ 
+ 	/* ICH parts do not have a word in the NVM to determine
+ 	 * the default flow control setting, so we explicitly
+@@ -1867,14 +1822,11 @@ static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+ 	/* Continue to configure the copper link. */
+ 	ret_val = e1000_setup_copper_link_ich8lan(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ew32(FCTTV, mac->fc_pause_time);
+ 
+-	ret_val = e1000_set_fc_watermarks(hw);
+-
+-out:
+-	return ret_val;
++	return e1000_set_fc_watermarks(hw);
+ }
+ 
+ /**
+@@ -1901,25 +1853,22 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+ 	 * this fixes erroneous timeouts at 10Mbps. */
+ 	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 	reg_data |= 0x3F;
+ 	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (hw->phy.type == e1000_phy_igp_3) {
+ 		ret_val = e1000_copper_link_setup_igp(hw);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+-	ret_val = e1000_setup_copper_link(hw);
+-
+-out:
+-	return ret_val;
++	return e1000_setup_copper_link(hw);
+ }
+ 
+ /**
+@@ -1939,7 +1888,7 @@ static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+ 
+ 	ret_val = e1000_get_speed_and_duplex_copper(hw, speed, duplex);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if ((hw->mac.type == e1000_ich8lan) &&
+ 	    (hw->phy.type == e1000_phy_igp_3) &&
+@@ -1947,7 +1896,6 @@ static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+ 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1970,37 +1918,33 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+ {
+ 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ 	u32 phy_ctrl;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 i, data;
+ 	bool link;
+ 
+ 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
+-		goto out;
++		return 0;
+ 
+ 	/* Make sure link is up before proceeding.  If not just return.
+ 	 * Attempting this while link is negotiating fouled up link
+ 	 * stability */
+ 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+-	if (!link) {
+-		ret_val = E1000_SUCCESS;
+-		goto out;
+-	}
++	if (!link)
++		return 0;
+ 
+ 	for (i = 0; i < 10; i++) {
+ 		/* read once to clear */
+ 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 		/* and again to get new status */
+ 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		/* check for PCS lock */
+-		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) {
+-			ret_val = E1000_SUCCESS;
+-			goto out;
+-		}
++		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
++			return 0;
+ 
+ 		/* Issue PHY reset */
+ 		e1000_phy_hw_reset(hw);
+@@ -2017,10 +1961,7 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+ 	e1000_gig_downshift_workaround_ich8lan(hw);
+ 
+ 	/* unable to acquire PCS lock */
+-	ret_val = -E1000_ERR_PHY;
+-
+-out:
+-	return ret_val;
++	return -E1000_ERR_PHY;
+ }
+ 
+ /**
+@@ -2038,13 +1979,10 @@ void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+ 
+ 	if (hw->mac.type != e1000_ich8lan) {
+ 		hw_dbg(hw, "Workaround applies to ICH8 only.\n");
+-		goto out;
++		return;
+ 	}
+ 
+ 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
+-
+-out:
+-	return;
+ }
+ 
+ /**
+@@ -2064,7 +2002,7 @@ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+ 	u8  retry = 0;
+ 
+ 	if (hw->phy.type != e1000_phy_igp_3)
+-		goto out;
++		return;
+ 
+ 	/* Try the workaround twice (if needed) */
+ 	do {
+@@ -2095,9 +2033,6 @@ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+ 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
+ 		retry++;
+ 	} while (retry);
+-
+-out:
+-	return;
+ }
+ 
+ /**
+@@ -2112,27 +2047,25 @@ out:
+  **/
+ void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+ {
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 reg_data;
+ 
+ 	if ((hw->mac.type != e1000_ich8lan) ||
+ 	    (hw->phy.type != e1000_phy_igp_3))
+-		goto out;
++		return;
+ 
+ 	ret_val = e1000_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ 				      &reg_data);
+ 	if (ret_val)
+-		goto out;
++		return;
+ 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+ 	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ 				       reg_data);
+ 	if (ret_val)
+-		goto out;
++		return;
+ 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+ 	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ 				       reg_data);
+-out:
+-	return;
+ }
+ 
+ /**
+@@ -2143,14 +2076,11 @@ out:
+  **/
+ static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+ {
+-	s32 ret_val = E1000_SUCCESS;
+-
+ 	if (hw->phy.type == e1000_phy_ife)
+-		ret_val = e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+-	else
+-		ew32(LEDCTL, hw->mac.ledctl_default);
++		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+ 
+-	return ret_val;
++	ew32(LEDCTL, hw->mac.ledctl_default);
++	return 0;
+ }
+ 
+ /**
+@@ -2161,15 +2091,12 @@ static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+  **/
+ static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+ {
+-	s32 ret_val = E1000_SUCCESS;
+-
+ 	if (hw->phy.type == e1000_phy_ife)
+-		ret_val = e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
++		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+-	else
+-		ew32(LEDCTL, hw->mac.ledctl_mode2);
+ 
+-	return ret_val;
++	ew32(LEDCTL, hw->mac.ledctl_mode2);
++	return 0;
+ }
+ 
+ /**
+@@ -2180,16 +2107,12 @@ static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+  **/
+ static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
+ {
+-	s32 ret_val = E1000_SUCCESS;
+-
+ 	if (hw->phy.type == e1000_phy_ife)
+-		ret_val = e1e_wphy(hw,
+-			       IFE_PHY_SPECIAL_CONTROL_LED,
++		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+-	else
+-		ew32(LEDCTL, hw->mac.ledctl_mode1);
+ 
+-	return ret_val;
++	ew32(LEDCTL, hw->mac.ledctl_mode1);
++	return 0;
+ }
+ 
+ /**
+diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
+index 21c16e0..d11b518 100644
+--- a/drivers/net/e1000e/lib.c
++++ b/drivers/net/e1000e/lib.c
+@@ -81,7 +81,7 @@ s32 e1000_get_bus_info_pcie(struct e1000_hw *hw)
+ 		bus->func = 0;
+ 	}
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -378,10 +378,8 @@ s32 e1000_check_for_copper_link(struct e1000_hw *hw)
+ 	 * get_link_status flag is set upon receiving a Link Status
+ 	 * Change or Rx Sequence Error interrupt.
+ 	 */
+-	if (!mac->get_link_status) {
+-		ret_val = E1000_SUCCESS;
+-		goto out;
+-	}
++	if (!mac->get_link_status)
++		return 0;
+ 
+ 	/* First we want to see if the MII Status Register reports
+ 	 * link.  If so, then we want to get the current speed/duplex
+@@ -389,10 +387,10 @@ s32 e1000_check_for_copper_link(struct e1000_hw *hw)
+ 	 */
+ 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (!link)
+-		goto out; /* No link detected */
++		return ret_val; /* No link detected */
+ 
+ 	mac->get_link_status = 0;
+ 
+@@ -405,7 +403,7 @@ s32 e1000_check_for_copper_link(struct e1000_hw *hw)
+ 	 */
+ 	if (!mac->autoneg) {
+ 		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
+@@ -424,7 +422,6 @@ s32 e1000_check_for_copper_link(struct e1000_hw *hw)
+ 		hw_dbg(hw, "Error configuring flow control\n");
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -441,7 +438,7 @@ s32 e1000_check_for_fiber_link(struct e1000_hw *hw)
+ 	u32 rxcw;
+ 	u32 ctrl;
+ 	u32 status;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	ctrl = er32(CTRL);
+ 	status = er32(STATUS);
+@@ -459,7 +456,7 @@ s32 e1000_check_for_fiber_link(struct e1000_hw *hw)
+ 	    (!(rxcw & E1000_RXCW_C))) {
+ 		if (mac->autoneg_failed == 0) {
+ 			mac->autoneg_failed = 1;
+-			goto out;
++			return 0;
+ 		}
+ 		hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
+ 
+@@ -475,7 +472,7 @@ s32 e1000_check_for_fiber_link(struct e1000_hw *hw)
+ 		ret_val = e1000_config_fc_after_link_up(hw);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error configuring flow control\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ 		/* If we are forcing link and we are receiving /C/ ordered
+@@ -490,8 +487,7 @@ s32 e1000_check_for_fiber_link(struct e1000_hw *hw)
+ 		mac->serdes_has_link = 1;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -507,7 +503,7 @@ s32 e1000_check_for_serdes_link(struct e1000_hw *hw)
+ 	u32 rxcw;
+ 	u32 ctrl;
+ 	u32 status;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	ctrl = er32(CTRL);
+ 	status = er32(STATUS);
+@@ -523,7 +519,7 @@ s32 e1000_check_for_serdes_link(struct e1000_hw *hw)
+ 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+ 		if (mac->autoneg_failed == 0) {
+ 			mac->autoneg_failed = 1;
+-			goto out;
++			return 0;
+ 		}
+ 		hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
+ 
+@@ -539,7 +535,7 @@ s32 e1000_check_for_serdes_link(struct e1000_hw *hw)
+ 		ret_val = e1000_config_fc_after_link_up(hw);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error configuring flow control\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ 		/* If we are forcing link and we are receiving /C/ ordered
+@@ -575,8 +571,7 @@ s32 e1000_check_for_serdes_link(struct e1000_hw *hw)
+ 		mac->serdes_has_link = (status & E1000_STATUS_LU);
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -589,11 +584,11 @@ out:
+ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 nvm_data;
+ 
+ 	if (mac->fc != e1000_fc_default)
+-		goto out;
++		return 0;
+ 
+ 	/* Read and store word 0x0F of the EEPROM. This word contains bits
+ 	 * that determine the hardware's default PAUSE (flow control) mode,
+@@ -607,7 +602,7 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+ 
+ 	if (ret_val) {
+ 		hw_dbg(hw, "NVM Read Error\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+@@ -618,8 +613,7 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+ 	else
+ 		mac->fc = e1000_fc_full;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -635,17 +629,17 @@ out:
+ s32 e1000_setup_link(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	/* In the case of the phy reset being blocked, we already have a link.
+ 	 * We do not need to set it up again.
+ 	 */
+ 	if (e1000_check_reset_block(hw))
+-		goto out;
++		return 0;
+ 
+ 	ret_val = e1000_set_default_fc_generic(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* We want to save off the original Flow Control configuration just
+ 	 * in case we get disconnected and then reconnected into a different
+@@ -658,7 +652,7 @@ s32 e1000_setup_link(struct e1000_hw *hw)
+ 	/* Call the necessary media_type subroutine to configure the link. */
+ 	ret_val = mac->ops.setup_physical_interface(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Initialize the flow control address, type, and PAUSE timer
+ 	 * registers to their default values.  This is done even if flow
+@@ -672,10 +666,7 @@ s32 e1000_setup_link(struct e1000_hw *hw)
+ 
+ 	ew32(FCTTV, mac->fc_pause_time);
+ 
+-	ret_val = e1000_set_fc_watermarks(hw);
+-
+-out:
+-	return ret_val;
++	return e1000_set_fc_watermarks(hw);
+ }
+ 
+ /**
+@@ -689,7 +680,6 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	u32 txcw;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	/* Check for a software override of the flow control settings, and
+ 	 * setup the device accordingly.  If auto-negotiation is enabled, then
+@@ -736,16 +726,14 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+ 		break;
+ 	default:
+ 		hw_dbg(hw, "Flow control param set incorrectly\n");
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 		break;
+ 	}
+ 
+ 	ew32(TXCW, txcw);
+ 	mac->txcw = txcw;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -759,7 +747,7 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	u32 i, status;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	/* If we have a signal (the cable is plugged in, or assumed true for
+ 	 * serdes media) then poll for a "Link-Up" indication in the Device
+@@ -784,7 +772,7 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+ 		ret_val = mac->ops.check_for_link(hw);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error while checking for link\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 		mac->autoneg_failed = 0;
+ 	} else {
+@@ -792,8 +780,7 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+ 		hw_dbg(hw, "Valid Link Found\n");
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -806,7 +793,7 @@ out:
+ s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+ {
+ 	u32 ctrl;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	ctrl = er32(CTRL);
+ 
+@@ -817,7 +804,7 @@ s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+ 
+ 	ret_val = e1000_commit_fc_settings_generic(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Since auto-negotiation is enabled, take the link out of reset (the
+ 	 * link will be in reset, because we previously reset the chip). This
+@@ -842,8 +829,7 @@ s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+ 		hw_dbg(hw, "No signal detected\n");
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -878,7 +864,6 @@ void e1000_config_collision_dist(struct e1000_hw *hw)
+ s32 e1000_set_fc_watermarks(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+-	s32 ret_val = E1000_SUCCESS;
+ 	u32 fcrtl = 0, fcrth = 0;
+ 
+ 	/* Set the flow control receive threshold registers.  Normally,
+@@ -894,13 +879,12 @@ s32 e1000_set_fc_watermarks(struct e1000_hw *hw)
+ 		 */
+ 		fcrtl = mac->fc_low_water;
+ 		fcrtl |= E1000_FCRTL_XONE;
+-
+ 		fcrth = mac->fc_high_water;
+ 	}
+ 	ew32(FCRTL, fcrtl);
+ 	ew32(FCRTH, fcrth);
+ 
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -917,7 +901,6 @@ s32 e1000_force_mac_fc(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	u32 ctrl;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	ctrl = er32(CTRL);
+ 
+@@ -957,14 +940,12 @@ s32 e1000_force_mac_fc(struct e1000_hw *hw)
+ 		break;
+ 	default:
+ 		hw_dbg(hw, "Flow control param set incorrectly\n");
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 	}
+ 
+ 	ew32(CTRL, ctrl);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -980,7 +961,7 @@ out:
+ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val = 0;
+ 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+ 	u16 speed, duplex;
+ 
+@@ -999,7 +980,7 @@ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+ 
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error forcing flow control settings\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* Check for the case where we have copper media and auto-neg is
+@@ -1014,15 +995,15 @@ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+ 		 */
+ 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+ 			hw_dbg(hw, "Copper PHY and Auto Neg "
+ 				 "has not completed.\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 
+ 		/* The AutoNeg process has completed, so we now need to
+@@ -1033,10 +1014,10 @@ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+ 		 */
+ 		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 		ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		/* Two bits in the Auto Negotiation Advertisement Register
+ 		 * (Address 4) and two bits in the Auto Negotiation Base
+@@ -1155,7 +1136,7 @@ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+ 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error getting link speed and duplex\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 
+ 		if (duplex == HALF_DUPLEX)
+@@ -1167,12 +1148,11 @@ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+ 		ret_val = e1000_force_mac_fc(hw);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error forcing flow control settings\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1208,7 +1188,7 @@ s32 e1000_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *dupl
+ 		hw_dbg(hw, "Half Duplex\n");
+ 	}
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -1225,7 +1205,7 @@ s32 e1000_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16
+ 	*speed = SPEED_1000;
+ 	*duplex = FULL_DUPLEX;
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -1237,7 +1217,6 @@ s32 e1000_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16
+ s32 e1000_get_hw_semaphore(struct e1000_hw *hw)
+ {
+ 	u32 swsm;
+-	s32 ret_val = E1000_SUCCESS;
+ 	s32 timeout = hw->nvm.word_size + 1;
+ 	s32 i = 0;
+ 
+@@ -1253,8 +1232,7 @@ s32 e1000_get_hw_semaphore(struct e1000_hw *hw)
+ 
+ 	if (i == timeout) {
+ 		hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+ 	/* Get the FW semaphore. */
+@@ -1273,12 +1251,10 @@ s32 e1000_get_hw_semaphore(struct e1000_hw *hw)
+ 		/* Release semaphores */
+ 		e1000_put_hw_semaphore(hw);
+ 		hw_dbg(hw, "Driver can't access the NVM\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1292,9 +1268,7 @@ void e1000_put_hw_semaphore(struct e1000_hw *hw)
+ 	u32 swsm;
+ 
+ 	swsm = er32(SWSM);
+-
+ 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+-
+ 	ew32(SWSM, swsm);
+ }
+ 
+@@ -1307,7 +1281,6 @@ void e1000_put_hw_semaphore(struct e1000_hw *hw)
+ s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
+ {
+ 	s32 i = 0;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	while (i < AUTO_READ_DONE_TIMEOUT) {
+ 		if (er32(EECD) & E1000_EECD_AUTO_RD)
+@@ -1318,12 +1291,10 @@ s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
+ 
+ 	if (i == AUTO_READ_DONE_TIMEOUT) {
+ 		hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
+-		ret_val = -E1000_ERR_RESET;
+-		goto out;
++		return -E1000_ERR_RESET;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1341,14 +1312,13 @@ s32 e1000_valid_led_default(struct e1000_hw *hw, u16 *data)
+ 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "NVM Read Error\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+ 		*data = ID_LED_DEFAULT;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1368,7 +1338,7 @@ s32 e1000_id_led_init(struct e1000_hw *hw)
+ 
+ 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	mac->ledctl_default = er32(LEDCTL);
+ 	mac->ledctl_mode1 = mac->ledctl_default;
+@@ -1412,8 +1382,7 @@ s32 e1000_id_led_init(struct e1000_hw *hw)
+ 		}
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1426,8 +1395,7 @@ out:
+ s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
+ {
+ 	ew32(LEDCTL, hw->mac.ledctl_default);
+-
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -1458,7 +1426,7 @@ s32 e1000_blink_led(struct e1000_hw *hw)
+ 
+ 	ew32(LEDCTL, ledctl_blink);
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -1485,7 +1453,7 @@ s32 e1000_led_on_generic(struct e1000_hw *hw)
+ 		break;
+ 	}
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -1512,7 +1480,7 @@ s32 e1000_led_off_generic(struct e1000_hw *hw)
+ 		break;
+ 	}
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -1538,7 +1506,7 @@ void e1000_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
+  *  e1000_disable_pcie_master - Disables PCI-express master access
+  *  @hw: pointer to the HW structure
+  *
+- *  Returns 0 (E1000_SUCCESS) if successful, else returns -10
++ *  Returns 0 if successful, else returns -10
+  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
+  *  the master requests to be disabled.
+  *
+@@ -1549,7 +1517,6 @@ s32 e1000_disable_pcie_master(struct e1000_hw *hw)
+ {
+ 	u32 ctrl;
+ 	s32 timeout = MASTER_DISABLE_TIMEOUT;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	ctrl = er32(CTRL);
+ 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+@@ -1565,12 +1532,10 @@ s32 e1000_disable_pcie_master(struct e1000_hw *hw)
+ 
+ 	if (!timeout) {
+ 		hw_dbg(hw, "Master requests are pending.\n");
+-		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+-		goto out;
++		return -E1000_ERR_MASTER_REQUESTS_PENDING;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1748,7 +1713,6 @@ s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+ {
+ 	u32 attempts = 100000;
+ 	u32 i, reg = 0;
+-	s32 ret_val = -E1000_ERR_NVM;
+ 
+ 	for (i = 0; i < attempts; i++) {
+ 		if (ee_reg == E1000_NVM_POLL_READ)
+@@ -1756,15 +1720,13 @@ s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+ 		else
+ 			reg = er32(EEWR);
+ 
+-		if (reg & E1000_NVM_RW_REG_DONE) {
+-			ret_val = E1000_SUCCESS;
+-			break;
+-		}
++		if (reg & E1000_NVM_RW_REG_DONE)
++			return 0;
+ 
+ 		udelay(5);
+ 	}
+ 
+-	return ret_val;
++	return -E1000_ERR_NVM;
+ }
+ 
+ /**
+@@ -1779,7 +1741,6 @@ s32 e1000_acquire_nvm(struct e1000_hw *hw)
+ {
+ 	u32 eecd = er32(EECD);
+ 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	ew32(EECD, eecd | E1000_EECD_REQ);
+ 	eecd = er32(EECD);
+@@ -1796,10 +1757,10 @@ s32 e1000_acquire_nvm(struct e1000_hw *hw)
+ 		eecd &= ~E1000_EECD_REQ;
+ 		ew32(EECD, eecd);
+ 		hw_dbg(hw, "Could not acquire NVM grant\n");
+-		ret_val = -E1000_ERR_NVM;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1871,7 +1832,6 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+ {
+ 	struct e1000_nvm_info *nvm = &hw->nvm;
+ 	u32 eecd = er32(EECD);
+-	s32 ret_val = E1000_SUCCESS;
+ 	u16 timeout = 0;
+ 	u8 spi_stat_reg;
+ 
+@@ -1900,13 +1860,11 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+ 
+ 		if (!timeout) {
+ 			hw_dbg(hw, "SPI NVM Status error\n");
+-			ret_val = -E1000_ERR_NVM;
+-			goto out;
++			return -E1000_ERR_NVM;
+ 		}
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1931,17 +1889,18 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ 	    (words == 0)) {
+ 		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+ 	ret_val = nvm->ops.acquire_nvm(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1000_ready_nvm_eeprom(hw);
+-	if (ret_val)
+-		goto release;
++	if (ret_val) {
++		nvm->ops.release_nvm(hw);
++		return ret_val;
++	}
+ 
+ 	e1000_standby_nvm(hw);
+ 
+@@ -1960,11 +1919,8 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ 		data[i] = (word_in >> 8) | (word_in << 8);
+ 	}
+ 
+-release:
+ 	nvm->ops.release_nvm(hw);
+-
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -1980,15 +1936,14 @@ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ {
+ 	struct e1000_nvm_info *nvm = &hw->nvm;
+ 	u32 i, eerd = 0;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 
+ 	/* A check for invalid values:  offset too large, too many words,
+ 	 * and not enough words. */
+ 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ 	    (words == 0)) {
+ 		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+ 	for (i = 0; i < words; i++) {
+@@ -2004,7 +1959,6 @@ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ 			   E1000_NVM_RW_REG_DATA);
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -2031,13 +1985,12 @@ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ 	    (words == 0)) {
+ 		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+ 	ret_val = nvm->ops.acquire_nvm(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	msleep(10);
+ 
+@@ -2045,8 +1998,10 @@ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+ 
+ 		ret_val = e1000_ready_nvm_eeprom(hw);
+-		if (ret_val)
+-			goto release;
++		if (ret_val) {
++			nvm->ops.release_nvm(hw);
++			return ret_val;
++		}
+ 
+ 		e1000_standby_nvm(hw);
+ 
+@@ -2081,11 +2036,7 @@ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ 	}
+ 
+ 	msleep(10);
+-release:
+-	nvm->ops.release_nvm(hw);
+-
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -2098,7 +2049,7 @@ out:
+  **/
+ s32 e1000_read_mac_addr(struct e1000_hw *hw)
+ {
+-	s32  ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 offset, nvm_data, i;
+ 
+ 	for (i = 0; i < ETH_ALEN; i += 2) {
+@@ -2106,7 +2057,7 @@ s32 e1000_read_mac_addr(struct e1000_hw *hw)
+ 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "NVM Read Error\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ 		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+@@ -2119,8 +2070,7 @@ s32 e1000_read_mac_addr(struct e1000_hw *hw)
+ 	for (i = 0; i < ETH_ALEN; i++)
+ 		hw->mac.addr[i] = hw->mac.perm_addr[i];
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -2132,7 +2082,7 @@ out:
+  **/
+ s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+ {
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 checksum = 0;
+ 	u16 i, nvm_data;
+ 
+@@ -2140,19 +2090,17 @@ s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+ 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "NVM Read Error\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 		checksum += nvm_data;
+ 	}
+ 
+ 	if (checksum != (u16) NVM_SUM) {
+ 		hw_dbg(hw, "NVM Checksum Invalid\n");
+-		ret_val = -E1000_ERR_NVM;
+-		goto out;
++		return -E1000_ERR_NVM;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -2165,7 +2113,7 @@ out:
+  **/
+ s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+ {
+-	s32  ret_val;
++	s32 ret_val;
+ 	u16 checksum = 0;
+ 	u16 i, nvm_data;
+ 
+@@ -2173,17 +2121,15 @@ s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+ 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "NVM Read Error while updating checksum.\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 		checksum += nvm_data;
+ 	}
+ 	checksum = (u16) NVM_SUM - checksum;
+ 	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
+-	if (ret_val) {
++	if (ret_val)
+ 		hw_dbg(hw, "NVM Write Error while updating checksum.\n");
+-	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -2240,15 +2186,13 @@ static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+ static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
+ {
+ 	u32 hicr;
+-	s32 ret_val = E1000_SUCCESS;
+-	u8  i;
++	u8 i;
+ 
+ 	/* Check that the host interface is enabled. */
+ 	hicr = er32(HICR);
+ 	if ((hicr & E1000_HICR_EN) == 0) {
+ 		hw_dbg(hw, "E1000_HOST_EN bit disabled.\n");
+-		ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+-		goto out;
++		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ 	}
+ 	/* check the previous command is completed */
+ 	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+@@ -2260,12 +2204,10 @@ static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
+ 
+ 	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ 		hw_dbg(hw, "Previous command timeout failed .\n");
+-		ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+-		goto out;
++		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -2296,21 +2238,20 @@ bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+ 	u32 offset;
+ 	s32 ret_val, hdr_csum, csum;
+ 	u8 i, len;
+-	bool tx_filter = 1;
+ 
+ 	/* No manageability, no filtering */
+ 	if (!e1000_check_mng_mode(hw)) {
+-		tx_filter = 0;
+-		goto out;
++		hw->mac.tx_pkt_filtering = 0;
++		return 0;
+ 	}
+ 
+ 	/* If we can't read from the host interface for whatever
+ 	 * reason, disable filtering.
+ 	 */
+ 	ret_val = e1000_mng_enable_host_if(hw);
+-	if (ret_val != E1000_SUCCESS) {
+-		tx_filter = 0;
+-		goto out;
++	if (ret_val != 0) {
++		hw->mac.tx_pkt_filtering = 0;
++		return ret_val;
+ 	}
+ 
+ 	/* Read in the header.  Length and offset are in dwords. */
+@@ -2326,18 +2267,19 @@ bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+ 	 * the cookie area isn't considered valid, in which case we
+ 	 * take the safe route of assuming Tx filtering is enabled.
+ 	 */
+-	if (hdr_csum != csum)
+-		goto out;
+-	if (hdr->signature != E1000_IAMT_SIGNATURE)
+-		goto out;
++	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
++		hw->mac.tx_pkt_filtering = 1;
++		return 1;
++	}
+ 
+ 	/* Cookie area is valid, make the final check for filtering. */
+-	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
+-		tx_filter = 0;
++	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
++		hw->mac.tx_pkt_filtering = 0;
++		return 0;
++	}
+ 
+-out:
+-	hw->mac.tx_pkt_filtering = tx_filter;
+-	return tx_filter;
++	hw->mac.tx_pkt_filtering = 1;
++	return 1;
+ }
+ 
+ /**
+@@ -2364,7 +2306,7 @@ s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ 		e1e_flush();
+ 	}
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /**
+@@ -2385,15 +2327,12 @@ static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
+ 	u8 *tmp;
+ 	u8 *bufptr = buffer;
+ 	u32 data = 0;
+-	s32 ret_val = E1000_SUCCESS;
+ 	u16 remaining, i, j, prev_bytes;
+ 
+ 	/* sum = only sum of the data and it is not checksum */
+ 
+-	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
+-		ret_val = -E1000_ERR_PARAM;
+-		goto out;
+-	}
++	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
++		return -E1000_ERR_PARAM;
+ 
+ 	tmp = (u8 *)&data;
+ 	prev_bytes = offset & 0x3;
+@@ -2438,8 +2377,7 @@ static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
+ 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -2465,25 +2403,24 @@ s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+ 	/* Enable the host interface */
+ 	ret_val = e1000_mng_enable_host_if(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Populate the host interface with the contents of "buffer". */
+ 	ret_val = e1000_mng_host_if_write(hw, buffer, length,
+ 					  sizeof(hdr), &(hdr.checksum));
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Write the manageability command header */
+ 	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Tell the ARC a new command is pending. */
+ 	hicr = er32(HICR);
+ 	ew32(HICR, hicr | E1000_HICR_C);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -2502,7 +2439,7 @@ bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+ 
+ 	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+ 	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+-		goto out;
++		return ret_val;
+ 
+ 	if (hw->mac.arc_subsystem_valid) {
+ 		fwsm = er32(FWSM);
+@@ -2512,17 +2449,16 @@ bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+ 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
+ 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+ 			ret_val = 1;
+-			goto out;
++			return ret_val;
+ 		}
+ 	} else {
+ 		if ((manc & E1000_MANC_SMBUS_EN) &&
+ 		    !(manc & E1000_MANC_ASF_EN)) {
+ 			ret_val = 1;
+-			goto out;
++			return ret_val;
+ 		}
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
+index 2d0e78c..c8d50cc 100644
+--- a/drivers/net/e1000e/netdev.c
++++ b/drivers/net/e1000e/netdev.c
+@@ -2584,7 +2584,7 @@ static int e1000_open(struct net_device *netdev)
+ 	/* fire a link status change interrupt to start the watchdog */
+ 	ew32(ICS, E1000_ICS_LSC);
+ 
+-	return E1000_SUCCESS;
++	return 0;
+ 
+ err_req_irq:
+ 	e1000_release_hw_control(adapter);
+@@ -3667,7 +3667,7 @@ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+ 	default:
+ 		return -EOPNOTSUPP;
+ 	}
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
+index 6fd55e7..d7947b0 100644
+--- a/drivers/net/e1000e/phy.c
++++ b/drivers/net/e1000e/phy.c
+@@ -53,7 +53,7 @@ static const u16 e1000_igp_2_cable_length_table[] =
+  *  @hw: pointer to the HW structure
+  *
+  *  Read the PHY management control register and check whether a PHY reset
+- *  is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
++ *  is blocked.  If a reset is not blocked return 0, otherwise
+  *  return E1000_BLK_PHY_RESET (12).
+  **/
+ s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+@@ -63,7 +63,7 @@ s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+ 	manc = er32(MANC);
+ 
+ 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+-	       E1000_BLK_PHY_RESET : E1000_SUCCESS;
++	       E1000_BLK_PHY_RESET : 0;
+ }
+ 
+ /**
+@@ -76,24 +76,23 @@ s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+ s32 e1000_get_phy_id(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 phy_id;
+ 
+ 	ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy->id = (u32)(phy_id << 16);
+ 	udelay(20);
+ 	ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+ 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -108,12 +107,9 @@ s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+-	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
+-
+-out:
+-	return ret_val;
++	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
+ }
+ 
+ /**
+@@ -129,12 +125,10 @@ static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	u32 i, mdic = 0;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	if (offset > MAX_PHY_REG_ADDRESS) {
+ 		hw_dbg(hw, "PHY Address %d is out of range\n", offset);
+-		ret_val = -E1000_ERR_PARAM;
+-		goto out;
++		return -E1000_ERR_PARAM;
+ 	}
+ 
+ 	/* Set up Op-code, Phy Address, and register offset in the MDI
+@@ -156,18 +150,15 @@ static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+ 	}
+ 	if (!(mdic & E1000_MDIC_READY)) {
+ 		hw_dbg(hw, "MDI Read did not complete\n");
+-		ret_val = -E1000_ERR_PHY;
+-		goto out;
++		return -E1000_ERR_PHY;
+ 	}
+ 	if (mdic & E1000_MDIC_ERROR) {
+ 		hw_dbg(hw, "MDI Error\n");
+-		ret_val = -E1000_ERR_PHY;
+-		goto out;
++		return -E1000_ERR_PHY;
+ 	}
+ 	*data = (u16) mdic;
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -182,12 +173,10 @@ static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	u32 i, mdic = 0;
+-	s32 ret_val = E1000_SUCCESS;
+ 
+ 	if (offset > MAX_PHY_REG_ADDRESS) {
+ 		hw_dbg(hw, "PHY Address %d is out of range\n", offset);
+-		ret_val = -E1000_ERR_PARAM;
+-		goto out;
++		return -E1000_ERR_PARAM;
+ 	}
+ 
+ 	/* Set up Op-code, Phy Address, and register offset in the MDI
+@@ -210,12 +199,10 @@ static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+ 	}
+ 	if (!(mdic & E1000_MDIC_READY)) {
+ 		hw_dbg(hw, "MDI Write did not complete\n");
+-		ret_val = -E1000_ERR_PHY;
+-		goto out;
++		return -E1000_ERR_PHY;
+ 	}
+ 
+-out:
+-	return ret_val;
++	return 0;
+ }
+ 
+ /**
+@@ -234,7 +221,7 @@ s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+ 
+ 	ret_val = hw->phy.ops.acquire_phy(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1000_read_phy_reg_mdic(hw,
+ 					  MAX_PHY_REG_ADDRESS & offset,
+@@ -242,7 +229,6 @@ s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+ 
+ 	hw->phy.ops.release_phy(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -261,7 +247,7 @@ s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+ 
+ 	ret_val = hw->phy.ops.acquire_phy(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1000_write_phy_reg_mdic(hw,
+ 					   MAX_PHY_REG_ADDRESS & offset,
+@@ -269,7 +255,6 @@ s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+ 
+ 	hw->phy.ops.release_phy(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -289,7 +274,7 @@ s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+ 
+ 	ret_val = hw->phy.ops.acquire_phy(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ 		ret_val = e1000_write_phy_reg_mdic(hw,
+@@ -297,7 +282,7 @@ s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+ 						   (u16)offset);
+ 		if (ret_val) {
+ 			hw->phy.ops.release_phy(hw);
+-			goto out;
++			return ret_val;
+ 		}
+ 	}
+ 
+@@ -307,7 +292,6 @@ s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+ 
+ 	hw->phy.ops.release_phy(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -326,7 +310,7 @@ s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+ 
+ 	ret_val = hw->phy.ops.acquire_phy(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ 		ret_val = e1000_write_phy_reg_mdic(hw,
+@@ -334,7 +318,7 @@ s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+ 						   (u16)offset);
+ 		if (ret_val) {
+ 			hw->phy.ops.release_phy(hw);
+-			goto out;
++			return ret_val;
+ 		}
+ 	}
+ 
+@@ -344,7 +328,6 @@ s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+ 
+ 	hw->phy.ops.release_phy(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -365,7 +348,7 @@ s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+ 
+ 	ret_val = hw->phy.ops.acquire_phy(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+@@ -378,7 +361,6 @@ s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+ 
+ 	hw->phy.ops.release_phy(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -399,7 +381,7 @@ s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+ 
+ 	ret_val = hw->phy.ops.acquire_phy(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ 		       E1000_KMRNCTRLSTA_OFFSET) | data;
+@@ -408,7 +390,6 @@ s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+ 	udelay(2);
+ 	hw->phy.ops.release_phy(hw);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -428,7 +409,7 @@ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+ 	/* Enable CRS on TX. This must be set for half-duplex operation. */
+ 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ 
+@@ -469,7 +450,7 @@ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (phy->revision < 4) {
+ 		/* Force TX_CLK in the Extended PHY Specific Control Register
+@@ -477,7 +458,7 @@ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+ 		 */
+ 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ 
+@@ -495,17 +476,14 @@ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+ 		}
+ 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+ 	/* Commit the changes. */
+ 	ret_val = e1000_commit_phy(hw);
+-	if (ret_val) {
++	if (ret_val)
+ 		hw_dbg(hw, "Error committing the PHY changes\n");
+-		goto out;
+-	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -525,7 +503,7 @@ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+ 	ret_val = e1000_phy_hw_reset(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error resetting the PHY.\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	/* Wait 15ms for MAC to configure PHY from NVM settings. */
+@@ -535,12 +513,12 @@ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+ 	ret_val = e1000_set_d0_lplu_state(hw, 0);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error Disabling LPLU D0\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 	/* Configure mdi-mdix settings */
+ 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ 
+@@ -558,7 +536,7 @@ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+ 	}
+ 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* set auto-master slave resolution settings */
+ 	if (hw->mac.autoneg) {
+@@ -570,28 +548,28 @@ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+ 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			/* Set auto Master/Slave resolution process */
+ 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data &= ~CR_1000T_MS_ENABLE;
+ 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		}
+ 
+ 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		/* load defaults for future use */
+ 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
+@@ -614,11 +592,8 @@ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+ 			break;
+ 		}
+ 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
+-		if (ret_val)
+-			goto out;
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -643,13 +618,13 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+ 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ 		/* Read the MII 1000Base-T Control Register (Address 9). */
+ 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+ 	/* Need to parse both autoneg_advertised and fc and set up
+@@ -757,22 +732,19 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+ 	default:
+ 		hw_dbg(hw, "Flow control param set incorrectly\n");
+ 		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return ret_val;
+ 	}
+ 
+ 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+ 
+ 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+-		if (ret_val)
+-			goto out;
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -806,7 +778,7 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+ 	ret_val = e1000_phy_setup_autoneg(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
+-		goto out;
++		return ret_val;
+ 	}
+ 	hw_dbg(hw, "Restarting Auto-Neg\n");
+ 
+@@ -815,12 +787,12 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+ 	 */
+ 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Does the user want to wait for Auto-Neg to complete here, or
+ 	 * check at a later time (for example, callback routine).
+@@ -830,13 +802,12 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error while waiting for "
+ 				 "autoneg to complete\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 	}
+ 
+ 	hw->mac.get_link_status = 1;
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -859,7 +830,7 @@ s32 e1000_setup_copper_link(struct e1000_hw *hw)
+ 		 * autonegotiation. */
+ 		ret_val = e1000_copper_link_autoneg(hw);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	} else {
+ 		/* PHY will be set to 10H, 10F, 100H or 100F
+ 		 * depending on user settings. */
+@@ -867,7 +838,7 @@ s32 e1000_setup_copper_link(struct e1000_hw *hw)
+ 		ret_val = e1000_phy_force_speed_duplex(hw);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error Forcing Speed and Duplex\n");
+-			goto out;
++			return ret_val;
+ 		}
+ 	}
+ 
+@@ -879,7 +850,7 @@ s32 e1000_setup_copper_link(struct e1000_hw *hw)
+ 					     10,
+ 					     &link);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (link) {
+ 		hw_dbg(hw, "Valid link established!!!\n");
+@@ -889,7 +860,6 @@ s32 e1000_setup_copper_link(struct e1000_hw *hw)
+ 		hw_dbg(hw, "Unable to establish link!!!\n");
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -910,27 +880,27 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+ 
+ 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+ 	 * forced whenever speed and duplex are forced.
+ 	 */
+ 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ 
+ 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
+ 
+@@ -944,7 +914,7 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+ 						     100000,
+ 						     &link);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		if (!link)
+ 			hw_dbg(hw, "Link taking longer than expected.\n");
+@@ -955,10 +925,9 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+ 						     100000,
+ 						     &link);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -984,18 +953,18 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ 	 */
+ 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
+ 
+ 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+ 
+@@ -1004,7 +973,7 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	udelay(1);
+ 
+@@ -1014,7 +983,7 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 						     100000, &link);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		if (!link) {
+ 			/* We didn't get link.
+@@ -1022,22 +991,22 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ 			 */
+ 			ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 			ret_val = e1000_phy_reset_dsp(hw);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		}
+ 
+ 		/* Try once more */
+ 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 						     100000, &link);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 	}
+ 
+ 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* Resetting the phy means we need to re-force TX_CLK in the
+ 	 * Extended PHY Specific Control Register to 25MHz clock from
+@@ -1046,19 +1015,18 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	/* In addition, we must re-enable CRS on Tx for both half and full
+ 	 * duplex.
+ 	 */
+ 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1144,7 +1112,7 @@ s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+ 
+ 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (!active) {
+ 		data &= ~IGP02E1000_PM_D3_LPLU;
+@@ -1152,7 +1120,7 @@ s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+ 					     IGP02E1000_PHY_POWER_MGMT,
+ 					     data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+ 		 * during Dx states where the power conservation is most
+ 		 * important.  During driver activity we should enable
+@@ -1161,24 +1129,24 @@ s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+ 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						    &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data |= IGP01E1000_PSCFR_SMART_SPEED;
+ 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		} else if (phy->smart_speed == e1000_smart_speed_off) {
+ 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     &data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 
+ 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ 						     data);
+ 			if (ret_val)
+-				goto out;
++				return ret_val;
+ 		}
+ 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+@@ -1186,18 +1154,17 @@ s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+ 		data |= IGP02E1000_PM_D3_LPLU;
+ 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		/* When LPLU is enabled, we should disable SmartSpeed */
+ 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1229,8 +1196,7 @@ s32 e1000_check_downshift(struct e1000_hw *hw)
+ 	default:
+ 		/* speed downshift not supported */
+ 		phy->speed_downgraded = 0;
+-		ret_val = E1000_SUCCESS;
+-		goto out;
++		return 0;
+ 	}
+ 
+ 	ret_val = e1e_rphy(hw, offset, &phy_data);
+@@ -1238,7 +1204,6 @@ s32 e1000_check_downshift(struct e1000_hw *hw)
+ 	if (!ret_val)
+ 		phy->speed_downgraded = (phy_data & mask);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1275,7 +1240,7 @@ static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+  *  Polarity is determined based on the PHY port status register, and the
+  *  current speed (since there is no polarity at 100Mbps).
+  **/
+-static  s32 e1000_check_polarity_igp(struct e1000_hw *hw)
++static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -1285,7 +1250,7 @@ static  s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+ 	 * our connection. */
+ 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+@@ -1306,7 +1271,6 @@ static  s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+ 				      ? e1000_rev_polarity_reversed
+ 				      : e1000_rev_polarity_normal;
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1319,7 +1283,7 @@ out:
+  **/
+ s32 e1000_wait_autoneg(struct e1000_hw *hw)
+ {
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val = 0;
+ 	u16 i, phy_status;
+ 
+ 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+@@ -1353,7 +1317,7 @@ s32 e1000_wait_autoneg(struct e1000_hw *hw)
+ s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ 			       u32 usec_interval, bool *success)
+ {
+-	s32 ret_val = E1000_SUCCESS;
++	s32 ret_val;
+ 	u16 i, phy_status;
+ 
+ 	for (i = 0; i < iterations; i++) {
+@@ -1403,7 +1367,7 @@ s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+@@ -1412,7 +1376,6 @@ s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+ 
+ 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1444,7 +1407,7 @@ s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+ 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+ 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		/* Getting bits 15:9, which represent the combination of
+ 		 * course and fine gain values.  The result is a number
+@@ -1455,10 +1418,8 @@ s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+ 
+ 		/* Array index bound check. */
+ 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+-		    (cur_agc_index == 0)) {
+-			ret_val = -E1000_ERR_PHY;
+-			goto out;
+-		}
++		    (cur_agc_index == 0))
++			return -E1000_ERR_PHY;
+ 
+ 		/* Remove min & max AGC values from calculation. */
+ 		if (e1000_igp_2_cable_length_table[min_agc_index] >
+@@ -1482,7 +1443,6 @@ s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+ 
+ 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1505,45 +1465,43 @@ s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+ 
+ 	if (hw->media_type != e1000_media_type_copper) {
+ 		hw_dbg(hw, "Phy info is only valid for copper media\n");
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 	}
+ 
+ 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (!link) {
+ 		hw_dbg(hw, "Phy info is only valid if link is up\n");
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 	}
+ 
+ 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy->polarity_correction = (phy_data &
+ 				    M88E1000_PSCR_POLARITY_REVERSAL);
+ 
+ 	ret_val = e1000_check_polarity_m88(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
+ 
+ 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+ 		ret_val = e1000_get_cable_length(hw);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+ 				? e1000_1000t_rx_status_ok
+@@ -1559,7 +1517,6 @@ s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+ 		phy->remote_rx = e1000_1000t_rx_status_undefined;
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1581,23 +1538,22 @@ s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+ 
+ 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	if (!link) {
+ 		hw_dbg(hw, "Phy info is only valid if link is up\n");
+-		ret_val = -E1000_ERR_CONFIG;
+-		goto out;
++		return -E1000_ERR_CONFIG;
+ 	}
+ 
+ 	phy->polarity_correction = 1;
+ 
+ 	ret_val = e1000_check_polarity_igp(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
+ 
+@@ -1605,11 +1561,11 @@ s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+ 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+ 		ret_val = e1000_get_cable_length(hw);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
+ 		if (ret_val)
+-			goto out;
++			return ret_val;
+ 
+ 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+ 				? e1000_1000t_rx_status_ok
+@@ -1624,7 +1580,6 @@ s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+ 		phy->remote_rx = e1000_1000t_rx_status_undefined;
+ 	}
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1642,16 +1597,15 @@ s32 e1000_phy_sw_reset(struct e1000_hw *hw)
+ 
+ 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	phy_ctrl |= MII_CR_RESET;
+ 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	udelay(1);
+ 
+-out:
+ 	return ret_val;
+ }
+ 
+@@ -1667,18 +1621,16 @@ out:
+ s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+-	s32  ret_val;
++	s32 ret_val;
+ 	u32 ctrl;
+ 
+ 	ret_val = e1000_check_reset_block(hw);
+-	if (ret_val) {
+-		ret_val = E1000_SUCCESS;
+-		goto out;
+-	}
++	if (ret_val)
++		return 0;
+ 
+ 	ret_val = phy->ops.acquire_phy(hw);
+ 	if (ret_val)
+-		goto out;
++		return ret_val;
+ 
+ 	ctrl = er32(CTRL);
+ 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+@@ -1693,10 +1645,7 @@ s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+ 
+ 	phy->ops.release_phy(hw);
+ 
+-	ret_val = e1000_get_phy_cfg_done(hw);
+-
+-out:
+-	return ret_val;
++	return e1000_get_phy_cfg_done(hw);
+ }
+ 
+ /**
+@@ -1709,8 +1658,7 @@ out:
+ s32 e1000_get_cfg_done(struct e1000_hw *hw)
+ {
+ 	mdelay(10);
+-
+-	return E1000_SUCCESS;
++	return 0;
+ }
+ 
+ /* Internal function pointers */
+@@ -1726,8 +1674,8 @@ static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+ {
+ 	if (hw->phy.ops.get_cfg_done)
+ 		return hw->phy.ops.get_cfg_done(hw);
+-	else
+-		return E1000_SUCCESS;
++
++	return 0;
+ }
+ 
+ /**
+@@ -1735,14 +1683,14 @@ static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+  *  @hw: pointer to the HW structure
+  *
+  *  When the silicon family has not implemented a forced speed/duplex
+- *  function for the PHY, simply return E1000_SUCCESS.
++ *  function for the PHY, simply return 0.
+  **/
+ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+ {
+ 	if (hw->phy.ops.force_speed_duplex)
+ 		return hw->phy.ops.force_speed_duplex(hw);
+-	else
+-		return E1000_SUCCESS;
++
++	return 0;
+ }
+ 
+ /**
+@@ -1794,8 +1742,8 @@ s32 e1000_commit_phy(struct e1000_hw *hw)
+ {
+ 	if (hw->phy.ops.commit_phy)
+ 		return hw->phy.ops.commit_phy(hw);
+-	else
+-		return E1000_SUCCESS;
++
++	return 0;
+ }
+ 
+ /**
+@@ -1816,6 +1764,6 @@ s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+ {
+ 	if (hw->phy.ops.set_d0_lplu_state)
+ 		return hw->phy.ops.set_d0_lplu_state(hw, active);
+-	else
+-		return E1000_SUCCESS;
++
++	return 0;
+ }
+-
+To unsubscribe from this list: send the line "unsubscribe netdev" in
+the body of a message to majordomo at vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.html
+
+Return-Path: <netdev-owner at vger.kernel.org>
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Subject: [PATCH] e1000e: Make a few functions static
+To: jeff at garzik.org
+Cc: netdev at vger.kernel.org, john.ronciak at intel.com
+Date:	Wed, 08 Aug 2007 10:22:11 -0700
+Message-ID: <20070808172211.12242.44053.stgit at localhost.localdomain>
+User-Agent: StGIT/0.12.1
+
+After moving code around we can reduce namespace usage
+by making a few functions static.
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+
+ drivers/net/e1000e/e1000.h  |    2 --
+ drivers/net/e1000e/lib.c    |    2 +-
+ drivers/net/e1000e/netdev.c |    2 +-
+ drivers/net/e1000e/phy.c    |   10 ++++++----
+ 4 files changed, 8 insertions(+), 8 deletions(-)
+
+diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h
+index 65c31d3..a1394d6 100644
+--- a/drivers/net/e1000e/e1000.h
++++ b/drivers/net/e1000e/e1000.h
+@@ -365,7 +365,6 @@ extern struct e1000_info e1000_ich9_info;
+ extern struct e1000_info e1000_es2_info;
+ 
+ extern s32  e1000_commit_phy(struct e1000_hw *hw);
+-extern s32  e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+ 
+ extern bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+ 
+@@ -438,7 +437,6 @@ extern s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ 			       u32 usec_interval, bool *success);
+ extern s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+ extern s32 e1000_check_downshift(struct e1000_hw *hw);
+-extern s32 e1000_wait_autoneg(struct e1000_hw *hw);
+ 
+ static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+ {
+diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
+index d11b518..3bbe63e 100644
+--- a/drivers/net/e1000e/lib.c
++++ b/drivers/net/e1000e/lib.c
+@@ -2289,7 +2289,7 @@ bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+  *
+  *  Writes the command header after does the checksum calculation.
+  **/
+-s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
++static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ 				  struct e1000_host_mng_command_header *hdr)
+ {
+ 	u16 i, length = sizeof(struct e1000_host_mng_command_header);
+diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
+index c8d50cc..dd4eca6 100644
+--- a/drivers/net/e1000e/netdev.c
++++ b/drivers/net/e1000e/netdev.c
+@@ -48,7 +48,7 @@
+ char e1000_driver_name[] = "e1000e";
+ const char e1000_driver_version[] = DRV_VERSION;
+ 
+-const struct e1000_info * e1000_info_tbl[] = {
++static const struct e1000_info *e1000_info_tbl[] = {
+ 	[board_82571]		= &e1000_82571_info,
+ 	[board_82572]		= &e1000_82572_info,
+ 	[board_82573]		= &e1000_82573_info,
+diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
+index d7947b0..1ccbad7 100644
+--- a/drivers/net/e1000e/phy.c
++++ b/drivers/net/e1000e/phy.c
+@@ -28,8 +28,10 @@
+ 
+ #include "e1000.h"
+ 
+-static s32  e1000_get_phy_cfg_done(struct e1000_hw *hw);
+-static s32  e1000_phy_force_speed_duplex(struct e1000_hw *hw);
++static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
++static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
++static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
++static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+ 
+ /* Cable length tables */
+ static const u16 e1000_m88_cable_length_table[] =
+@@ -1281,7 +1283,7 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+  *  Waits for auto-negotiation to complete or for the auto-negotiation time
+  *  limit to expire, which ever happens first.
+  **/
+-s32 e1000_wait_autoneg(struct e1000_hw *hw)
++static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+ {
+ 	s32 ret_val = 0;
+ 	u16 i, phy_status;
+@@ -1760,7 +1762,7 @@ s32 e1000_commit_phy(struct e1000_hw *hw)
+  *  During driver activity, SmartSpeed should be enabled so performance is
+  *  maintained.  This is a function pointer entry point called by drivers.
+  **/
+-s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
++static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+ {
+ 	if (hw->phy.ops.set_d0_lplu_state)
+ 		return hw->phy.ops.set_d0_lplu_state(hw, active);
+-
+To unsubscribe from this list: send the line "unsubscribe netdev" in
+the body of a message to majordomo at vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.html
+
+Return-Path: <netdev-owner at vger.kernel.org>
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Subject: [PATCH] e1000e: remove duplicate shadowing reference to adapter->hw
+To: jeff at garzik.org
+Cc: netdev at vger.kernel.org, john.ronciak at intel.com
+Date:	Wed, 08 Aug 2007 10:22:21 -0700
+Message-ID: <20070808172221.12261.52785.stgit at localhost.localdomain>
+User-Agent: StGIT/0.12.1
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+
+ drivers/net/e1000e/netdev.c |    1 -
+ 1 files changed, 0 insertions(+), 1 deletions(-)
+
+diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
+index dd4eca6..741965d 100644
+--- a/drivers/net/e1000e/netdev.c
++++ b/drivers/net/e1000e/netdev.c
+@@ -2981,7 +2981,6 @@ static void e1000_watchdog_task(struct work_struct *work)
+ 		} else {
+ 			/* make sure the receive unit is started */
+ 			if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
+-				struct e1000_hw *hw = &adapter->hw;
+ 				u32 rctl = er32(RCTL);
+ 				ew32(RCTL, rctl |
+ 						E1000_RCTL_EN);
+-
+To unsubscribe from this list: send the line "unsubscribe netdev" in
+the body of a message to majordomo at vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.html
+
+Return-Path: <netdev-owner at vger.kernel.org>
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Subject: [PATCH 1/6] e1000e: Fix header includes [v2]
+To: jeff at garzik.org
+Cc: netdev at vger.kernel.org, akpm at linux-foundation.org,
+	andi at firstfloor.org
+Date:	Fri, 10 Aug 2007 13:00:38 -0700
+Message-ID: <20070810200038.21509.77815.stgit at localhost.localdomain>
+User-Agent: StGIT/0.12.1
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+
+ drivers/net/e1000e/82571.c   |    4 ++++
+ drivers/net/e1000e/e1000.h   |    7 ++++---
+ drivers/net/e1000e/es2lan.c  |    5 +++++
+ drivers/net/e1000e/ethtool.c |    3 ++-
+ drivers/net/e1000e/hw.h      |    2 ++
+ drivers/net/e1000e/ich8lan.c |    5 +++++
+ drivers/net/e1000e/lib.c     |    2 ++
+ drivers/net/e1000e/netdev.c  |    2 ++
+ drivers/net/e1000e/phy.c     |    2 ++
+ 9 files changed, 28 insertions(+), 4 deletions(-)
+
+diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c
+index ddf2303..0f8f0ac 100644
+--- a/drivers/net/e1000e/82571.c
++++ b/drivers/net/e1000e/82571.c
+@@ -37,6 +37,10 @@
+  * 82573L Gigabit Ethernet Controller
+  */
+ 
++#include <linux/netdevice.h>
++#include <linux/delay.h>
++#include <linux/pci.h>
++
+ #include "e1000.h"
+ 
+ #define ID_LED_RESERVED_F746 0xF746
+diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h
+index a1394d6..de17537 100644
+--- a/drivers/net/e1000e/e1000.h
++++ b/drivers/net/e1000e/e1000.h
+@@ -31,10 +31,11 @@
+ #ifndef _E1000_H_
+ #define _E1000_H_
+ 
++#include <linux/types.h>
++#include <linux/timer.h>
++#include <linux/workqueue.h>
++#include <linux/io.h>
+ #include <linux/netdevice.h>
+-#include <linux/ethtool.h>
+-#include <linux/pci.h>
+-#include <asm/io.h>
+ 
+ #include "hw.h"
+ 
+diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c
+index 5604c50..8100d03 100644
+--- a/drivers/net/e1000e/es2lan.c
++++ b/drivers/net/e1000e/es2lan.c
+@@ -31,6 +31,11 @@
+  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
+  */
+ 
++#include <linux/netdevice.h>
++#include <linux/ethtool.h>
++#include <linux/delay.h>
++#include <linux/pci.h>
++
+ #include "e1000.h"
+ 
+ #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
+diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
+index 6c417ea..a8fa1db 100644
+--- a/drivers/net/e1000e/ethtool.c
++++ b/drivers/net/e1000e/ethtool.c
+@@ -29,8 +29,9 @@
+ /* ethtool support for e1000 */
+ 
+ #include <linux/netdevice.h>
+-
+ #include <linux/ethtool.h>
++#include <linux/pci.h>
++#include <linux/delay.h>
+ 
+ #include "e1000.h"
+ 
+diff --git a/drivers/net/e1000e/hw.h b/drivers/net/e1000e/hw.h
+index 4d562c4..848217a 100644
+--- a/drivers/net/e1000e/hw.h
++++ b/drivers/net/e1000e/hw.h
+@@ -29,6 +29,8 @@
+ #ifndef _E1000_HW_H_
+ #define _E1000_HW_H_
+ 
++#include <linux/types.h>
++
+ struct e1000_hw;
+ struct e1000_adapter;
+ 
+diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c
+index 042abd4..85095af 100644
+--- a/drivers/net/e1000e/ich8lan.c
++++ b/drivers/net/e1000e/ich8lan.c
+@@ -40,6 +40,11 @@
+  * 82566MM Gigabit Network Connection
+  */
+ 
++#include <linux/netdevice.h>
++#include <linux/ethtool.h>
++#include <linux/delay.h>
++#include <linux/pci.h>
++
+ #include "e1000.h"
+ 
+ #define ICH_FLASH_GFPREG		0x0000
+diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
+index 3bbe63e..c92ea77 100644
+--- a/drivers/net/e1000e/lib.c
++++ b/drivers/net/e1000e/lib.c
+@@ -27,6 +27,8 @@
+ *******************************************************************************/
+ 
+ #include <linux/netdevice.h>
++#include <linux/ethtool.h>
++#include <linux/delay.h>
+ #include <linux/pci.h>
+ 
+ #include "e1000.h"
+diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
+index 741965d..01a9a4f 100644
+--- a/drivers/net/e1000e/netdev.c
++++ b/drivers/net/e1000e/netdev.c
+@@ -29,8 +29,10 @@
+ #include <linux/module.h>
+ #include <linux/types.h>
+ #include <linux/init.h>
++#include <linux/pci.h>
+ #include <linux/vmalloc.h>
+ #include <linux/pagemap.h>
++#include <linux/delay.h>
+ #include <linux/netdevice.h>
+ #include <linux/tcp.h>
+ #include <linux/ipv6.h>
+diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
+index 1ccbad7..c9304d8 100644
+--- a/drivers/net/e1000e/phy.c
++++ b/drivers/net/e1000e/phy.c
+@@ -26,6 +26,8 @@
+ 
+ *******************************************************************************/
+ 
++#include <linux/delay.h>
++
+ #include "e1000.h"
+ 
+ static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+-
+To unsubscribe from this list: send the line "unsubscribe netdev" in
+the body of a message to majordomo at vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.html
+
+Return-Path: <netdev-owner at vger.kernel.org>
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Subject: [PATCH 2/6] e1000e: remove namespace collisions with e1000
+To: jeff at garzik.org
+Cc: netdev at vger.kernel.org, akpm at linux-foundation.org,
+	andi at firstfloor.org
+Date:	Fri, 10 Aug 2007 13:00:47 -0700
+Message-ID: <20070810200047.21509.46779.stgit at localhost.localdomain>
+In-Reply-To: <20070810200038.21509.77815.stgit at localhost.localdomain>
+References: <20070810200038.21509.77815.stgit at localhost.localdomain>
+User-Agent: StGIT/0.12.1
+
+To prevent future collisions we rename all extern's from e1000_
+to e1000e_*. The list of changed symbols was taken from e1000.h
+Compile tested with CONFIG_E1000=y and CONFIG_E1000E=y.
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+
+ drivers/net/e1000e/82571.c   |  129 +++++++++++++-------------
+ drivers/net/e1000e/e1000.h   |  194 +++++++++++++++++++--------------------
+ drivers/net/e1000e/es2lan.c  |  118 ++++++++++++------------
+ drivers/net/e1000e/ethtool.c |   62 ++++++------
+ drivers/net/e1000e/ich8lan.c |   92 +++++++++---------
+ drivers/net/e1000e/lib.c     |  210 +++++++++++++++++++++---------------------
+ drivers/net/e1000e/netdev.c  |  168 +++++++++++++++++-----------------
+ drivers/net/e1000e/param.c   |    8 +-
+ drivers/net/e1000e/phy.c     |  138 ++++++++++++++--------------
+ 9 files changed, 559 insertions(+), 560 deletions(-)
+
+diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c
+index 0f8f0ac..cf70522 100644
+--- a/drivers/net/e1000e/82571.c
++++ b/drivers/net/e1000e/82571.c
+@@ -54,7 +54,6 @@
+ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
+ static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
+ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
+-static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
+ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ 				      u16 words, u16 *data);
+ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
+@@ -214,18 +213,18 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
+ 	switch (hw->media_type) {
+ 	case e1000_media_type_copper:
+ 		func->setup_physical_interface = e1000_setup_copper_link_82571;
+-		func->check_for_link = e1000_check_for_copper_link;
+-		func->get_link_up_info = e1000_get_speed_and_duplex_copper;
++		func->check_for_link = e1000e_check_for_copper_link;
++		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
+ 		break;
+ 	case e1000_media_type_fiber:
+ 		func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
+-		func->check_for_link = e1000_check_for_fiber_link;
+-		func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes;
++		func->check_for_link = e1000e_check_for_fiber_link;
++		func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
+ 		break;
+ 	case e1000_media_type_internal_serdes:
+ 		func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
+-		func->check_for_link = e1000_check_for_serdes_link;
+-		func->get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes;
++		func->check_for_link = e1000e_check_for_serdes_link;
++		func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
+ 		break;
+ 	default:
+ 		return -E1000_ERR_CONFIG;
+@@ -324,7 +323,7 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+ 		phy->id = IGP01E1000_I_PHY_ID;
+ 		break;
+ 	case e1000_82573:
+-		return e1000_get_phy_id(hw);
++		return e1000e_get_phy_id(hw);
+ 		break;
+ 	default:
+ 		return -E1000_ERR_PHY;
+@@ -360,7 +359,7 @@ static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+ 
+ 	if (i == timeout) {
+ 		/* Release semaphores */
+-		e1000_put_hw_semaphore(hw);
++		e1000e_put_hw_semaphore(hw);
+ 		hw_dbg(hw, "Driver can't access the NVM\n");
+ 		return -E1000_ERR_NVM;
+ 	}
+@@ -403,7 +402,7 @@ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+ 		return ret_val;
+ 
+ 	if (hw->mac.type != e1000_82573)
+-		ret_val = e1000_acquire_nvm(hw);
++		ret_val = e1000e_acquire_nvm(hw);
+ 
+ 	if (ret_val)
+ 		e1000_put_hw_semaphore_82571(hw);
+@@ -419,7 +418,7 @@ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+  **/
+ static void e1000_release_nvm_82571(struct e1000_hw *hw)
+ {
+-	e1000_release_nvm(hw);
++	e1000e_release_nvm(hw);
+ 	e1000_put_hw_semaphore_82571(hw);
+ }
+ 
+@@ -432,7 +431,7 @@ static void e1000_release_nvm_82571(struct e1000_hw *hw)
+  *
+  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
+  *
+- *  If e1000_update_nvm_checksum is not called after this function, the
++ *  If e1000e_update_nvm_checksum is not called after this function, the
+  *  EEPROM will most likley contain an invalid checksum.
+  **/
+ static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+@@ -446,7 +445,7 @@ static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+ 		break;
+ 	case e1000_82571:
+ 	case e1000_82572:
+-		ret_val = e1000_write_nvm_spi(hw, offset, words, data);
++		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
+ 		break;
+ 	default:
+ 		ret_val = -E1000_ERR_NVM;
+@@ -470,7 +469,7 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+ 	s32 ret_val;
+ 	u16 i;
+ 
+-	ret_val = e1000_update_nvm_checksum_generic(hw);
++	ret_val = e1000e_update_nvm_checksum_generic(hw);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+@@ -527,7 +526,7 @@ static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+ 	if (hw->nvm.type == e1000_nvm_flash_hw)
+ 		e1000_fix_nvm_checksum_82571(hw);
+ 
+-	return e1000_validate_nvm_checksum_generic(hw);
++	return e1000e_validate_nvm_checksum_generic(hw);
+ }
+ 
+ /**
+@@ -541,7 +540,7 @@ static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+  *  command has completed before trying to write the next word.  After write
+  *  poll for completion.
+  *
+- *  If e1000_update_nvm_checksum is not called after this function, the
++ *  If e1000e_update_nvm_checksum is not called after this function, the
+  *  EEPROM will most likley contain an invalid checksum.
+  **/
+ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+@@ -565,13 +564,13 @@ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ 		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
+ 		       E1000_NVM_RW_REG_START;
+ 
+-		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
++		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+ 		if (ret_val)
+ 			break;
+ 
+ 		ew32(EEWR, eewr);
+ 
+-		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
++		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+ 		if (ret_val)
+ 			break;
+ 	}
+@@ -691,7 +690,7 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+ 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
+ 	 * on the last TLP read/write transaction when MAC is reset.
+ 	 */
+-	ret_val = e1000_disable_pcie_master(hw);
++	ret_val = e1000e_disable_pcie_master(hw);
+ 	if (ret_val)
+ 		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
+ 
+@@ -737,7 +736,7 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+ 		e1e_flush();
+ 	}
+ 
+-	ret_val = e1000_get_auto_rd_done(hw);
++	ret_val = e1000e_get_auto_rd_done(hw);
+ 	if (ret_val)
+ 		/* We don't want to continue accessing MAC registers. */
+ 		return ret_val;
+@@ -773,7 +772,7 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+ 	e1000_initialize_hw_bits_82571(hw);
+ 
+ 	/* Initialize identification LED */
+-	ret_val = e1000_id_led_init(hw);
++	ret_val = e1000e_id_led_init(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error initializing identification LED\n");
+ 		return ret_val;
+@@ -781,16 +780,16 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+ 
+ 	/* Disabling VLAN filtering */
+ 	hw_dbg(hw, "Initializing the IEEE VLAN\n");
+-	e1000_clear_vfta(hw);
++	e1000e_clear_vfta(hw);
+ 
+ 	/* Setup the receive address. */
+ 	/* If, however, a locally administered address was assigned to the
+ 	 * 82571, we must reserve a RAR for it to work around an issue where
+ 	 * resetting one port will reload the MAC on the other port.
+ 	 */
+-	if (e1000_get_laa_state_82571(hw))
++	if (e1000e_get_laa_state_82571(hw))
+ 		rar_count--;
+-	e1000_init_rx_addrs(hw, rar_count);
++	e1000e_init_rx_addrs(hw, rar_count);
+ 
+ 	/* Zero out the Multicast HASH table */
+ 	hw_dbg(hw, "Zeroing the MTA\n");
+@@ -815,7 +814,7 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+ 			   E1000_TXDCTL_COUNT_DESC;
+ 		ew32(TXDCTL1, reg_data);
+ 	} else {
+-		e1000_enable_tx_pkt_filtering(hw);
++		e1000e_enable_tx_pkt_filtering(hw);
+ 		reg_data = er32(GCR);
+ 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+ 		ew32(GCR, reg_data);
+@@ -898,13 +897,13 @@ static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_clear_vfta - Clear VLAN filter table
++ *  e1000e_clear_vfta - Clear VLAN filter table
+  *  @hw: pointer to the HW structure
+  *
+  *  Clears the register array which contains the VLAN filter table by
+  *  setting all the values to 0.
+  **/
+-void e1000_clear_vfta(struct e1000_hw *hw)
++void e1000e_clear_vfta(struct e1000_hw *hw)
+ {
+ 	u32 offset;
+ 	u32 vfta_value = 0;
+@@ -956,10 +955,10 @@ static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
+ 					    u32 rar_used_count,
+ 					    u32 rar_count)
+ {
+-	if (e1000_get_laa_state_82571(hw))
++	if (e1000e_get_laa_state_82571(hw))
+ 		rar_count--;
+ 
+-	e1000_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
++	e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
+ 					  rar_used_count, rar_count);
+ }
+ 
+@@ -982,7 +981,7 @@ static s32 e1000_setup_link_82571(struct e1000_hw *hw)
+ 	if (hw->mac.type == e1000_82573)
+ 		hw->mac.fc = e1000_fc_full;
+ 
+-	return e1000_setup_link(hw);
++	return e1000e_setup_link(hw);
+ }
+ 
+ /**
+@@ -1006,10 +1005,10 @@ static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+ 
+ 	switch (hw->phy.type) {
+ 	case e1000_phy_m88:
+-		ret_val = e1000_copper_link_setup_m88(hw);
++		ret_val = e1000e_copper_link_setup_m88(hw);
+ 		break;
+ 	case e1000_phy_igp_2:
+-		ret_val = e1000_copper_link_setup_igp(hw);
++		ret_val = e1000e_copper_link_setup_igp(hw);
+ 		/* Setup activity LED */
+ 		led_ctrl = er32(LEDCTL);
+ 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+@@ -1024,7 +1023,7 @@ static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+ 	if (ret_val)
+ 		return ret_val;
+ 
+-	ret_val = e1000_setup_copper_link(hw);
++	ret_val = e1000e_setup_copper_link(hw);
+ 
+ 	return ret_val;
+ }
+@@ -1054,7 +1053,7 @@ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
+ 		break;
+ 	}
+ 
+-	return e1000_setup_fiber_serdes_link(hw);
++	return e1000e_setup_fiber_serdes_link(hw);
+ }
+ 
+ /**
+@@ -1086,12 +1085,12 @@ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+ }
+ 
+ /**
+- *  e1000_get_laa_state_82571 - Get locally administered address state
++ *  e1000e_get_laa_state_82571 - Get locally administered address state
+  *  @hw: pointer to the HW structure
+  *
+  *  Retrieve and return the current locally administed address state.
+  **/
+-bool e1000_get_laa_state_82571(struct e1000_hw *hw)
++bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
+ {
+ 	if (hw->mac.type != e1000_82571)
+ 		return 0;
+@@ -1100,13 +1099,13 @@ bool e1000_get_laa_state_82571(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_set_laa_state_82571 - Set locally administered address state
++ *  e1000e_set_laa_state_82571 - Set locally administered address state
+  *  @hw: pointer to the HW structure
+  *  @state: enable/disable locally administered address
+  *
+  *  Enable/Disable the current locally administed address state.
+  **/
+-void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
++void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
+ {
+ 	if (hw->mac.type != e1000_82571)
+ 		return;
+@@ -1121,7 +1120,7 @@ void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+ 		 * incoming packets directed to this port are dropped.
+ 		 * Eventually the LAA will be in RAR[0] and RAR[14].
+ 		 */
+-		e1000_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
++		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
+ }
+ 
+ /**
+@@ -1167,7 +1166,7 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+ 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
+ 			if (ret_val)
+ 				return ret_val;
+-			ret_val = e1000_update_nvm_checksum(hw);
++			ret_val = e1000e_update_nvm_checksum(hw);
+ 		}
+ 	}
+ 
+@@ -1184,7 +1183,7 @@ static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+ {
+ 	u32 temp;
+ 
+-	e1000_clear_hw_cntrs_base(hw);
++	e1000e_clear_hw_cntrs_base(hw);
+ 
+ 	temp = er32(PRC64);
+ 	temp = er32(PRC127);
+@@ -1225,12 +1224,12 @@ static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+ static struct e1000_mac_operations e82571_mac_ops = {
+ 	.mng_mode_enab		= E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
+ 	/* .check_for_link: media type dependent */
+-	.cleanup_led		= e1000_cleanup_led_generic,
++	.cleanup_led		= e1000e_cleanup_led_generic,
+ 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
+-	.get_bus_info		= e1000_get_bus_info_pcie,
++	.get_bus_info		= e1000e_get_bus_info_pcie,
+ 	/* .get_link_up_info: media type dependent */
+-	.led_on			= e1000_led_on_generic,
+-	.led_off		= e1000_led_off_generic,
++	.led_on			= e1000e_led_on_generic,
++	.led_off		= e1000e_led_off_generic,
+ 	.mc_addr_list_update	= e1000_mc_addr_list_update_82571,
+ 	.reset_hw		= e1000_reset_hw_82571,
+ 	.init_hw		= e1000_init_hw_82571,
+@@ -1240,39 +1239,39 @@ static struct e1000_mac_operations e82571_mac_ops = {
+ 
+ static struct e1000_phy_operations e82_phy_ops_igp = {
+ 	.acquire_phy		= e1000_get_hw_semaphore_82571,
+-	.check_reset_block	= e1000_check_reset_block_generic,
++	.check_reset_block	= e1000e_check_reset_block_generic,
+ 	.commit_phy		= NULL,
+-	.force_speed_duplex	= e1000_phy_force_speed_duplex_igp,
++	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
+ 	.get_cfg_done		= e1000_get_cfg_done_82571,
+-	.get_cable_length	= e1000_get_cable_length_igp_2,
+-	.get_phy_info		= e1000_get_phy_info_igp,
+-	.read_phy_reg		= e1000_read_phy_reg_igp,
++	.get_cable_length	= e1000e_get_cable_length_igp_2,
++	.get_phy_info		= e1000e_get_phy_info_igp,
++	.read_phy_reg		= e1000e_read_phy_reg_igp,
+ 	.release_phy		= e1000_put_hw_semaphore_82571,
+-	.reset_phy		= e1000_phy_hw_reset_generic,
++	.reset_phy		= e1000e_phy_hw_reset_generic,
+ 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
+-	.set_d3_lplu_state	= e1000_set_d3_lplu_state,
+-	.write_phy_reg		= e1000_write_phy_reg_igp,
++	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
++	.write_phy_reg		= e1000e_write_phy_reg_igp,
+ };
+ 
+ static struct e1000_phy_operations e82_phy_ops_m88 = {
+ 	.acquire_phy		= e1000_get_hw_semaphore_82571,
+-	.check_reset_block	= e1000_check_reset_block_generic,
+-	.commit_phy		= e1000_phy_sw_reset,
+-	.force_speed_duplex	= e1000_phy_force_speed_duplex_m88,
+-	.get_cfg_done		= e1000_get_cfg_done,
+-	.get_cable_length	= e1000_get_cable_length_m88,
+-	.get_phy_info		= e1000_get_phy_info_m88,
+-	.read_phy_reg		= e1000_read_phy_reg_m88,
++	.check_reset_block	= e1000e_check_reset_block_generic,
++	.commit_phy		= e1000e_phy_sw_reset,
++	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
++	.get_cfg_done		= e1000e_get_cfg_done,
++	.get_cable_length	= e1000e_get_cable_length_m88,
++	.get_phy_info		= e1000e_get_phy_info_m88,
++	.read_phy_reg		= e1000e_read_phy_reg_m88,
+ 	.release_phy		= e1000_put_hw_semaphore_82571,
+-	.reset_phy		= e1000_phy_hw_reset_generic,
++	.reset_phy		= e1000e_phy_hw_reset_generic,
+ 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
+-	.set_d3_lplu_state	= e1000_set_d3_lplu_state,
+-	.write_phy_reg		= e1000_write_phy_reg_m88,
++	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
++	.write_phy_reg		= e1000e_write_phy_reg_m88,
+ };
+ 
+ static struct e1000_nvm_operations e82571_nvm_ops = {
+ 	.acquire_nvm		= e1000_acquire_nvm_82571,
+-	.read_nvm		= e1000_read_nvm_spi,
++	.read_nvm		= e1000e_read_nvm_spi,
+ 	.release_nvm		= e1000_release_nvm_82571,
+ 	.update_nvm		= e1000_update_nvm_checksum_82571,
+ 	.valid_led_default	= e1000_valid_led_default_82571,
+@@ -1282,7 +1281,7 @@ static struct e1000_nvm_operations e82571_nvm_ops = {
+ 
+ static struct e1000_nvm_operations e82573_nvm_ops = {
+ 	.acquire_nvm		= e1000_acquire_nvm_82571,
+-	.read_nvm		= e1000_read_nvm_eerd,
++	.read_nvm		= e1000e_read_nvm_eerd,
+ 	.release_nvm		= e1000_release_nvm_82571,
+ 	.update_nvm		= e1000_update_nvm_checksum_82571,
+ 	.valid_led_default	= e1000_valid_led_default_82571,
+diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h
+index de17537..3475e48 100644
+--- a/drivers/net/e1000e/e1000.h
++++ b/drivers/net/e1000e/e1000.h
+@@ -337,26 +337,26 @@ enum latency_range {
+ 	latency_invalid = 255
+ };
+ 
+-extern char e1000_driver_name[];
+-extern const char e1000_driver_version[];
+-
+-extern void e1000_check_options(struct e1000_adapter *adapter);
+-extern void e1000_set_ethtool_ops(struct net_device *netdev);
+-
+-extern int e1000_up(struct e1000_adapter *adapter);
+-extern void e1000_down(struct e1000_adapter *adapter);
+-extern void e1000_reinit_locked(struct e1000_adapter *adapter);
+-extern void e1000_reset(struct e1000_adapter *adapter);
+-extern void e1000_power_up_phy(struct e1000_adapter *adapter);
+-extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
+-extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
+-extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
+-extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
+-extern void e1000_update_stats(struct e1000_adapter *adapter);
++extern char e1000e_driver_name[];
++extern const char e1000e_driver_version[];
++
++extern void e1000e_check_options(struct e1000_adapter *adapter);
++extern void e1000e_set_ethtool_ops(struct net_device *netdev);
++
++extern int e1000e_up(struct e1000_adapter *adapter);
++extern void e1000e_down(struct e1000_adapter *adapter);
++extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
++extern void e1000e_reset(struct e1000_adapter *adapter);
++extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
++extern int e1000e_setup_rx_resources(struct e1000_adapter *adapter);
++extern int e1000e_setup_tx_resources(struct e1000_adapter *adapter);
++extern void e1000e_free_rx_resources(struct e1000_adapter *adapter);
++extern void e1000e_free_tx_resources(struct e1000_adapter *adapter);
++extern void e1000e_update_stats(struct e1000_adapter *adapter);
+ 
+ extern unsigned int copybreak;
+ 
+-extern char *e1000_get_hw_dev_name(struct e1000_hw *hw);
++extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw);
+ 
+ extern struct e1000_info e1000_82571_info;
+ extern struct e1000_info e1000_82572_info;
+@@ -365,79 +365,79 @@ extern struct e1000_info e1000_ich8_info;
+ extern struct e1000_info e1000_ich9_info;
+ extern struct e1000_info e1000_es2_info;
+ 
+-extern s32  e1000_commit_phy(struct e1000_hw *hw);
++extern s32  e1000e_commit_phy(struct e1000_hw *hw);
+ 
+-extern bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
++extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw);
+ 
+-extern bool e1000_get_laa_state_82571(struct e1000_hw *hw);
+-extern void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
++extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw);
++extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state);
+ 
+-extern void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
++extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+ 						 bool state);
+-extern void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+-extern void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+-
+-extern s32 e1000_check_for_copper_link(struct e1000_hw *hw);
+-extern s32 e1000_check_for_fiber_link(struct e1000_hw *hw);
+-extern s32 e1000_check_for_serdes_link(struct e1000_hw *hw);
+-extern s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
+-extern s32 e1000_led_on_generic(struct e1000_hw *hw);
+-extern s32 e1000_led_off_generic(struct e1000_hw *hw);
+-extern s32 e1000_get_bus_info_pcie(struct e1000_hw *hw);
+-extern s32 e1000_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+-extern s32 e1000_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+-extern s32 e1000_disable_pcie_master(struct e1000_hw *hw);
+-extern s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
+-extern s32 e1000_id_led_init(struct e1000_hw *hw);
+-extern void e1000_clear_hw_cntrs_base(struct e1000_hw *hw);
+-extern s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
+-extern s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
+-extern s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
+-extern s32 e1000_setup_link(struct e1000_hw *hw);
+-extern void e1000_clear_vfta(struct e1000_hw *hw);
+-extern void e1000_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
+-extern void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
++extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
++extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
++
++extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw);
++extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw);
++extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw);
++extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw);
++extern s32 e1000e_led_on_generic(struct e1000_hw *hw);
++extern s32 e1000e_led_off_generic(struct e1000_hw *hw);
++extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw);
++extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
++extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
++extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw);
++extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw);
++extern s32 e1000e_id_led_init(struct e1000_hw *hw);
++extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw);
++extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw);
++extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw);
++extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw);
++extern s32 e1000e_setup_link(struct e1000_hw *hw);
++extern void e1000e_clear_vfta(struct e1000_hw *hw);
++extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
++extern void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw,
+ 				       u8 *mc_addr_list, u32 mc_addr_count,
+ 				       u32 rar_used_count, u32 rar_count);
+-extern void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+-extern s32 e1000_set_fc_watermarks(struct e1000_hw *hw);
+-extern void e1000_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
+-extern s32 e1000_get_hw_semaphore(struct e1000_hw *hw);
+-extern s32 e1000_valid_led_default(struct e1000_hw *hw, u16 *data);
+-extern void e1000_config_collision_dist(struct e1000_hw *hw);
+-extern s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
+-extern s32 e1000_force_mac_fc(struct e1000_hw *hw);
+-extern s32 e1000_blink_led(struct e1000_hw *hw);
+-extern void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+-extern void e1000_reset_adaptive(struct e1000_hw *hw);
+-extern void e1000_update_adaptive(struct e1000_hw *hw);
+-
+-extern s32 e1000_setup_copper_link(struct e1000_hw *hw);
+-extern s32 e1000_get_phy_id(struct e1000_hw *hw);
+-extern void e1000_put_hw_semaphore(struct e1000_hw *hw);
+-extern s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
+-extern s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+-extern s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
+-extern s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
+-extern s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+-extern s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
+-extern s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+-extern s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+-extern s32 e1000_phy_sw_reset(struct e1000_hw *hw);
+-extern s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+-extern s32 e1000_get_cfg_done(struct e1000_hw *hw);
+-extern s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
+-extern s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
+-extern s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+-extern s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+-extern enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
+-extern void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+-extern s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+-extern s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+-extern s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
++extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
++extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw);
++extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
++extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw);
++extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data);
++extern void e1000e_config_collision_dist(struct e1000_hw *hw);
++extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw);
++extern s32 e1000e_force_mac_fc(struct e1000_hw *hw);
++extern s32 e1000e_blink_led(struct e1000_hw *hw);
++extern void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
++extern void e1000e_reset_adaptive(struct e1000_hw *hw);
++extern void e1000e_update_adaptive(struct e1000_hw *hw);
++
++extern s32 e1000e_setup_copper_link(struct e1000_hw *hw);
++extern s32 e1000e_get_phy_id(struct e1000_hw *hw);
++extern void e1000e_put_hw_semaphore(struct e1000_hw *hw);
++extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw);
++extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw);
++extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw);
++extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw);
++extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
++extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw);
++extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active);
++extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
++extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw);
++extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw);
++extern s32 e1000e_get_cfg_done(struct e1000_hw *hw);
++extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw);
++extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw);
++extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
++extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
++extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
++extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
++extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
++extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
++extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ 			       u32 usec_interval, bool *success);
+-extern s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+-extern s32 e1000_check_downshift(struct e1000_hw *hw);
++extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw);
++extern s32 e1000e_check_downshift(struct e1000_hw *hw);
+ 
+ static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+ {
+@@ -464,23 +464,23 @@ static inline s32 e1000_get_cable_length(struct e1000_hw *hw)
+ 	return hw->phy.ops.get_cable_length(hw);
+ }
+ 
+-extern s32 e1000_acquire_nvm(struct e1000_hw *hw);
+-extern s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+-extern s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
+-extern s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+-extern s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+-extern s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+-extern s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
+-extern void e1000_release_nvm(struct e1000_hw *hw);
+-extern void e1000_reload_nvm(struct e1000_hw *hw);
+-extern s32 e1000_read_mac_addr(struct e1000_hw *hw);
++extern s32 e1000e_acquire_nvm(struct e1000_hw *hw);
++extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
++extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw);
++extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
++extern s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
++extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
++extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw);
++extern void e1000e_release_nvm(struct e1000_hw *hw);
++extern void e1000e_reload_nvm(struct e1000_hw *hw);
++extern s32 e1000e_read_mac_addr(struct e1000_hw *hw);
+ 
+ static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
+ {
+ 	return hw->nvm.ops.validate_nvm(hw);
+ }
+ 
+-static inline s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
++static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
+ {
+ 	return hw->nvm.ops.update_nvm(hw);
+ }
+@@ -500,9 +500,9 @@ static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
+ 	return hw->phy.ops.get_phy_info(hw);
+ }
+ 
+-extern bool e1000_check_mng_mode(struct e1000_hw *hw);
+-extern bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+-extern s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
++extern bool e1000e_check_mng_mode(struct e1000_hw *hw);
++extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw);
++extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
+ 
+ static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
+ {
+diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c
+index 8100d03..88657ad 100644
+--- a/drivers/net/e1000e/es2lan.c
++++ b/drivers/net/e1000e/es2lan.c
+@@ -129,7 +129,7 @@ static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+ 	phy->type		= e1000_phy_gg82563;
+ 
+ 	/* This can only be done after all function pointers are setup. */
+-	ret_val = e1000_get_phy_id(hw);
++	ret_val = e1000e_get_phy_id(hw);
+ 
+ 	/* Verify phy id */
+ 	if (phy->id != GG82563_E_PHY_ID)
+@@ -215,15 +215,15 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
+ 	switch (hw->media_type) {
+ 	case e1000_media_type_copper:
+ 		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
+-		func->check_for_link = e1000_check_for_copper_link;
++		func->check_for_link = e1000e_check_for_copper_link;
+ 		break;
+ 	case e1000_media_type_fiber:
+-		func->setup_physical_interface = e1000_setup_fiber_serdes_link;
+-		func->check_for_link = e1000_check_for_fiber_link;
++		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
++		func->check_for_link = e1000e_check_for_fiber_link;
+ 		break;
+ 	case e1000_media_type_internal_serdes:
+-		func->setup_physical_interface = e1000_setup_fiber_serdes_link;
+-		func->check_for_link = e1000_check_for_serdes_link;
++		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
++		func->check_for_link = e1000e_check_for_serdes_link;
+ 		break;
+ 	default:
+ 		return -E1000_ERR_CONFIG;
+@@ -299,7 +299,7 @@ static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+ 	if (ret_val)
+ 		return ret_val;
+ 
+-	ret_val = e1000_acquire_nvm(hw);
++	ret_val = e1000e_acquire_nvm(hw);
+ 
+ 	if (ret_val)
+ 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+@@ -316,7 +316,7 @@ static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+  **/
+ static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
+ {
+-	e1000_release_nvm(hw);
++	e1000e_release_nvm(hw);
+ 	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+ }
+ 
+@@ -337,7 +337,7 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ 	s32 timeout = 200;
+ 
+ 	while (i < timeout) {
+-		if (e1000_get_hw_semaphore(hw))
++		if (e1000e_get_hw_semaphore(hw))
+ 			return -E1000_ERR_SWFW_SYNC;
+ 
+ 		swfw_sync = er32(SW_FW_SYNC);
+@@ -346,7 +346,7 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ 
+ 		/* Firmware currently using resource (fwmask)
+ 		 * or other software thread using resource (swmask) */
+-		e1000_put_hw_semaphore(hw);
++		e1000e_put_hw_semaphore(hw);
+ 		mdelay(5);
+ 		i++;
+ 	}
+@@ -360,7 +360,7 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ 	swfw_sync |= swmask;
+ 	ew32(SW_FW_SYNC, swfw_sync);
+ 
+-	e1000_put_hw_semaphore(hw);
++	e1000e_put_hw_semaphore(hw);
+ 
+ 	return 0;
+ }
+@@ -377,14 +377,14 @@ static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+ {
+ 	u32 swfw_sync;
+ 
+-	while (e1000_get_hw_semaphore(hw) != 0);
++	while (e1000e_get_hw_semaphore(hw) != 0);
+ 	/* Empty */
+ 
+ 	swfw_sync = er32(SW_FW_SYNC);
+ 	swfw_sync &= ~mask;
+ 	ew32(SW_FW_SYNC, swfw_sync);
+ 
+-	e1000_put_hw_semaphore(hw);
++	e1000e_put_hw_semaphore(hw);
+ }
+ 
+ /**
+@@ -413,7 +413,7 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+ 
+ 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+-	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
++	ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+@@ -424,7 +424,7 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 	udelay(200);
+ 
+ 	/* ...and verify the command was successful. */
+-	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
++	ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
+ 
+ 	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+ 		ret_val = -E1000_ERR_PHY;
+@@ -433,7 +433,7 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 
+ 	udelay(200);
+ 
+-	ret_val = e1000_read_phy_reg_m88(hw,
++	ret_val = e1000e_read_phy_reg_m88(hw,
+ 					 MAX_PHY_REG_ADDRESS & offset,
+ 					 data);
+ 
+@@ -468,7 +468,7 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+ 
+ 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+-	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
++	ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+@@ -480,14 +480,14 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ 	udelay(200);
+ 
+ 	/* ...and verify the command was successful. */
+-	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
++	ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
+ 
+ 	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
+ 		return -E1000_ERR_PHY;
+ 
+ 	udelay(200);
+ 
+-	ret_val = e1000_write_phy_reg_m88(hw,
++	ret_val = e1000e_write_phy_reg_m88(hw,
+ 					  MAX_PHY_REG_ADDRESS & offset,
+ 					  data);
+ 
+@@ -509,7 +509,7 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+ 				       u16 words, u16 *data)
+ {
+-	return e1000_write_nvm_spi(hw, offset, words, data);
++	return e1000e_write_nvm_spi(hw, offset, words, data);
+ }
+ 
+ /**
+@@ -572,7 +572,7 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ 	if (ret_val)
+ 		return ret_val;
+ 
+-	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
++	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+ 
+ 	/* Reset the phy to commit changes. */
+ 	phy_data |= MII_CR_RESET;
+@@ -587,7 +587,7 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ 		hw_dbg(hw, "Waiting for forced speed/duplex link "
+ 			 "on GG82563 phy.\n");
+ 
+-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 						     100000, &link);
+ 		if (ret_val)
+ 			return ret_val;
+@@ -596,13 +596,13 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+ 			/* We didn't get link.
+ 			 * Reset the DSP and cross our fingers.
+ 			 */
+-			ret_val = e1000_phy_reset_dsp(hw);
++			ret_val = e1000e_phy_reset_dsp(hw);
+ 			if (ret_val)
+ 				return ret_val;
+ 		}
+ 
+ 		/* Try once more */
+-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 						     100000, &link);
+ 		if (ret_val)
+ 			return ret_val;
+@@ -672,7 +672,7 @@ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ 	s32 ret_val;
+ 
+ 	if (hw->media_type == e1000_media_type_copper) {
+-		ret_val = e1000_get_speed_and_duplex_copper(hw,
++		ret_val = e1000e_get_speed_and_duplex_copper(hw,
+ 								    speed,
+ 								    duplex);
+ 		if (ret_val)
+@@ -683,7 +683,7 @@ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ 			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
+ 							      *duplex);
+ 	} else {
+-		ret_val = e1000_get_speed_and_duplex_fiber_serdes(hw,
++		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
+ 								  speed,
+ 								  duplex);
+ 	}
+@@ -707,7 +707,7 @@ static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+ 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
+ 	 * on the last TLP read/write transaction when MAC is reset.
+ 	 */
+-	ret_val = e1000_disable_pcie_master(hw);
++	ret_val = e1000e_disable_pcie_master(hw);
+ 	if (ret_val)
+ 		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
+ 
+@@ -725,7 +725,7 @@ static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+ 	hw_dbg(hw, "Issuing a global reset to MAC\n");
+ 	ew32(CTRL, ctrl | E1000_CTRL_RST);
+ 
+-	ret_val = e1000_get_auto_rd_done(hw);
++	ret_val = e1000e_get_auto_rd_done(hw);
+ 	if (ret_val)
+ 		/* We don't want to continue accessing MAC registers. */
+ 		return ret_val;
+@@ -754,7 +754,7 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+ 	e1000_initialize_hw_bits_80003es2lan(hw);
+ 
+ 	/* Initialize identification LED */
+-	ret_val = e1000_id_led_init(hw);
++	ret_val = e1000e_id_led_init(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error initializing identification LED\n");
+ 		return ret_val;
+@@ -762,10 +762,10 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+ 
+ 	/* Disabling VLAN filtering */
+ 	hw_dbg(hw, "Initializing the IEEE VLAN\n");
+-	e1000_clear_vfta(hw);
++	e1000e_clear_vfta(hw);
+ 
+ 	/* Setup the receive address. */
+-	e1000_init_rx_addrs(hw, mac->rar_entry_count);
++	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
+ 
+ 	/* Zero out the Multicast HASH table */
+ 	hw_dbg(hw, "Zeroing the MTA\n");
+@@ -773,7 +773,7 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+ 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ 
+ 	/* Setup link and flow control */
+-	ret_val = e1000_setup_link(hw);
++	ret_val = e1000e_setup_link(hw);
+ 
+ 	/* Set the transmit descriptor write-back policy */
+ 	reg_data = er32(TXDCTL);
+@@ -922,14 +922,14 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ 		return ret_val;
+ 
+ 	/* SW Reset the PHY so all changes take effect */
+-	ret_val = e1000_commit_phy(hw);
++	ret_val = e1000e_commit_phy(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error Resetting the PHY\n");
+ 		return ret_val;
+ 	}
+ 
+ 	/* Bypass RX and TX FIFO's */
+-	ret_val = e1000_write_kmrn_reg(hw,
++	ret_val = e1000e_write_kmrn_reg(hw,
+ 				E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
+ 				E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+ 					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+@@ -957,7 +957,7 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+ 	 * firmware will have already initialized them.  We only initialize
+ 	 * them if the HW is not in IAMT mode.
+ 	 */
+-	if (!e1000_check_mng_mode(hw)) {
++	if (!e1000e_check_mng_mode(hw)) {
+ 		/* Enable Electrical Idle on the PHY */
+ 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+ 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
+@@ -1010,23 +1010,23 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+ 	/* Set the mac to wait the maximum time between each
+ 	 * iteration and increase the max iterations when
+ 	 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
+-	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
++	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+ 	if (ret_val)
+ 		return ret_val;
+-	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
++	ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+ 	if (ret_val)
+ 		return ret_val;
+ 	reg_data |= 0x3F;
+-	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
++	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+ 	if (ret_val)
+ 		return ret_val;
+-	ret_val = e1000_read_kmrn_reg(hw,
++	ret_val = e1000e_read_kmrn_reg(hw,
+ 				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ 				      &reg_data);
+ 	if (ret_val)
+ 		return ret_val;
+ 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+-	ret_val = e1000_write_kmrn_reg(hw,
++	ret_val = e1000e_write_kmrn_reg(hw,
+ 				       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ 				       reg_data);
+ 	if (ret_val)
+@@ -1036,7 +1036,7 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+ 	if (ret_val)
+ 		return ret_val;
+ 
+-	ret_val = e1000_setup_copper_link(hw);
++	ret_val = e1000e_setup_copper_link(hw);
+ 
+ 	return 0;
+ }
+@@ -1056,7 +1056,7 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+ 	u16 reg_data;
+ 
+ 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
+-	ret_val = e1000_write_kmrn_reg(hw,
++	ret_val = e1000e_write_kmrn_reg(hw,
+ 				       E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ 				       reg_data);
+ 	if (ret_val)
+@@ -1096,7 +1096,7 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+ 	u32 tipg;
+ 
+ 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
+-	ret_val = e1000_write_kmrn_reg(hw,
++	ret_val = e1000e_write_kmrn_reg(hw,
+ 				       E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ 				       reg_data);
+ 	if (ret_val)
+@@ -1128,7 +1128,7 @@ static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+ {
+ 	u32 temp;
+ 
+-	e1000_clear_hw_cntrs_base(hw);
++	e1000e_clear_hw_cntrs_base(hw);
+ 
+ 	temp = er32(PRC64);
+ 	temp = er32(PRC127);
+@@ -1169,42 +1169,42 @@ static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+ static struct e1000_mac_operations es2_mac_ops = {
+ 	.mng_mode_enab		= E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
+ 	/* check_for_link dependent on media type */
+-	.cleanup_led		= e1000_cleanup_led_generic,
++	.cleanup_led		= e1000e_cleanup_led_generic,
+ 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
+-	.get_bus_info		= e1000_get_bus_info_pcie,
++	.get_bus_info		= e1000e_get_bus_info_pcie,
+ 	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
+-	.led_on			= e1000_led_on_generic,
+-	.led_off		= e1000_led_off_generic,
+-	.mc_addr_list_update	= e1000_mc_addr_list_update_generic,
++	.led_on			= e1000e_led_on_generic,
++	.led_off		= e1000e_led_off_generic,
++	.mc_addr_list_update	= e1000e_mc_addr_list_update_generic,
+ 	.reset_hw		= e1000_reset_hw_80003es2lan,
+ 	.init_hw		= e1000_init_hw_80003es2lan,
+-	.setup_link		= e1000_setup_link,
++	.setup_link		= e1000e_setup_link,
+ 	/* setup_physical_interface dependent on media type */
+ };
+ 
+ static struct e1000_phy_operations es2_phy_ops = {
+ 	.acquire_phy		= e1000_acquire_phy_80003es2lan,
+-	.check_reset_block	= e1000_check_reset_block_generic,
+-	.commit_phy	 	= e1000_phy_sw_reset,
++	.check_reset_block	= e1000e_check_reset_block_generic,
++	.commit_phy	 	= e1000e_phy_sw_reset,
+ 	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
+ 	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
+ 	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
+-	.get_phy_info       	= e1000_get_phy_info_m88,
++	.get_phy_info       	= e1000e_get_phy_info_m88,
+ 	.read_phy_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
+ 	.release_phy		= e1000_release_phy_80003es2lan,
+-	.reset_phy	  	= e1000_phy_hw_reset_generic,
++	.reset_phy	  	= e1000e_phy_hw_reset_generic,
+ 	.set_d0_lplu_state  	= NULL,
+-	.set_d3_lplu_state  	= e1000_set_d3_lplu_state,
++	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
+ 	.write_phy_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
+ };
+ 
+ static struct e1000_nvm_operations es2_nvm_ops = {
+ 	.acquire_nvm		= e1000_acquire_nvm_80003es2lan,
+-	.read_nvm		= e1000_read_nvm_eerd,
++	.read_nvm		= e1000e_read_nvm_eerd,
+ 	.release_nvm		= e1000_release_nvm_80003es2lan,
+-	.update_nvm		= e1000_update_nvm_checksum_generic,
+-	.valid_led_default	= e1000_valid_led_default,
+-	.validate_nvm		= e1000_validate_nvm_checksum_generic,
++	.update_nvm		= e1000e_update_nvm_checksum_generic,
++	.valid_led_default	= e1000e_valid_led_default,
++	.validate_nvm		= e1000e_validate_nvm_checksum_generic,
+ 	.write_nvm		= e1000_write_nvm_80003es2lan,
+ };
+ 
+diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
+index a8fa1db..c9d74a8 100644
+--- a/drivers/net/e1000e/ethtool.c
++++ b/drivers/net/e1000e/ethtool.c
+@@ -246,10 +246,10 @@ static int e1000_set_settings(struct net_device *netdev,
+ 	/* reset the link */
+ 
+ 	if (netif_running(adapter->netdev)) {
+-		e1000_down(adapter);
+-		e1000_up(adapter);
++		e1000e_down(adapter);
++		e1000e_up(adapter);
+ 	} else {
+-		e1000_reset(adapter);
++		e1000e_reset(adapter);
+ 	}
+ 
+ 	clear_bit(__E1000_RESETTING, &adapter->state);
+@@ -300,14 +300,14 @@ static int e1000_set_pauseparam(struct net_device *netdev,
+ 
+ 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
+ 		if (netif_running(adapter->netdev)) {
+-			e1000_down(adapter);
+-			e1000_up(adapter);
++			e1000e_down(adapter);
++			e1000e_up(adapter);
+ 		} else {
+-			e1000_reset(adapter);
++			e1000e_reset(adapter);
+ 		}
+ 	} else {
+ 		retval = ((hw->media_type == e1000_media_type_fiber) ?
+-			  hw->mac.ops.setup_link(hw) : e1000_force_mac_fc(hw));
++			  hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
+ 	}
+ 
+ 	clear_bit(__E1000_RESETTING, &adapter->state);
+@@ -330,9 +330,9 @@ static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
+ 		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
+ 
+ 	if (netif_running(netdev))
+-		e1000_reinit_locked(adapter);
++		e1000e_reinit_locked(adapter);
+ 	else
+-		e1000_reset(adapter);
++		e1000e_reset(adapter);
+ 	return 0;
+ }
+ 
+@@ -549,7 +549,7 @@ static int e1000_set_eeprom(struct net_device *netdev,
+ 	 * and flush shadow RAM for 82573 controllers */
+ 	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
+ 			       (hw->mac.type == e1000_82573)))
+-		e1000_update_nvm_checksum(hw);
++		e1000e_update_nvm_checksum(hw);
+ 
+ 	kfree(eeprom_buff);
+ 	return ret_val;
+@@ -562,8 +562,8 @@ static void e1000_get_drvinfo(struct net_device *netdev,
+ 	char firmware_version[32];
+ 	u16 eeprom_data;
+ 
+-	strncpy(drvinfo->driver,  e1000_driver_name, 32);
+-	strncpy(drvinfo->version, e1000_driver_version, 32);
++	strncpy(drvinfo->driver,  e1000e_driver_name, 32);
++	strncpy(drvinfo->version, e1000e_driver_version, 32);
+ 
+ 	/* EEPROM image version # is reported as firmware version # for
+ 	 * PCI-E controllers */
+@@ -613,7 +613,7 @@ static int e1000_set_ringparam(struct net_device *netdev,
+ 		msleep(1);
+ 
+ 	if (netif_running(adapter->netdev))
+-		e1000_down(adapter);
++		e1000e_down(adapter);
+ 
+ 	tx_old = adapter->tx_ring;
+ 	rx_old = adapter->rx_ring;
+@@ -640,10 +640,10 @@ static int e1000_set_ringparam(struct net_device *netdev,
+ 
+ 	if (netif_running(adapter->netdev)) {
+ 		/* Try to get new resources before deleting old */
+-		err = e1000_setup_rx_resources(adapter);
++		err = e1000e_setup_rx_resources(adapter);
+ 		if (err)
+ 			goto err_setup_rx;
+-		err = e1000_setup_tx_resources(adapter);
++		err = e1000e_setup_tx_resources(adapter);
+ 		if (err)
+ 			goto err_setup_tx;
+ 
+@@ -651,13 +651,13 @@ static int e1000_set_ringparam(struct net_device *netdev,
+ 		 * then restore the new back again */
+ 		adapter->rx_ring = rx_old;
+ 		adapter->tx_ring = tx_old;
+-		e1000_free_rx_resources(adapter);
+-		e1000_free_tx_resources(adapter);
++		e1000e_free_rx_resources(adapter);
++		e1000e_free_tx_resources(adapter);
+ 		kfree(tx_old);
+ 		kfree(rx_old);
+ 		adapter->rx_ring = rx_ring;
+ 		adapter->tx_ring = tx_ring;
+-		err = e1000_up(adapter);
++		err = e1000e_up(adapter);
+ 		if (err)
+ 			goto err_setup;
+ 	}
+@@ -665,7 +665,7 @@ static int e1000_set_ringparam(struct net_device *netdev,
+ 	clear_bit(__E1000_RESETTING, &adapter->state);
+ 	return 0;
+ err_setup_tx:
+-	e1000_free_rx_resources(adapter);
++	e1000e_free_rx_resources(adapter);
+ err_setup_rx:
+ 	adapter->rx_ring = rx_old;
+ 	adapter->tx_ring = tx_old;
+@@ -673,7 +673,7 @@ err_setup_rx:
+ err_alloc_rx:
+ 	kfree(tx_ring);
+ err_alloc_tx:
+-	e1000_up(adapter);
++	e1000e_up(adapter);
+ err_setup:
+ 	clear_bit(__E1000_RESETTING, &adapter->state);
+ 	return err;
+@@ -1326,7 +1326,7 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
+ 		if (phy_reg & MII_CR_LOOPBACK) {
+ 			phy_reg &= ~MII_CR_LOOPBACK;
+ 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
+-			e1000_commit_phy(hw);
++			e1000e_commit_phy(hw);
+ 		}
+ 		break;
+ 	}
+@@ -1517,22 +1517,22 @@ static void e1000_diag_test(struct net_device *netdev,
+ 			/* indicate we're in test mode */
+ 			dev_close(netdev);
+ 		else
+-			e1000_reset(adapter);
++			e1000e_reset(adapter);
+ 
+ 		if (e1000_reg_test(adapter, &data[0]))
+ 			eth_test->flags |= ETH_TEST_FL_FAILED;
+ 
+-		e1000_reset(adapter);
++		e1000e_reset(adapter);
+ 		if (e1000_eeprom_test(adapter, &data[1]))
+ 			eth_test->flags |= ETH_TEST_FL_FAILED;
+ 
+-		e1000_reset(adapter);
++		e1000e_reset(adapter);
+ 		if (e1000_intr_test(adapter, &data[2]))
+ 			eth_test->flags |= ETH_TEST_FL_FAILED;
+ 
+-		e1000_reset(adapter);
++		e1000e_reset(adapter);
+ 		/* make sure the phy is powered up */
+-		e1000_power_up_phy(adapter);
++		e1000e_power_up_phy(adapter);
+ 		if (e1000_loopback_test(adapter, &data[3]))
+ 			eth_test->flags |= ETH_TEST_FL_FAILED;
+ 
+@@ -1543,7 +1543,7 @@ static void e1000_diag_test(struct net_device *netdev,
+ 
+ 		/* force this routine to wait until autoneg complete/timeout */
+ 		adapter->hw.phy.wait_for_link = 1;
+-		e1000_reset(adapter);
++		e1000e_reset(adapter);
+ 		adapter->hw.phy.wait_for_link = 0;
+ 
+ 		clear_bit(__E1000_TESTING, &adapter->state);
+@@ -1663,7 +1663,7 @@ static int e1000_phys_id(struct net_device *netdev, u32 data)
+ 		e1e_wphy(&adapter->hw,
+ 				    IFE_PHY_SPECIAL_CONTROL_LED, 0);
+ 	} else {
+-		e1000_blink_led(&adapter->hw);
++		e1000e_blink_led(&adapter->hw);
+ 		msleep_interruptible(data * 1000);
+ 	}
+ 
+@@ -1678,7 +1678,7 @@ static int e1000_nway_reset(struct net_device *netdev)
+ {
+ 	struct e1000_adapter *adapter = netdev_priv(netdev);
+ 	if (netif_running(netdev))
+-		e1000_reinit_locked(adapter);
++		e1000e_reinit_locked(adapter);
+ 	return 0;
+ }
+ 
+@@ -1694,7 +1694,7 @@ static void e1000_get_ethtool_stats(struct net_device *netdev,
+ 	struct e1000_adapter *adapter = netdev_priv(netdev);
+ 	int i;
+ 
+-	e1000_update_stats(adapter);
++	e1000e_update_stats(adapter);
+ 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+ 		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
+ 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
+@@ -1758,7 +1758,7 @@ static const struct ethtool_ops e1000_ethtool_ops = {
+ 	.get_ethtool_stats	= e1000_get_ethtool_stats,
+ };
+ 
+-void e1000_set_ethtool_ops(struct net_device *netdev)
++void e1000e_set_ethtool_ops(struct net_device *netdev)
+ {
+ 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
+ }
+diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c
+index 85095af..8f8139d 100644
+--- a/drivers/net/e1000e/ich8lan.c
++++ b/drivers/net/e1000e/ich8lan.c
+@@ -199,10 +199,10 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+ 	phy->reset_delay_us		= 100;
+ 
+ 	phy->id = 0;
+-	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
++	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
+ 	       (i++ < 100)) {
+ 		msleep(1);
+-		ret_val = e1000_get_phy_id(hw);
++		ret_val = e1000e_get_phy_id(hw);
+ 		if (ret_val)
+ 			return ret_val;
+ 	}
+@@ -308,7 +308,7 @@ static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
+ 
+ 	/* Enable PCS Lock-loss workaround for ICH8 */
+ 	if (mac->type == e1000_ich8lan)
+-		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
++		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
+ 
+ 	return 0;
+ }
+@@ -420,7 +420,7 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+ 	bool link;
+ 
+ 	if (phy->type != e1000_phy_ife) {
+-		ret_val = e1000_phy_force_speed_duplex_igp(hw);
++		ret_val = e1000e_phy_force_speed_duplex_igp(hw);
+ 		return ret_val;
+ 	}
+ 
+@@ -428,7 +428,7 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+ 	if (ret_val)
+ 		return ret_val;
+ 
+-	e1000_phy_force_speed_duplex_setup(hw, &data);
++	e1000e_phy_force_speed_duplex_setup(hw, &data);
+ 
+ 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
+ 	if (ret_val)
+@@ -453,7 +453,7 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+ 	if (phy->wait_for_link) {
+ 		hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
+ 
+-		ret_val = e1000_phy_has_link_generic(hw,
++		ret_val = e1000e_phy_has_link_generic(hw,
+ 						     PHY_FORCE_LIMIT,
+ 						     100000,
+ 						     &link);
+@@ -464,7 +464,7 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+ 			hw_dbg(hw, "Link taking longer than expected.\n");
+ 
+ 		/* Try once more */
+-		ret_val = e1000_phy_has_link_generic(hw,
++		ret_val = e1000e_phy_has_link_generic(hw,
+ 						     PHY_FORCE_LIMIT,
+ 						     100000,
+ 						     &link);
+@@ -492,7 +492,7 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+ 	u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+ 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
+ 
+-	ret_val = e1000_phy_hw_reset_generic(hw);
++	ret_val = e1000e_phy_hw_reset_generic(hw);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+@@ -604,7 +604,7 @@ static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
+ 	u16 data;
+ 	bool link;
+ 
+-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+@@ -658,7 +658,7 @@ static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
+ 		return e1000_get_phy_info_ife_ich8lan(hw);
+ 		break;
+ 	case e1000_phy_igp_3:
+-		return e1000_get_phy_info_igp(hw);
++		return e1000e_get_phy_info_igp(hw);
+ 		break;
+ 	default:
+ 		break;
+@@ -735,7 +735,7 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+ 		 * any PHY registers */
+ 		if ((hw->mac.type == e1000_ich8lan) &&
+ 		    (hw->phy.type == e1000_phy_igp_3))
+-			e1000_gig_downshift_workaround_ich8lan(hw);
++			e1000e_gig_downshift_workaround_ich8lan(hw);
+ 
+ 		/* When LPLU is enabled, we should disable SmartSpeed */
+ 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+@@ -845,7 +845,7 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+ 		 * any PHY registers */
+ 		if ((hw->mac.type == e1000_ich8lan) &&
+ 		    (hw->phy.type == e1000_phy_igp_3))
+-			e1000_gig_downshift_workaround_ich8lan(hw);
++			e1000e_gig_downshift_workaround_ich8lan(hw);
+ 
+ 		/* When LPLU is enabled, we should disable SmartSpeed */
+ 		ret_val = e1e_rphy(hw,
+@@ -1166,7 +1166,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ 	s32 ret_val;
+ 	u16 data;
+ 
+-	ret_val = e1000_update_nvm_checksum_generic(hw);
++	ret_val = e1000e_update_nvm_checksum_generic(hw);
+ 	if (ret_val)
+ 		return ret_val;;
+ 
+@@ -1275,7 +1275,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ 	/* Reload the EEPROM, or else modifications will not appear
+ 	 * until after the next adapter reset.
+ 	 */
+-	e1000_reload_nvm(hw);
++	e1000e_reload_nvm(hw);
+ 	msleep(10);
+ 
+ 	return ret_val;
+@@ -1308,12 +1308,12 @@ static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+ 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
+ 		if (ret_val)
+ 			return ret_val;
+-		ret_val = e1000_update_nvm_checksum(hw);
++		ret_val = e1000e_update_nvm_checksum(hw);
+ 		if (ret_val)
+ 			return ret_val;
+ 	}
+ 
+-	return e1000_validate_nvm_checksum_generic(hw);
++	return e1000e_validate_nvm_checksum_generic(hw);
+ }
+ 
+ /**
+@@ -1583,7 +1583,7 @@ static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+ 	struct e1000_bus_info *bus = &hw->bus;
+ 	s32 ret_val;
+ 
+-	ret_val = e1000_get_bus_info_pcie(hw);
++	ret_val = e1000e_get_bus_info_pcie(hw);
+ 
+ 	/* ICH devices are "PCI Express"-ish.  They have
+ 	 * a configuration space, but do not contain
+@@ -1611,7 +1611,7 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+ 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
+ 	 * on the last TLP read/write transaction when MAC is reset.
+ 	 */
+-	ret_val = e1000_disable_pcie_master(hw);
++	ret_val = e1000e_disable_pcie_master(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
+ 	}
+@@ -1651,7 +1651,7 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+ 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
+ 	msleep(20);
+ 
+-	ret_val = e1000_get_auto_rd_done(hw);
++	ret_val = e1000e_get_auto_rd_done(hw);
+ 	if (ret_val) {
+ 		/*
+ 		 * When auto config read does not complete, do not
+@@ -1693,14 +1693,14 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+ 	e1000_initialize_hw_bits_ich8lan(hw);
+ 
+ 	/* Initialize identification LED */
+-	ret_val = e1000_id_led_init(hw);
++	ret_val = e1000e_id_led_init(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error initializing identification LED\n");
+ 		return ret_val;
+ 	}
+ 
+ 	/* Setup the receive address. */
+-	e1000_init_rx_addrs(hw, mac->rar_entry_count);
++	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
+ 
+ 	/* Zero out the Multicast HASH table */
+ 	hw_dbg(hw, "Zeroing the MTA\n");
+@@ -1730,7 +1730,7 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+ 		snoop = PCIE_ICH8_SNOOP_ALL;
+ 	else
+ 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
+-	e1000_set_pcie_no_snoop(hw, snoop);
++	e1000e_set_pcie_no_snoop(hw, snoop);
+ 
+ 	ctrl_ext = er32(CTRL_EXT);
+ 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+@@ -1831,7 +1831,7 @@ static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+ 
+ 	ew32(FCTTV, mac->fc_pause_time);
+ 
+-	return e1000_set_fc_watermarks(hw);
++	return e1000e_set_fc_watermarks(hw);
+ }
+ 
+ /**
+@@ -1856,24 +1856,24 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+ 	/* Set the mac to wait the maximum time between each iteration
+ 	 * and increase the max iterations when polling the phy;
+ 	 * this fixes erroneous timeouts at 10Mbps. */
+-	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
++	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+ 	if (ret_val)
+ 		return ret_val;
+-	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
++	ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+ 	if (ret_val)
+ 		return ret_val;
+ 	reg_data |= 0x3F;
+-	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
++	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+ 	if (hw->phy.type == e1000_phy_igp_3) {
+-		ret_val = e1000_copper_link_setup_igp(hw);
++		ret_val = e1000e_copper_link_setup_igp(hw);
+ 		if (ret_val)
+ 			return ret_val;
+ 	}
+ 
+-	return e1000_setup_copper_link(hw);
++	return e1000e_setup_copper_link(hw);
+ }
+ 
+ /**
+@@ -1891,7 +1891,7 @@ static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+ {
+ 	s32 ret_val;
+ 
+-	ret_val = e1000_get_speed_and_duplex_copper(hw, speed, duplex);
++	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+@@ -1933,7 +1933,7 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+ 	/* Make sure link is up before proceeding.  If not just return.
+ 	 * Attempting this while link is negotiating fouled up link
+ 	 * stability */
+-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+ 	if (!link)
+ 		return 0;
+ 
+@@ -1963,7 +1963,7 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+ 
+ 	/* Call gig speed drop workaround on Giga disable before accessing
+ 	 * any PHY registers */
+-	e1000_gig_downshift_workaround_ich8lan(hw);
++	e1000e_gig_downshift_workaround_ich8lan(hw);
+ 
+ 	/* unable to acquire PCS lock */
+ 	return -E1000_ERR_PHY;
+@@ -1977,7 +1977,7 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
+  *  /disabled - FALSE).
+  **/
+-void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
++void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+ 						 bool state)
+ {
+ 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+@@ -2000,7 +2000,7 @@ void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+  *    3) read it back
+  *  Continue if successful, else issue LCD reset and repeat
+  **/
+-void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
++void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+ {
+ 	u32 reg;
+ 	u16 data;
+@@ -2020,7 +2020,7 @@ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+ 		/* Call gig speed drop workaround on Giga disable before
+ 		 * accessing any PHY registers */
+ 		if (hw->mac.type == e1000_ich8lan)
+-			e1000_gig_downshift_workaround_ich8lan(hw);
++			e1000e_gig_downshift_workaround_ich8lan(hw);
+ 
+ 		/* Write VR power-down enable */
+ 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
+@@ -2041,7 +2041,7 @@ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
++ *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+  *  @hw: pointer to the HW structure
+  *
+  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+@@ -2050,7 +2050,7 @@ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+  *    2) Clear Kumeran Near-end loopback
+  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
+  **/
+-void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
++void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+ {
+ 	s32 ret_val;
+ 	u16 reg_data;
+@@ -2059,17 +2059,17 @@ void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+ 	    (hw->phy.type != e1000_phy_igp_3))
+ 		return;
+ 
+-	ret_val = e1000_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
++	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ 				      &reg_data);
+ 	if (ret_val)
+ 		return;
+ 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+-	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
++	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ 				       reg_data);
+ 	if (ret_val)
+ 		return;
+ 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+-	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
++	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ 				       reg_data);
+ }
+ 
+@@ -2131,7 +2131,7 @@ static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+ {
+ 	u32 temp;
+ 
+-	e1000_clear_hw_cntrs_base(hw);
++	e1000e_clear_hw_cntrs_base(hw);
+ 
+ 	temp = er32(ALGNERRC);
+ 	temp = er32(RXERRC);
+@@ -2151,14 +2151,14 @@ static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+ 
+ static struct e1000_mac_operations ich8_mac_ops = {
+ 	.mng_mode_enab		= E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
+-	.check_for_link		= e1000_check_for_copper_link,
++	.check_for_link		= e1000e_check_for_copper_link,
+ 	.cleanup_led		= e1000_cleanup_led_ich8lan,
+ 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
+ 	.get_bus_info		= e1000_get_bus_info_ich8lan,
+ 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
+ 	.led_on			= e1000_led_on_ich8lan,
+ 	.led_off		= e1000_led_off_ich8lan,
+-	.mc_addr_list_update	= e1000_mc_addr_list_update_generic,
++	.mc_addr_list_update	= e1000e_mc_addr_list_update_generic,
+ 	.reset_hw		= e1000_reset_hw_ich8lan,
+ 	.init_hw		= e1000_init_hw_ich8lan,
+ 	.setup_link		= e1000_setup_link_ich8lan,
+@@ -2170,15 +2170,15 @@ static struct e1000_phy_operations ich8_phy_ops = {
+ 	.check_reset_block	= e1000_check_reset_block_ich8lan,
+ 	.commit_phy		= NULL,
+ 	.force_speed_duplex	= e1000_phy_force_speed_duplex_ich8lan,
+-	.get_cfg_done		= e1000_get_cfg_done,
+-	.get_cable_length	= e1000_get_cable_length_igp_2,
++	.get_cfg_done		= e1000e_get_cfg_done,
++	.get_cable_length	= e1000e_get_cable_length_igp_2,
+ 	.get_phy_info		= e1000_get_phy_info_ich8lan,
+-	.read_phy_reg		= e1000_read_phy_reg_igp,
++	.read_phy_reg		= e1000e_read_phy_reg_igp,
+ 	.release_phy		= e1000_release_swflag_ich8lan,
+ 	.reset_phy		= e1000_phy_hw_reset_ich8lan,
+ 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
+ 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
+-	.write_phy_reg		= e1000_write_phy_reg_igp,
++	.write_phy_reg		= e1000e_write_phy_reg_igp,
+ };
+ 
+ static struct e1000_nvm_operations ich8_nvm_ops = {
+diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
+index c92ea77..a04c1e4 100644
+--- a/drivers/net/e1000e/lib.c
++++ b/drivers/net/e1000e/lib.c
+@@ -47,14 +47,14 @@ enum e1000_mng_mode {
+ 						    * Technology signature */
+ 
+ /**
+- *  e1000_get_bus_info_pcie - Get PCIe bus information
++ *  e1000e_get_bus_info_pcie - Get PCIe bus information
+  *  @hw: pointer to the HW structure
+  *
+  *  Determines and stores the system bus information for a particular
+  *  network interface.  The following bus information is determined and stored:
+  *  bus speed, bus width, type (PCIe), and PCIe function.
+  **/
+-s32 e1000_get_bus_info_pcie(struct e1000_hw *hw)
++s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
+ {
+ 	struct e1000_bus_info *bus = &hw->bus;
+ 	struct e1000_adapter *adapter = hw->adapter;
+@@ -87,7 +87,7 @@ s32 e1000_get_bus_info_pcie(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_write_vfta - Write value to VLAN filter table
++ *  e1000e_write_vfta - Write value to VLAN filter table
+  *  @hw: pointer to the HW structure
+  *  @offset: register offset in VLAN filter table
+  *  @value: register value written to VLAN filter table
+@@ -95,14 +95,14 @@ s32 e1000_get_bus_info_pcie(struct e1000_hw *hw)
+  *  Writes value at the given offset in the register array which stores
+  *  the VLAN filter table.
+  **/
+-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
++void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+ {
+ 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+ 	e1e_flush();
+ }
+ 
+ /**
+- *  e1000_init_rx_addrs - Initialize receive address's
++ *  e1000e_init_rx_addrs - Initialize receive address's
+  *  @hw: pointer to the HW structure
+  *  @rar_count: receive address registers
+  *
+@@ -110,14 +110,14 @@ void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+  *  register to the devices MAC address and clearing all the other receive
+  *  address registers to 0.
+  **/
+-void e1000_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
++void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
+ {
+ 	u32 i;
+ 
+ 	/* Setup the receive address */
+ 	hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
+ 
+-	e1000_rar_set(hw, hw->mac.addr, 0);
++	e1000e_rar_set(hw, hw->mac.addr, 0);
+ 
+ 	/* Zero out the other (rar_entry_count - 1) receive addresses */
+ 	hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
+@@ -130,7 +130,7 @@ void e1000_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
+ }
+ 
+ /**
+- *  e1000_rar_set - Set receive address register
++ *  e1000e_rar_set - Set receive address register
+  *  @hw: pointer to the HW structure
+  *  @addr: pointer to the receive address
+  *  @index: receive address array register
+@@ -138,7 +138,7 @@ void e1000_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
+  *  Sets the receive address array register at index to the address passed
+  *  in by addr.
+  **/
+-void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
++void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+ {
+ 	u32 rar_low, rar_high;
+ 
+@@ -260,7 +260,7 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+ }
+ 
+ /**
+- *  e1000_mc_addr_list_update_generic - Update Multicast addresses
++ *  e1000e_mc_addr_list_update_generic - Update Multicast addresses
+  *  @hw: pointer to the HW structure
+  *  @mc_addr_list: array of multicast addresses to program
+  *  @mc_addr_count: number of multicast addresses to program
+@@ -272,7 +272,7 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+  *  The parameter rar_count will usually be hw->mac.rar_entry_count
+  *  unless there are workarounds that change this.
+  **/
+-void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
++void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw,
+ 				       u8 *mc_addr_list, u32 mc_addr_count,
+ 				       u32 rar_used_count, u32 rar_count)
+ {
+@@ -285,7 +285,7 @@ void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
+ 	 */
+ 	for (i = rar_used_count; i < rar_count; i++) {
+ 		if (mc_addr_count) {
+-			e1000_rar_set(hw, mc_addr_list, i);
++			e1000e_rar_set(hw, mc_addr_list, i);
+ 			mc_addr_count--;
+ 			mc_addr_list += ETH_ALEN;
+ 		} else {
+@@ -313,12 +313,12 @@ void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
+ }
+ 
+ /**
+- *  e1000_clear_hw_cntrs_base - Clear base hardware counters
++ *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
+  *  @hw: pointer to the HW structure
+  *
+  *  Clears the base hardware counters by reading the counter registers.
+  **/
+-void e1000_clear_hw_cntrs_base(struct e1000_hw *hw)
++void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
+ {
+ 	u32 temp;
+ 
+@@ -362,14 +362,14 @@ void e1000_clear_hw_cntrs_base(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_check_for_copper_link - Check for link (Copper)
++ *  e1000e_check_for_copper_link - Check for link (Copper)
+  *  @hw: pointer to the HW structure
+  *
+  *  Checks to see of the link status of the hardware has changed.  If a
+  *  change in link status has been detected, then we read the PHY registers
+  *  to get the current speed/duplex if link exists.
+  **/
+-s32 e1000_check_for_copper_link(struct e1000_hw *hw)
++s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	s32 ret_val;
+@@ -387,7 +387,7 @@ s32 e1000_check_for_copper_link(struct e1000_hw *hw)
+ 	 * link.  If so, then we want to get the current speed/duplex
+ 	 * of the PHY.
+ 	 */
+-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+@@ -398,7 +398,7 @@ s32 e1000_check_for_copper_link(struct e1000_hw *hw)
+ 
+ 	/* Check if there was DownShift, must be checked
+ 	 * immediately after link-up */
+-	e1000_check_downshift(hw);
++	e1000e_check_downshift(hw);
+ 
+ 	/* If we are forcing speed/duplex, then we simply return since
+ 	 * we have already determined whether we have link or not.
+@@ -412,14 +412,14 @@ s32 e1000_check_for_copper_link(struct e1000_hw *hw)
+ 	 * of MAC speed/duplex configuration.  So we only need to
+ 	 * configure Collision Distance in the MAC.
+ 	 */
+-	e1000_config_collision_dist(hw);
++	e1000e_config_collision_dist(hw);
+ 
+ 	/* Configure Flow Control now that Auto-Neg has completed.
+ 	 * First, we need to restore the desired flow control
+ 	 * settings because we may have had to re-autoneg with a
+ 	 * different link partner.
+ 	 */
+-	ret_val = e1000_config_fc_after_link_up(hw);
++	ret_val = e1000e_config_fc_after_link_up(hw);
+ 	if (ret_val) {
+ 		hw_dbg(hw, "Error configuring flow control\n");
+ 	}
+@@ -428,13 +428,13 @@ s32 e1000_check_for_copper_link(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_check_for_fiber_link - Check for link (Fiber)
++ *  e1000e_check_for_fiber_link - Check for link (Fiber)
+  *  @hw: pointer to the HW structure
+  *
+  *  Checks for link up on the hardware.  If link is not up and we have
+  *  a signal, then we need to force link up.
+  **/
+-s32 e1000_check_for_fiber_link(struct e1000_hw *hw)
++s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	u32 rxcw;
+@@ -471,7 +471,7 @@ s32 e1000_check_for_fiber_link(struct e1000_hw *hw)
+ 		ew32(CTRL, ctrl);
+ 
+ 		/* Configure Flow Control after forcing link up. */
+-		ret_val = e1000_config_fc_after_link_up(hw);
++		ret_val = e1000e_config_fc_after_link_up(hw);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error configuring flow control\n");
+ 			return ret_val;
+@@ -493,13 +493,13 @@ s32 e1000_check_for_fiber_link(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_check_for_serdes_link - Check for link (Serdes)
++ *  e1000e_check_for_serdes_link - Check for link (Serdes)
+  *  @hw: pointer to the HW structure
+  *
+  *  Checks for link up on the hardware.  If link is not up and we have
+  *  a signal, then we need to force link up.
+  **/
+-s32 e1000_check_for_serdes_link(struct e1000_hw *hw)
++s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	u32 rxcw;
+@@ -534,7 +534,7 @@ s32 e1000_check_for_serdes_link(struct e1000_hw *hw)
+ 		ew32(CTRL, ctrl);
+ 
+ 		/* Configure Flow Control after forcing link up. */
+-		ret_val = e1000_config_fc_after_link_up(hw);
++		ret_val = e1000e_config_fc_after_link_up(hw);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error configuring flow control\n");
+ 			return ret_val;
+@@ -619,7 +619,7 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_setup_link - Setup flow control and link settings
++ *  e1000e_setup_link - Setup flow control and link settings
+  *  @hw: pointer to the HW structure
+  *
+  *  Determines which flow control settings to use, then configures flow
+@@ -628,7 +628,7 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+  *  should be established.  Assumes the hardware has previously been reset
+  *  and the transmitter and receiver are not enabled.
+  **/
+-s32 e1000_setup_link(struct e1000_hw *hw)
++s32 e1000e_setup_link(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	s32 ret_val;
+@@ -668,7 +668,7 @@ s32 e1000_setup_link(struct e1000_hw *hw)
+ 
+ 	ew32(FCTTV, mac->fc_pause_time);
+ 
+-	return e1000_set_fc_watermarks(hw);
++	return e1000e_set_fc_watermarks(hw);
+ }
+ 
+ /**
+@@ -786,13 +786,13 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_setup_fiber_serdes_link - Setup link for fiber/serdes
++ *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
+  *  @hw: pointer to the HW structure
+  *
+  *  Configures collision distance and flow control for fiber and serdes
+  *  links.  Upon successful setup, poll for link.
+  **/
+-s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
++s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
+ {
+ 	u32 ctrl;
+ 	s32 ret_val;
+@@ -802,7 +802,7 @@ s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+ 	/* Take the link out of reset */
+ 	ctrl &= ~E1000_CTRL_LRST;
+ 
+-	e1000_config_collision_dist(hw);
++	e1000e_config_collision_dist(hw);
+ 
+ 	ret_val = e1000_commit_fc_settings_generic(hw);
+ 	if (ret_val)
+@@ -835,14 +835,14 @@ s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_config_collision_dist - Configure collision distance
++ *  e1000e_config_collision_dist - Configure collision distance
+  *  @hw: pointer to the HW structure
+  *
+  *  Configures the collision distance to the default value and is used
+  *  during link setup. Currently no func pointer exists and all
+  *  implementations are handled in the generic version of this function.
+  **/
+-void e1000_config_collision_dist(struct e1000_hw *hw)
++void e1000e_config_collision_dist(struct e1000_hw *hw)
+ {
+ 	u32 tctl;
+ 
+@@ -856,14 +856,14 @@ void e1000_config_collision_dist(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_set_fc_watermarks - Set flow control high/low watermarks
++ *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
+  *  @hw: pointer to the HW structure
+  *
+  *  Sets the flow control high/low threshold (watermark) registers.  If
+  *  flow control XON frame transmission is enabled, then set XON frame
+  *  tansmission as well.
+  **/
+-s32 e1000_set_fc_watermarks(struct e1000_hw *hw)
++s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	u32 fcrtl = 0, fcrth = 0;
+@@ -890,7 +890,7 @@ s32 e1000_set_fc_watermarks(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_force_mac_fc - Force the MAC's flow control settings
++ *  e1000e_force_mac_fc - Force the MAC's flow control settings
+  *  @hw: pointer to the HW structure
+  *
+  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
+@@ -899,7 +899,7 @@ s32 e1000_set_fc_watermarks(struct e1000_hw *hw)
+  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
+  *  also configure these bits when link is forced on a fiber connection.
+  **/
+-s32 e1000_force_mac_fc(struct e1000_hw *hw)
++s32 e1000e_force_mac_fc(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	u32 ctrl;
+@@ -951,7 +951,7 @@ s32 e1000_force_mac_fc(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_config_fc_after_link_up - Configures flow control after link
++ *  e1000e_config_fc_after_link_up - Configures flow control after link
+  *  @hw: pointer to the HW structure
+  *
+  *  Checks the status of auto-negotiation after link up to ensure that the
+@@ -960,7 +960,7 @@ s32 e1000_force_mac_fc(struct e1000_hw *hw)
+  *  and did not fail, then we configure flow control based on our link
+  *  partner.
+  **/
+-s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
++s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	s32 ret_val = 0;
+@@ -974,10 +974,10 @@ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+ 	if (mac->autoneg_failed) {
+ 		if (hw->media_type == e1000_media_type_fiber ||
+ 		    hw->media_type == e1000_media_type_internal_serdes)
+-			ret_val = e1000_force_mac_fc(hw);
++			ret_val = e1000e_force_mac_fc(hw);
+ 	} else {
+ 		if (hw->media_type == e1000_media_type_copper)
+-			ret_val = e1000_force_mac_fc(hw);
++			ret_val = e1000e_force_mac_fc(hw);
+ 	}
+ 
+ 	if (ret_val) {
+@@ -1147,7 +1147,7 @@ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+ 		/* Now we call a subroutine to actually force the MAC
+ 		 * controller to use the correct flow control settings.
+ 		 */
+-		ret_val = e1000_force_mac_fc(hw);
++		ret_val = e1000e_force_mac_fc(hw);
+ 		if (ret_val) {
+ 			hw_dbg(hw, "Error forcing flow control settings\n");
+ 			return ret_val;
+@@ -1158,7 +1158,7 @@ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_get_speed_and_duplex_copper - Retreive current speed/duplex
++ *  e1000e_get_speed_and_duplex_copper - Retreive current speed/duplex
+  *  @hw: pointer to the HW structure
+  *  @speed: stores the current speed
+  *  @duplex: stores the current duplex
+@@ -1166,7 +1166,7 @@ s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+  *  Read the status register for the current speed/duplex and store the current
+  *  speed and duplex for copper connections.
+  **/
+-s32 e1000_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
++s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+ {
+ 	u32 status;
+ 
+@@ -1194,7 +1194,7 @@ s32 e1000_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *dupl
+ }
+ 
+ /**
+- *  e1000_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex
++ *  e1000e_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex
+  *  @hw: pointer to the HW structure
+  *  @speed: stores the current speed
+  *  @duplex: stores the current duplex
+@@ -1202,7 +1202,7 @@ s32 e1000_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *dupl
+  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
+  *  for fiber/serdes links.
+  **/
+-s32 e1000_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
++s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+ {
+ 	*speed = SPEED_1000;
+ 	*duplex = FULL_DUPLEX;
+@@ -1211,12 +1211,12 @@ s32 e1000_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16
+ }
+ 
+ /**
+- *  e1000_get_hw_semaphore - Acquire hardware semaphore
++ *  e1000e_get_hw_semaphore - Acquire hardware semaphore
+  *  @hw: pointer to the HW structure
+  *
+  *  Acquire the HW semaphore to access the PHY or NVM
+  **/
+-s32 e1000_get_hw_semaphore(struct e1000_hw *hw)
++s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
+ {
+ 	u32 swsm;
+ 	s32 timeout = hw->nvm.word_size + 1;
+@@ -1251,7 +1251,7 @@ s32 e1000_get_hw_semaphore(struct e1000_hw *hw)
+ 
+ 	if (i == timeout) {
+ 		/* Release semaphores */
+-		e1000_put_hw_semaphore(hw);
++		e1000e_put_hw_semaphore(hw);
+ 		hw_dbg(hw, "Driver can't access the NVM\n");
+ 		return -E1000_ERR_NVM;
+ 	}
+@@ -1260,12 +1260,12 @@ s32 e1000_get_hw_semaphore(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_put_hw_semaphore - Release hardware semaphore
++ *  e1000e_put_hw_semaphore - Release hardware semaphore
+  *  @hw: pointer to the HW structure
+  *
+  *  Release hardware semaphore used to access the PHY or NVM
+  **/
+-void e1000_put_hw_semaphore(struct e1000_hw *hw)
++void e1000e_put_hw_semaphore(struct e1000_hw *hw)
+ {
+ 	u32 swsm;
+ 
+@@ -1275,12 +1275,12 @@ void e1000_put_hw_semaphore(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_get_auto_rd_done - Check for auto read completion
++ *  e1000e_get_auto_rd_done - Check for auto read completion
+  *  @hw: pointer to the HW structure
+  *
+  *  Check EEPROM for Auto Read done bit.
+  **/
+-s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
++s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
+ {
+ 	s32 i = 0;
+ 
+@@ -1300,14 +1300,14 @@ s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_valid_led_default - Verify a valid default LED config
++ *  e1000e_valid_led_default - Verify a valid default LED config
+  *  @hw: pointer to the HW structure
+  *  @data: pointer to the NVM (EEPROM)
+  *
+  *  Read the EEPROM for the current default LED configuration.  If the
+  *  LED configuration is not valid, set to a valid LED configuration.
+  **/
+-s32 e1000_valid_led_default(struct e1000_hw *hw, u16 *data)
++s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
+ {
+ 	s32 ret_val;
+ 
+@@ -1324,11 +1324,11 @@ s32 e1000_valid_led_default(struct e1000_hw *hw, u16 *data)
+ }
+ 
+ /**
+- *  e1000_id_led_init -
++ *  e1000e_id_led_init -
+  *  @hw: pointer to the HW structure
+  *
+  **/
+-s32 e1000_id_led_init(struct e1000_hw *hw)
++s32 e1000e_id_led_init(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	s32 ret_val;
+@@ -1388,25 +1388,25 @@ s32 e1000_id_led_init(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_cleanup_led_generic - Set LED config to default operation
++ *  e1000e_cleanup_led_generic - Set LED config to default operation
+  *  @hw: pointer to the HW structure
+  *
+  *  Remove the current LED configuration and set the LED configuration
+  *  to the default value, saved from the EEPROM.
+  **/
+-s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
++s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
+ {
+ 	ew32(LEDCTL, hw->mac.ledctl_default);
+ 	return 0;
+ }
+ 
+ /**
+- *  e1000_blink_led - Blink LED
++ *  e1000e_blink_led - Blink LED
+  *  @hw: pointer to the HW structure
+  *
+  *  Blink the led's which are set to be on.
+  **/
+-s32 e1000_blink_led(struct e1000_hw *hw)
++s32 e1000e_blink_led(struct e1000_hw *hw)
+ {
+ 	u32 ledctl_blink = 0;
+ 	u32 i;
+@@ -1432,12 +1432,12 @@ s32 e1000_blink_led(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_led_on_generic - Turn LED on
++ *  e1000e_led_on_generic - Turn LED on
+  *  @hw: pointer to the HW structure
+  *
+  *  Turn LED on.
+  **/
+-s32 e1000_led_on_generic(struct e1000_hw *hw)
++s32 e1000e_led_on_generic(struct e1000_hw *hw)
+ {
+ 	u32 ctrl;
+ 
+@@ -1459,12 +1459,12 @@ s32 e1000_led_on_generic(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_led_off_generic - Turn LED off
++ *  e1000e_led_off_generic - Turn LED off
+  *  @hw: pointer to the HW structure
+  *
+  *  Turn LED off.
+  **/
+-s32 e1000_led_off_generic(struct e1000_hw *hw)
++s32 e1000e_led_off_generic(struct e1000_hw *hw)
+ {
+ 	u32 ctrl;
+ 
+@@ -1486,13 +1486,13 @@ s32 e1000_led_off_generic(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_set_pcie_no_snoop - Set PCI-express capabilities
++ *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
+  *  @hw: pointer to the HW structure
+  *  @no_snoop: bitmap of snoop events
+  *
+  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+  **/
+-void e1000_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
++void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
+ {
+ 	u32 gcr;
+ 
+@@ -1505,7 +1505,7 @@ void e1000_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
+ }
+ 
+ /**
+- *  e1000_disable_pcie_master - Disables PCI-express master access
++ *  e1000e_disable_pcie_master - Disables PCI-express master access
+  *  @hw: pointer to the HW structure
+  *
+  *  Returns 0 if successful, else returns -10
+@@ -1515,7 +1515,7 @@ void e1000_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
+  *  Disables PCI-Express master access and verifies there are no pending
+  *  requests.
+  **/
+-s32 e1000_disable_pcie_master(struct e1000_hw *hw)
++s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
+ {
+ 	u32 ctrl;
+ 	s32 timeout = MASTER_DISABLE_TIMEOUT;
+@@ -1541,12 +1541,12 @@ s32 e1000_disable_pcie_master(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_reset_adaptive - Reset Adaptive Interframe Spacing
++ *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
+  *  @hw: pointer to the HW structure
+  *
+  *  Reset the Adaptive Interframe Spacing throttle to default values.
+  **/
+-void e1000_reset_adaptive(struct e1000_hw *hw)
++void e1000e_reset_adaptive(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 
+@@ -1561,13 +1561,13 @@ void e1000_reset_adaptive(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_update_adaptive - Update Adaptive Interframe Spacing
++ *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
+  *  @hw: pointer to the HW structure
+  *
+  *  Update the Adaptive Interframe Spacing Throttle value based on the
+  *  time between transmitted packets and time between collisions.
+  **/
+-void e1000_update_adaptive(struct e1000_hw *hw)
++void e1000e_update_adaptive(struct e1000_hw *hw)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 
+@@ -1704,14 +1704,14 @@ static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+ }
+ 
+ /**
+- *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
++ *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+  *  @hw: pointer to the HW structure
+  *  @ee_reg: EEPROM flag for polling
+  *
+  *  Polls the EEPROM status bit for either read or write completion based
+  *  upon the value of 'ee_reg'.
+  **/
+-s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
++s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+ {
+ 	u32 attempts = 100000;
+ 	u32 i, reg = 0;
+@@ -1732,14 +1732,14 @@ s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+ }
+ 
+ /**
+- *  e1000_acquire_nvm - Generic request for access to EEPROM
++ *  e1000e_acquire_nvm - Generic request for access to EEPROM
+  *  @hw: pointer to the HW structure
+  *
+  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+  *  Return successful if access grant bit set, else clear the request for
+  *  EEPROM access and return -E1000_ERR_NVM (-1).
+  **/
+-s32 e1000_acquire_nvm(struct e1000_hw *hw)
++s32 e1000e_acquire_nvm(struct e1000_hw *hw)
+ {
+ 	u32 eecd = er32(EECD);
+ 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+@@ -1808,12 +1808,12 @@ static void e1000_stop_nvm(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_release_nvm - Release exclusive access to EEPROM
++ *  e1000e_release_nvm - Release exclusive access to EEPROM
+  *  @hw: pointer to the HW structure
+  *
+  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+  **/
+-void e1000_release_nvm(struct e1000_hw *hw)
++void e1000e_release_nvm(struct e1000_hw *hw)
+ {
+ 	u32 eecd;
+ 
+@@ -1870,7 +1870,7 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_read_nvm_spi - Read EEPROM's using SPI
++ *  e1000e_read_nvm_spi - Read EEPROM's using SPI
+  *  @hw: pointer to the HW structure
+  *  @offset: offset of word in the EEPROM to read
+  *  @words: number of words to read
+@@ -1878,7 +1878,7 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+  *
+  *  Reads a 16 bit word from the EEPROM.
+  **/
+-s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ {
+ 	struct e1000_nvm_info *nvm = &hw->nvm;
+ 	u32 i = 0;
+@@ -1926,7 +1926,7 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ }
+ 
+ /**
+- *  e1000_read_nvm_eerd - Reads EEPROM using EERD register
++ *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
+  *  @hw: pointer to the HW structure
+  *  @offset: offset of word in the EEPROM to read
+  *  @words: number of words to read
+@@ -1934,7 +1934,7 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+  *
+  *  Reads a 16 bit word from the EEPROM using the EERD register.
+  **/
+-s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ {
+ 	struct e1000_nvm_info *nvm = &hw->nvm;
+ 	u32 i, eerd = 0;
+@@ -1953,7 +1953,7 @@ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ 		       E1000_NVM_RW_REG_START;
+ 
+ 		ew32(EERD, eerd);
+-		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
++		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+ 		if (ret_val)
+ 			break;
+ 
+@@ -1965,7 +1965,7 @@ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ }
+ 
+ /**
+- *  e1000_write_nvm_spi - Write to EEPROM using SPI
++ *  e1000e_write_nvm_spi - Write to EEPROM using SPI
+  *  @hw: pointer to the HW structure
+  *  @offset: offset within the EEPROM to be written to
+  *  @words: number of words to write
+@@ -1973,10 +1973,10 @@ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+  *
+  *  Writes data to EEPROM at offset using SPI interface.
+  *
+- *  If e1000_update_nvm_checksum is not called after this function , the
++ *  If e1000e_update_nvm_checksum is not called after this function , the
+  *  EEPROM will most likley contain an invalid checksum.
+  **/
+-s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
++s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ {
+ 	struct e1000_nvm_info *nvm = &hw->nvm;
+ 	s32 ret_val;
+@@ -2042,14 +2042,14 @@ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ }
+ 
+ /**
+- *  e1000_read_mac_addr - Read device MAC address
++ *  e1000e_read_mac_addr - Read device MAC address
+  *  @hw: pointer to the HW structure
+  *
+  *  Reads the device MAC address from the EEPROM and stores the value.
+  *  Since devices with two ports use the same EEPROM, we increment the
+  *  last bit in the MAC address for the second port.
+  **/
+-s32 e1000_read_mac_addr(struct e1000_hw *hw)
++s32 e1000e_read_mac_addr(struct e1000_hw *hw)
+ {
+ 	s32 ret_val;
+ 	u16 offset, nvm_data, i;
+@@ -2076,13 +2076,13 @@ s32 e1000_read_mac_addr(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
++ *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
+  *  @hw: pointer to the HW structure
+  *
+  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+  **/
+-s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
++s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
+ {
+ 	s32 ret_val;
+ 	u16 checksum = 0;
+@@ -2106,14 +2106,14 @@ s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_update_nvm_checksum_generic - Update EEPROM checksum
++ *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
+  *  @hw: pointer to the HW structure
+  *
+  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+  *  value to the EEPROM.
+  **/
+-s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
++s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
+ {
+ 	s32 ret_val;
+ 	u16 checksum = 0;
+@@ -2136,13 +2136,13 @@ s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_reload_nvm - Reloads EEPROM
++ *  e1000e_reload_nvm - Reloads EEPROM
+  *  @hw: pointer to the HW structure
+  *
+  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+  *  extended control register.
+  **/
+-void e1000_reload_nvm(struct e1000_hw *hw)
++void e1000e_reload_nvm(struct e1000_hw *hw)
+ {
+ 	u32 ctrl_ext;
+ 
+@@ -2213,13 +2213,13 @@ static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_check_mng_mode - check managament mode
++ *  e1000e_check_mng_mode - check managament mode
+  *  @hw: pointer to the HW structure
+  *
+  *  Reads the firmware semaphore register and returns true (>0) if
+  *  manageability is enabled, else false (0).
+  **/
+-bool e1000_check_mng_mode(struct e1000_hw *hw)
++bool e1000e_check_mng_mode(struct e1000_hw *hw)
+ {
+ 	u32 fwsm = er32(FWSM);
+ 
+@@ -2227,13 +2227,13 @@ bool e1000_check_mng_mode(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
++ *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX
+  *  @hw: pointer to the HW structure
+  *
+  *  Enables packet filtering on transmit packets if manageability is enabled
+  *  and host interface is enabled.
+  **/
+-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
++bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
+ {
+ 	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+ 	u32 *buffer = (u32 *)&hw->mng_cookie;
+@@ -2242,7 +2242,7 @@ bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+ 	u8 i, len;
+ 
+ 	/* No manageability, no filtering */
+-	if (!e1000_check_mng_mode(hw)) {
++	if (!e1000e_check_mng_mode(hw)) {
+ 		hw->mac.tx_pkt_filtering = 0;
+ 		return 0;
+ 	}
+@@ -2383,14 +2383,14 @@ static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
+ }
+ 
+ /**
+- *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
++ *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
+  *  @hw: pointer to the HW structure
+  *  @buffer: pointer to the host interface
+  *  @length: size of the buffer
+  *
+  *  Writes the DHCP information to the host interface.
+  **/
+-s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
++s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+ {
+ 	struct e1000_host_mng_command_header hdr;
+ 	s32 ret_val;
+@@ -2426,12 +2426,12 @@ s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+ }
+ 
+ /**
+- *  e1000_enable_mng_pass_thru - Enable processing of ARP's
++ *  e1000e_enable_mng_pass_thru - Enable processing of ARP's
+  *  @hw: pointer to the HW structure
+  *
+  *  Verifies the hardware needs to allow ARPs to be processed by the host.
+  **/
+-bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
++bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
+ {
+ 	u32 manc;
+ 	u32 fwsm, factps;
+diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
+index 01a9a4f..d711e14 100644
+--- a/drivers/net/e1000e/netdev.c
++++ b/drivers/net/e1000e/netdev.c
+@@ -47,8 +47,8 @@
+ #include "e1000.h"
+ 
+ #define DRV_VERSION "0.2.0"
+-char e1000_driver_name[] = "e1000e";
+-const char e1000_driver_version[] = DRV_VERSION;
++char e1000e_driver_name[] = "e1000e";
++const char e1000e_driver_version[] = DRV_VERSION;
+ 
+ static const struct e1000_info *e1000_info_tbl[] = {
+ 	[board_82571]		= &e1000_82571_info,
+@@ -64,7 +64,7 @@ static const struct e1000_info *e1000_info_tbl[] = {
+  * e1000_get_hw_dev_name - return device name string
+  * used by hardware layer to print debugging information
+  **/
+-char *e1000_get_hw_dev_name(struct e1000_hw *hw)
++char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
+ {
+ 	struct e1000_adapter *adapter = hw->back;
+ 	struct net_device *netdev = adapter->netdev;
+@@ -1108,7 +1108,7 @@ static irqreturn_t e1000_intr_msi(int irq, void *data)
+ 		 * disconnect (LSC) before accessing any PHY registers */
+ 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
+ 		    (!(er32(STATUS) & E1000_STATUS_LU)))
+-			e1000_gig_downshift_workaround_ich8lan(hw);
++			e1000e_gig_downshift_workaround_ich8lan(hw);
+ 
+ 		/* 80003ES2LAN workaround-- For packet buffer work-around on
+ 		 * link down event; disable receives here in the ISR and reset
+@@ -1169,7 +1169,7 @@ static irqreturn_t e1000_intr(int irq, void *data)
+ 		 * disconnect (LSC) before accessing any PHY registers */
+ 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
+ 		    (!(er32(STATUS) & E1000_STATUS_LU)))
+-			e1000_gig_downshift_workaround_ich8lan(hw);
++			e1000e_gig_downshift_workaround_ich8lan(hw);
+ 
+ 		/* 80003ES2LAN workaround--
+ 		 * For packet buffer work-around on link down event;
+@@ -1352,12 +1352,12 @@ static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
+ }
+ 
+ /**
+- * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
++ * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
+  * @adapter: board private structure
+  *
+  * Return 0 on success, negative on failure
+  **/
+-int e1000_setup_tx_resources(struct e1000_adapter *adapter)
++int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
+ {
+ 	struct e1000_ring *tx_ring = adapter->tx_ring;
+ 	int err = -ENOMEM, size;
+@@ -1389,12 +1389,12 @@ err:
+ }
+ 
+ /**
+- * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
++ * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
+  * @adapter: board private structure
+  *
+  * Returns 0 on success, negative on failure
+  **/
+-int e1000_setup_rx_resources(struct e1000_adapter *adapter)
++int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
+ {
+ 	struct e1000_ring *rx_ring = adapter->rx_ring;
+ 	int size, desc_len, err = -ENOMEM;
+@@ -1464,12 +1464,12 @@ static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
+ }
+ 
+ /**
+- * e1000_free_tx_resources - Free Tx Resources per Queue
++ * e1000e_free_tx_resources - Free Tx Resources per Queue
+  * @adapter: board private structure
+  *
+  * Free all transmit software resources
+  **/
+-void e1000_free_tx_resources(struct e1000_adapter *adapter)
++void e1000e_free_tx_resources(struct e1000_adapter *adapter)
+ {
+ 	struct pci_dev *pdev = adapter->pdev;
+ 	struct e1000_ring *tx_ring = adapter->tx_ring;
+@@ -1484,13 +1484,13 @@ void e1000_free_tx_resources(struct e1000_adapter *adapter)
+ }
+ 
+ /**
+- * e1000_free_rx_resources - Free Rx Resources
++ * e1000e_free_rx_resources - Free Rx Resources
+  * @adapter: board private structure
+  *
+  * Free all receive software resources
+  **/
+ 
+-void e1000_free_rx_resources(struct e1000_adapter *adapter)
++void e1000e_free_rx_resources(struct e1000_adapter *adapter)
+ {
+ 	struct pci_dev *pdev = adapter->pdev;
+ 	struct e1000_ring *rx_ring = adapter->rx_ring;
+@@ -1693,7 +1693,7 @@ static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
+ 	index = (vid >> 5) & 0x7F;
+ 	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
+ 	vfta |= (1 << (vid & 0x1F));
+-	e1000_write_vfta(hw, index, vfta);
++	e1000e_write_vfta(hw, index, vfta);
+ }
+ 
+ static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
+@@ -1718,7 +1718,7 @@ static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
+ 	index = (vid >> 5) & 0x7F;
+ 	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
+ 	vfta &= ~(1 << (vid & 0x1F));
+-	e1000_write_vfta(hw, index, vfta);
++	e1000e_write_vfta(hw, index, vfta);
+ }
+ 
+ static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
+@@ -1904,7 +1904,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
+ 		ew32(TARC1, tarc);
+ 	}
+ 
+-	e1000_config_collision_dist(hw);
++	e1000e_config_collision_dist(hw);
+ 
+ 	/* Setup Transmit Descriptor Settings for eop descriptor */
+ 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+@@ -2237,14 +2237,14 @@ static void e1000_configure(struct e1000_adapter *adapter)
+ }
+ 
+ /**
+- * e1000_power_up_phy - restore link in case the phy was powered down
++ * e1000e_power_up_phy - restore link in case the phy was powered down
+  * @adapter: address of board private structure
+  *
+  * The phy may be powered down to save power and turn off link when the
+  * driver is unloaded and wake on lan is not enabled (among others)
+- * *** this routine MUST be followed by a call to e1000_reset ***
++ * *** this routine MUST be followed by a call to e1000e_reset ***
+  **/
+-void e1000_power_up_phy(struct e1000_adapter *adapter)
++void e1000e_power_up_phy(struct e1000_adapter *adapter)
+ {
+ 	u16 mii_reg = 0;
+ 
+@@ -2280,7 +2280,7 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
+ 		return;
+ 
+ 	/* reset is blocked because of a SoL/IDER session */
+-	if (e1000_check_mng_mode(hw) ||
++	if (e1000e_check_mng_mode(hw) ||
+ 	    e1000_check_reset_block(hw))
+ 		return;
+ 
+@@ -2296,14 +2296,14 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
+ }
+ 
+ /**
+- * e1000_reset - bring the hardware into a known good state
++ * e1000e_reset - bring the hardware into a known good state
+  *
+  * This function boots the hardware and enables some settings that
+  * require a configuration cycle of the hardware - those cannot be
+  * set/changed during runtime. After reset the device needs to be
+  * properly configured for rx, tx etc.
+  */
+-void e1000_reset(struct e1000_adapter *adapter)
++void e1000e_reset(struct e1000_adapter *adapter)
+ {
+ 	struct e1000_mac_info *mac = &adapter->hw.mac;
+ 	struct e1000_hw *hw = &adapter->hw;
+@@ -2388,7 +2388,7 @@ void e1000_reset(struct e1000_adapter *adapter)
+ 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
+ 	ew32(VET, ETH_P_8021Q);
+ 
+-	e1000_reset_adaptive(hw);
++	e1000e_reset_adaptive(hw);
+ 	e1000_get_phy_info(hw);
+ 
+ 	if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
+@@ -2404,7 +2404,7 @@ void e1000_reset(struct e1000_adapter *adapter)
+ 	e1000_release_manageability(adapter);
+ }
+ 
+-int e1000_up(struct e1000_adapter *adapter)
++int e1000e_up(struct e1000_adapter *adapter)
+ {
+ 	struct e1000_hw *hw = &adapter->hw;
+ 
+@@ -2421,7 +2421,7 @@ int e1000_up(struct e1000_adapter *adapter)
+ 	return 0;
+ }
+ 
+-void e1000_down(struct e1000_adapter *adapter)
++void e1000e_down(struct e1000_adapter *adapter)
+ {
+ 	struct net_device *netdev = adapter->netdev;
+ 	struct e1000_hw *hw = &adapter->hw;
+@@ -2457,7 +2457,7 @@ void e1000_down(struct e1000_adapter *adapter)
+ 	adapter->link_speed = 0;
+ 	adapter->link_duplex = 0;
+ 
+-	e1000_reset(adapter);
++	e1000e_reset(adapter);
+ 	e1000_clean_tx_ring(adapter);
+ 	e1000_clean_rx_ring(adapter);
+ 
+@@ -2467,13 +2467,13 @@ void e1000_down(struct e1000_adapter *adapter)
+ 	 */
+ }
+ 
+-void e1000_reinit_locked(struct e1000_adapter *adapter)
++void e1000e_reinit_locked(struct e1000_adapter *adapter)
+ {
+ 	might_sleep();
+ 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+ 		msleep(1);
+-	e1000_down(adapter);
+-	e1000_up(adapter);
++	e1000e_down(adapter);
++	e1000e_up(adapter);
+ 	clear_bit(__E1000_RESETTING, &adapter->state);
+ }
+ 
+@@ -2544,16 +2544,16 @@ static int e1000_open(struct net_device *netdev)
+ 		return -EBUSY;
+ 
+ 	/* allocate transmit descriptors */
+-	err = e1000_setup_tx_resources(adapter);
++	err = e1000e_setup_tx_resources(adapter);
+ 	if (err)
+ 		goto err_setup_tx;
+ 
+ 	/* allocate receive descriptors */
+-	err = e1000_setup_rx_resources(adapter);
++	err = e1000e_setup_rx_resources(adapter);
+ 	if (err)
+ 		goto err_setup_rx;
+ 
+-	e1000_power_up_phy(adapter);
++	e1000e_power_up_phy(adapter);
+ 
+ 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+ 	if ((adapter->hw.mng_cookie.status &
+@@ -2563,7 +2563,7 @@ static int e1000_open(struct net_device *netdev)
+ 	/* If AMT is enabled, let the firmware know that the network
+ 	 * interface is now open */
+ 	if ((adapter->flags & FLAG_HAS_AMT) &&
+-	    e1000_check_mng_mode(&adapter->hw))
++	    e1000e_check_mng_mode(&adapter->hw))
+ 		e1000_get_hw_control(adapter);
+ 
+ 	/* before we allocate an interrupt, we must be ready to handle it.
+@@ -2576,7 +2576,7 @@ static int e1000_open(struct net_device *netdev)
+ 	if (err)
+ 		goto err_req_irq;
+ 
+-	/* From here on the code is the same as e1000_up() */
++	/* From here on the code is the same as e1000e_up() */
+ 	clear_bit(__E1000_DOWN, &adapter->state);
+ 
+ 	netif_poll_enable(netdev);
+@@ -2591,11 +2591,11 @@ static int e1000_open(struct net_device *netdev)
+ err_req_irq:
+ 	e1000_release_hw_control(adapter);
+ 	e1000_power_down_phy(adapter);
+-	e1000_free_rx_resources(adapter);
++	e1000e_free_rx_resources(adapter);
+ err_setup_rx:
+-	e1000_free_tx_resources(adapter);
++	e1000e_free_tx_resources(adapter);
+ err_setup_tx:
+-	e1000_reset(adapter);
++	e1000e_reset(adapter);
+ 
+ 	return err;
+ }
+@@ -2616,12 +2616,12 @@ static int e1000_close(struct net_device *netdev)
+ 	struct e1000_adapter *adapter = netdev_priv(netdev);
+ 
+ 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
+-	e1000_down(adapter);
++	e1000e_down(adapter);
+ 	e1000_power_down_phy(adapter);
+ 	e1000_free_irq(adapter);
+ 
+-	e1000_free_tx_resources(adapter);
+-	e1000_free_rx_resources(adapter);
++	e1000e_free_tx_resources(adapter);
++	e1000e_free_rx_resources(adapter);
+ 
+ 	/* kill manageability vlan ID if supported, but not if a vlan with
+ 	 * the same ID is registered on the host OS (let 8021q kill it) */
+@@ -2634,7 +2634,7 @@ static int e1000_close(struct net_device *netdev)
+ 	/* If AMT is enabled, let the firmware know that the network
+ 	 * interface is now closed */
+ 	if ((adapter->flags & FLAG_HAS_AMT) &&
+-	    e1000_check_mng_mode(&adapter->hw))
++	    e1000e_check_mng_mode(&adapter->hw))
+ 		e1000_release_hw_control(adapter);
+ 
+ 	return 0;
+@@ -2657,11 +2657,11 @@ static int e1000_set_mac(struct net_device *netdev, void *p)
+ 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+ 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
+ 
+-	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
++	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+ 
+ 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
+ 		/* activate the work around */
+-		e1000_set_laa_state_82571(&adapter->hw, 1);
++		e1000e_set_laa_state_82571(&adapter->hw, 1);
+ 
+ 		/* Hold a copy of the LAA in RAR[14] This is done so that
+ 		 * between the time RAR[0] gets clobbered  and the time it
+@@ -2669,7 +2669,7 @@ static int e1000_set_mac(struct net_device *netdev, void *p)
+ 		 * of the RARs and no incoming packets directed to this port
+ 		 * are dropped. Eventually the LAA will be in RAR[0] and
+ 		 * RAR[14] */
+-		e1000_rar_set(&adapter->hw,
++		e1000e_rar_set(&adapter->hw,
+ 			      adapter->hw.mac.addr,
+ 			      adapter->hw.mac.rar_entry_count - 1);
+ 	}
+@@ -2686,10 +2686,10 @@ static void e1000_update_phy_info(unsigned long data)
+ }
+ 
+ /**
+- * e1000_update_stats - Update the board statistics counters
++ * e1000e_update_stats - Update the board statistics counters
+  * @adapter: board private structure
+  **/
+-void e1000_update_stats(struct e1000_adapter *adapter)
++void e1000e_update_stats(struct e1000_adapter *adapter)
+ {
+ 	struct e1000_hw *hw = &adapter->hw;
+ 	struct pci_dev *pdev = adapter->pdev;
+@@ -2903,7 +2903,7 @@ static void e1000_watchdog_task(struct work_struct *work)
+ 			"Gigabit has been disabled, downgrading speed\n");
+ 	}
+ 
+-	if ((e1000_enable_tx_pkt_filtering(hw)) &&
++	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
+ 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
+ 		e1000_update_mng_vlan(adapter);
+ 
+@@ -3005,7 +3005,7 @@ static void e1000_watchdog_task(struct work_struct *work)
+ 	}
+ 
+ link_up:
+-	e1000_update_stats(adapter);
++	e1000e_update_stats(adapter);
+ 
+ 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
+ 	adapter->tpt_old = adapter->stats.tpt;
+@@ -3017,7 +3017,7 @@ link_up:
+ 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
+ 	adapter->gotcl_old = adapter->stats.gotcl;
+ 
+-	e1000_update_adaptive(&adapter->hw);
++	e1000e_update_adaptive(&adapter->hw);
+ 
+ 	if (!netif_carrier_ok(netdev)) {
+ 		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
+@@ -3040,8 +3040,8 @@ link_up:
+ 
+ 	/* With 82571 controllers, LAA may be overwritten due to controller
+ 	 * reset from the other port. Set the appropriate LAA in RAR[0] */
+-	if (e1000_get_laa_state_82571(hw))
+-		e1000_rar_set(hw, adapter->hw.mac.addr, 0);
++	if (e1000e_get_laa_state_82571(hw))
++		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
+ 
+ 	/* Reset the timer */
+ 	if (!test_bit(__E1000_DOWN, &adapter->state))
+@@ -3358,7 +3358,7 @@ static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
+ 
+ 		offset = (u8 *)udp + 8 - skb->data;
+ 		length = skb->len - offset;
+-		return e1000_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
++		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
+ 	}
+ 
+ 	return 0;
+@@ -3540,7 +3540,7 @@ static void e1000_reset_task(struct work_struct *work)
+ 	struct e1000_adapter *adapter;
+ 	adapter = container_of(work, struct e1000_adapter, reset_task);
+ 
+-	e1000_reinit_locked(adapter);
++	e1000e_reinit_locked(adapter);
+ }
+ 
+ /**
+@@ -3596,10 +3596,10 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
+ 
+ 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+ 		msleep(1);
+-	/* e1000_down has a dependency on max_frame_size */
++	/* e1000e_down has a dependency on max_frame_size */
+ 	adapter->hw.mac.max_frame_size = max_frame;
+ 	if (netif_running(netdev))
+-		e1000_down(adapter);
++		e1000e_down(adapter);
+ 
+ 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
+ 	 * means we reserve 2 more, this pushes us to allocate from the next
+@@ -3630,9 +3630,9 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
+ 	netdev->mtu = new_mtu;
+ 
+ 	if (netif_running(netdev))
+-		e1000_up(adapter);
++		e1000e_up(adapter);
+ 	else
+-		e1000_reset(adapter);
++		e1000e_reset(adapter);
+ 
+ 	clear_bit(__E1000_RESETTING, &adapter->state);
+ 
+@@ -3696,7 +3696,7 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
+ 
+ 	if (netif_running(netdev)) {
+ 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
+-		e1000_down(adapter);
++		e1000e_down(adapter);
+ 		e1000_free_irq(adapter);
+ 	}
+ 
+@@ -3737,7 +3737,7 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
+ 		}
+ 
+ 		/* Allow time for pending master requests to run */
+-		e1000_disable_pcie_master(&adapter->hw);
++		e1000e_disable_pcie_master(&adapter->hw);
+ 
+ 		ew32(WUC, E1000_WUC_PME_EN);
+ 		ew32(WUFC, wufc);
+@@ -3759,7 +3759,7 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
+ 	}
+ 
+ 	if (adapter->hw.phy.type == e1000_phy_igp_3)
+-		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
++		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
+ 
+ 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
+ 	 * would have already happened in close and is redundant. */
+@@ -3800,21 +3800,21 @@ static int e1000_resume(struct pci_dev *pdev)
+ 			return err;
+ 	}
+ 
+-	e1000_power_up_phy(adapter);
+-	e1000_reset(adapter);
++	e1000e_power_up_phy(adapter);
++	e1000e_reset(adapter);
+ 	ew32(WUS, ~0);
+ 
+ 	e1000_init_manageability(adapter);
+ 
+ 	if (netif_running(netdev))
+-		e1000_up(adapter);
++		e1000e_up(adapter);
+ 
+ 	netif_device_attach(netdev);
+ 
+ 	/* If the controller has AMT, do not set DRV_LOAD until the interface
+ 	 * is up.  For all other cases, let the f/w know that the h/w is now
+ 	 * under the control of the driver. */
+-	if (!(adapter->flags & FLAG_HAS_AMT) || !e1000_check_mng_mode(&adapter->hw))
++	if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
+ 		e1000_get_hw_control(adapter);
+ 
+ 	return 0;
+@@ -3862,7 +3862,7 @@ static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+ 	netif_device_detach(netdev);
+ 
+ 	if (netif_running(netdev))
+-		e1000_down(adapter);
++		e1000e_down(adapter);
+ 	pci_disable_device(pdev);
+ 
+ 	/* Request a slot slot reset. */
+@@ -3892,7 +3892,7 @@ static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
+ 	pci_enable_wake(pdev, PCI_D3hot, 0);
+ 	pci_enable_wake(pdev, PCI_D3cold, 0);
+ 
+-	e1000_reset(adapter);
++	e1000e_reset(adapter);
+ 	ew32(WUS, ~0);
+ 
+ 	return PCI_ERS_RESULT_RECOVERED;
+@@ -3914,7 +3914,7 @@ static void e1000_io_resume(struct pci_dev *pdev)
+ 	e1000_init_manageability(adapter);
+ 
+ 	if (netif_running(netdev)) {
+-		if (e1000_up(adapter)) {
++		if (e1000e_up(adapter)) {
+ 			dev_err(&pdev->dev,
+ 				"can't bring device back up after reset\n");
+ 			return;
+@@ -3927,7 +3927,7 @@ static void e1000_io_resume(struct pci_dev *pdev)
+ 	 * is up.  For all other cases, let the f/w know that the h/w is now
+ 	 * under the control of the driver. */
+ 	if (!(adapter->flags & FLAG_HAS_AMT) ||
+-	    !e1000_check_mng_mode(&adapter->hw))
++	    !e1000e_check_mng_mode(&adapter->hw))
+ 		e1000_get_hw_control(adapter);
+ 
+ }
+@@ -4001,7 +4001,7 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
+ 		}
+ 	}
+ 
+-	err = pci_request_regions(pdev, e1000_driver_name);
++	err = pci_request_regions(pdev, e1000e_driver_name);
+ 	if (err)
+ 		goto err_pci_reg;
+ 
+@@ -4053,7 +4053,7 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
+ 	netdev->set_mac_address		= &e1000_set_mac;
+ 	netdev->change_mtu		= &e1000_change_mtu;
+ 	netdev->do_ioctl		= &e1000_ioctl;
+-	e1000_set_ethtool_ops(netdev);
++	e1000e_set_ethtool_ops(netdev);
+ 	netdev->tx_timeout		= &e1000_tx_timeout;
+ 	netdev->watchdog_timeo		= 5 * HZ;
+ 	netdev->poll			= &e1000_clean;
+@@ -4119,7 +4119,7 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
+ 	 * it. */
+ 	netdev->features |= NETIF_F_LLTX;
+ 
+-	if (e1000_enable_mng_pass_thru(&adapter->hw))
++	if (e1000e_enable_mng_pass_thru(&adapter->hw))
+ 		adapter->flags |= FLAG_MNG_PT_ENABLED;
+ 
+ 	/* before reading the NVM, reset the controller to
+@@ -4141,7 +4141,7 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
+ 	}
+ 
+ 	/* copy the MAC address out of the NVM */
+-	if (e1000_read_mac_addr(&adapter->hw))
++	if (e1000e_read_mac_addr(&adapter->hw))
+ 		ndev_err(netdev, "NVM Read Error while reading MAC address\n");
+ 
+ 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
+@@ -4168,7 +4168,7 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
+ 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
+ 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
+ 
+-	e1000_check_options(adapter);
++	e1000e_check_options(adapter);
+ 
+ 	/* Initialize link parameters. User can change them with ethtool */
+ 	adapter->hw.mac.autoneg = 1;
+@@ -4214,13 +4214,13 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
+ 	adapter->wol = adapter->eeprom_wol;
+ 
+ 	/* reset the hardware with the new settings */
+-	e1000_reset(adapter);
++	e1000e_reset(adapter);
+ 
+ 	/* If the controller has AMT, do not set DRV_LOAD until the interface
+ 	 * is up.  For all other cases, let the f/w know that the h/w is now
+ 	 * under the control of the driver. */
+ 	if (!(adapter->flags & FLAG_HAS_AMT) ||
+-	    !e1000_check_mng_mode(&adapter->hw))
++	    !e1000e_check_mng_mode(&adapter->hw))
+ 		e1000_get_hw_control(adapter);
+ 
+ 	/* tell the stack to leave us alone until e1000_open() is called */
+@@ -4315,7 +4315,7 @@ static struct pci_error_handlers e1000_err_handler = {
+ 	.resume = e1000_io_resume,
+ };
+ 
+-static struct pci_device_id e1000e_pci_tbl[] = {
++static struct pci_device_id e1000_pci_tbl[] = {
+ 	/*
+ 	 * Support for 82571/2/3, es2lan and ich8 will be phased in
+ 	 * stepwise.
+@@ -4358,12 +4358,12 @@ static struct pci_device_id e1000e_pci_tbl[] = {
+ 
+ 	{ }	/* terminate list */
+ };
+-MODULE_DEVICE_TABLE(pci, e1000e_pci_tbl);
++MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
+ 
+ /* PCI Device API Driver */
+ static struct pci_driver e1000_driver = {
+-	.name     = e1000_driver_name,
+-	.id_table = e1000e_pci_tbl,
++	.name     = e1000e_driver_name,
++	.id_table = e1000_pci_tbl,
+ 	.probe    = e1000_probe,
+ 	.remove   = __devexit_p(e1000_remove),
+ #ifdef CONFIG_PM
+@@ -4381,17 +4381,17 @@ static struct pci_driver e1000_driver = {
+  * e1000_init_module is the first routine called when the driver is
+  * loaded. All it does is register with the PCI subsystem.
+  **/
+-static int __init e1000e_init_module(void)
++static int __init e1000_init_module(void)
+ {
+ 	int ret;
+ 	printk(KERN_INFO "Intel(R) PRO/1000 Network Driver - %s\n",
+-	       e1000_driver_version);
++	       e1000e_driver_version);
+ 	printk(KERN_INFO "Copyright (c) 1999-2007 Intel Corporation.\n");
+ 	ret = pci_register_driver(&e1000_driver);
+ 
+ 	return ret;
+ }
+-module_init(e1000e_init_module);
++module_init(e1000_init_module);
+ 
+ /**
+  * e1000_exit_module - Driver Exit Cleanup Routine
+@@ -4399,11 +4399,11 @@ module_init(e1000e_init_module);
+  * e1000_exit_module is called just before the driver is removed
+  * from memory.
+  **/
+-static void __exit e1000e_exit_module(void)
++static void __exit e1000_exit_module(void)
+ {
+ 	pci_unregister_driver(&e1000_driver);
+ }
+-module_exit(e1000e_exit_module);
++module_exit(e1000_exit_module);
+ 
+ 
+ MODULE_AUTHOR("Intel Corporation, <linux.nics at intel.com>");
+diff --git a/drivers/net/e1000e/param.c b/drivers/net/e1000e/param.c
+index 9a70d22..e4e655e 100644
+--- a/drivers/net/e1000e/param.c
++++ b/drivers/net/e1000e/param.c
+@@ -192,7 +192,7 @@ static int __devinit e1000_validate_option(int *value,
+ }
+ 
+ /**
+- * e1000_check_options - Range Checking for Command Line Parameters
++ * e1000e_check_options - Range Checking for Command Line Parameters
+  * @adapter: board private structure
+  *
+  * This routine checks all command line parameters for valid user
+@@ -200,7 +200,7 @@ static int __devinit e1000_validate_option(int *value,
+  * value exists, a default value is used.  The final value is stored
+  * in a variable in the adapter structure.
+  **/
+-void __devinit e1000_check_options(struct e1000_adapter *adapter)
++void __devinit e1000e_check_options(struct e1000_adapter *adapter)
+ {
+ 	struct e1000_hw *hw = &adapter->hw;
+ 	struct net_device *netdev = adapter->netdev;
+@@ -371,11 +371,11 @@ void __devinit e1000_check_options(struct e1000_adapter *adapter)
+ 			int kmrn_lock_loss = KumeranLockLoss[bd];
+ 			e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
+ 			if (hw->mac.type == e1000_ich8lan)
+-				e1000_set_kmrn_lock_loss_workaround_ich8lan(hw,
++				e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
+ 								kmrn_lock_loss);
+ 		} else {
+ 			if (hw->mac.type == e1000_ich8lan)
+-				e1000_set_kmrn_lock_loss_workaround_ich8lan(hw,
++				e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
+ 								       opt.def);
+ 		}
+ 	}
+diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
+index c9304d8..1efb47a 100644
+--- a/drivers/net/e1000e/phy.c
++++ b/drivers/net/e1000e/phy.c
+@@ -53,14 +53,14 @@ static const u16 e1000_igp_2_cable_length_table[] =
+ 		 sizeof(e1000_igp_2_cable_length_table[0]))
+ 
+ /**
+- *  e1000_check_reset_block_generic - Check if PHY reset is blocked
++ *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
+  *  @hw: pointer to the HW structure
+  *
+  *  Read the PHY management control register and check whether a PHY reset
+  *  is blocked.  If a reset is not blocked return 0, otherwise
+  *  return E1000_BLK_PHY_RESET (12).
+  **/
+-s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
++s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
+ {
+ 	u32 manc;
+ 
+@@ -71,13 +71,13 @@ s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_get_phy_id - Retrieve the PHY ID and revision
++ *  e1000e_get_phy_id - Retrieve the PHY ID and revision
+  *  @hw: pointer to the HW structure
+  *
+  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+  *  revision in the hardware structure.
+  **/
+-s32 e1000_get_phy_id(struct e1000_hw *hw)
++s32 e1000e_get_phy_id(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -100,12 +100,12 @@ s32 e1000_get_phy_id(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_phy_reset_dsp - Reset PHY DSP
++ *  e1000e_phy_reset_dsp - Reset PHY DSP
+  *  @hw: pointer to the HW structure
+  *
+  *  Reset the digital signal processor.
+  **/
+-s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
++s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
+ {
+ 	s32 ret_val;
+ 
+@@ -210,7 +210,7 @@ static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+ }
+ 
+ /**
+- *  e1000_read_phy_reg_m88 - Read m88 PHY register
++ *  e1000e_read_phy_reg_m88 - Read m88 PHY register
+  *  @hw: pointer to the HW structure
+  *  @offset: register offset to be read
+  *  @data: pointer to the read data
+@@ -219,7 +219,7 @@ static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+  *  and storing the retrieved information in data.  Release any acquired
+  *  semaphores before exiting.
+  **/
+-s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
++s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+ {
+ 	s32 ret_val;
+ 
+@@ -237,7 +237,7 @@ s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+ }
+ 
+ /**
+- *  e1000_write_phy_reg_m88 - Write m88 PHY register
++ *  e1000e_write_phy_reg_m88 - Write m88 PHY register
+  *  @hw: pointer to the HW structure
+  *  @offset: register offset to write to
+  *  @data: data to write at register offset
+@@ -245,7 +245,7 @@ s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+  *  Acquires semaphore, if necessary, then writes the data to PHY register
+  *  at the offset.  Release any acquired semaphores before exiting.
+  **/
+-s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
++s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+ {
+ 	s32 ret_val;
+ 
+@@ -263,7 +263,7 @@ s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+ }
+ 
+ /**
+- *  e1000_read_phy_reg_igp - Read igp PHY register
++ *  e1000e_read_phy_reg_igp - Read igp PHY register
+  *  @hw: pointer to the HW structure
+  *  @offset: register offset to be read
+  *  @data: pointer to the read data
+@@ -272,7 +272,7 @@ s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+  *  and storing the retrieved information in data.  Release any acquired
+  *  semaphores before exiting.
+  **/
+-s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
++s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+ {
+ 	s32 ret_val;
+ 
+@@ -300,7 +300,7 @@ s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+ }
+ 
+ /**
+- *  e1000_write_phy_reg_igp - Write igp PHY register
++ *  e1000e_write_phy_reg_igp - Write igp PHY register
+  *  @hw: pointer to the HW structure
+  *  @offset: register offset to write to
+  *  @data: data to write at register offset
+@@ -308,7 +308,7 @@ s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+  *  Acquires semaphore, if necessary, then writes the data to PHY register
+  *  at the offset.  Release any acquired semaphores before exiting.
+  **/
+-s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
++s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+ {
+ 	s32 ret_val;
+ 
+@@ -336,7 +336,7 @@ s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+ }
+ 
+ /**
+- *  e1000_read_kmrn_reg - Read kumeran register
++ *  e1000e_read_kmrn_reg - Read kumeran register
+  *  @hw: pointer to the HW structure
+  *  @offset: register offset to be read
+  *  @data: pointer to the read data
+@@ -345,7 +345,7 @@ s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+  *  using the kumeran interface.  The information retrieved is stored in data.
+  *  Release any acquired semaphores before exiting.
+  **/
+-s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
++s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+ {
+ 	u32 kmrnctrlsta;
+ 	s32 ret_val;
+@@ -369,7 +369,7 @@ s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+ }
+ 
+ /**
+- *  e1000_write_kmrn_reg - Write kumeran register
++ *  e1000e_write_kmrn_reg - Write kumeran register
+  *  @hw: pointer to the HW structure
+  *  @offset: register offset to write to
+  *  @data: data to write at register offset
+@@ -378,7 +378,7 @@ s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+  *  at the offset using the kumeran interface.  Release any acquired semaphores
+  *  before exiting.
+  **/
+-s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
++s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+ {
+ 	u32 kmrnctrlsta;
+ 	s32 ret_val;
+@@ -398,13 +398,13 @@ s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+ }
+ 
+ /**
+- *  e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
++ *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
+  *  @hw: pointer to the HW structure
+  *
+  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
+  *  and downshift values are set also.
+  **/
+-s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
++s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -484,7 +484,7 @@ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+ 	}
+ 
+ 	/* Commit the changes. */
+-	ret_val = e1000_commit_phy(hw);
++	ret_val = e1000e_commit_phy(hw);
+ 	if (ret_val)
+ 		hw_dbg(hw, "Error committing the PHY changes\n");
+ 
+@@ -492,13 +492,13 @@ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_copper_link_setup_igp - Setup igp PHY's for copper link
++ *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
+  *  @hw: pointer to the HW structure
+  *
+  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+  *  igp PHY's.
+  **/
+-s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
++s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -715,7 +715,7 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+ 		/* Since there really isn't a way to advertise that we are
+ 		 * capable of RX Pause ONLY, we will advertise that we
+ 		 * support both symmetric and asymmetric RX PAUSE.  Later
+-		 * (in e1000_config_fc_after_link_up) we will disable the
++		 * (in e1000e_config_fc_after_link_up) we will disable the
+ 		 * hw's ability to send PAUSE frames.
+ 		 */
+ 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+@@ -816,7 +816,7 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_setup_copper_link - Configure copper link settings
++ *  e1000e_setup_copper_link - Configure copper link settings
+  *  @hw: pointer to the HW structure
+  *
+  *  Calls the appropriate function to configure the link for auto-neg or forced
+@@ -824,7 +824,7 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+  *  to configure collision distance and flow control are called.  If link is
+  *  not established, we return -E1000_ERR_PHY (-2).
+  **/
+-s32 e1000_setup_copper_link(struct e1000_hw *hw)
++s32 e1000e_setup_copper_link(struct e1000_hw *hw)
+ {
+ 	s32 ret_val;
+ 	bool link;
+@@ -849,7 +849,7 @@ s32 e1000_setup_copper_link(struct e1000_hw *hw)
+ 	/* Check link status. Wait up to 100 microseconds for link to become
+ 	 * valid.
+ 	 */
+-	ret_val = e1000_phy_has_link_generic(hw,
++	ret_val = e1000e_phy_has_link_generic(hw,
+ 					     COPPER_LINK_UP_LIMIT,
+ 					     10,
+ 					     &link);
+@@ -858,8 +858,8 @@ s32 e1000_setup_copper_link(struct e1000_hw *hw)
+ 
+ 	if (link) {
+ 		hw_dbg(hw, "Valid link established!!!\n");
+-		e1000_config_collision_dist(hw);
+-		ret_val = e1000_config_fc_after_link_up(hw);
++		e1000e_config_collision_dist(hw);
++		ret_val = e1000e_config_fc_after_link_up(hw);
+ 	} else {
+ 		hw_dbg(hw, "Unable to establish link!!!\n");
+ 	}
+@@ -868,14 +868,14 @@ s32 e1000_setup_copper_link(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
++ *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+  *  @hw: pointer to the HW structure
+  *
+  *  Calls the PHY setup function to force speed and duplex.  Clears the
+  *  auto-crossover to force MDI manually.  Waits for link and returns
+  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
+  **/
+-s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
++s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -886,7 +886,7 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+ 	if (ret_val)
+ 		return ret_val;
+ 
+-	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
++	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+ 
+ 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+ 	if (ret_val)
+@@ -913,7 +913,7 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+ 	if (phy->wait_for_link) {
+ 		hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
+ 
+-		ret_val = e1000_phy_has_link_generic(hw,
++		ret_val = e1000e_phy_has_link_generic(hw,
+ 						     PHY_FORCE_LIMIT,
+ 						     100000,
+ 						     &link);
+@@ -924,7 +924,7 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+ 			hw_dbg(hw, "Link taking longer than expected.\n");
+ 
+ 		/* Try once more */
+-		ret_val = e1000_phy_has_link_generic(hw,
++		ret_val = e1000e_phy_has_link_generic(hw,
+ 						     PHY_FORCE_LIMIT,
+ 						     100000,
+ 						     &link);
+@@ -936,7 +936,7 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
++ *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+  *  @hw: pointer to the HW structure
+  *
+  *  Calls the PHY setup function to force speed and duplex.  Clears the
+@@ -945,7 +945,7 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
+  *  successful completion, else return corresponding error code.
+  **/
+-s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
++s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -970,7 +970,7 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ 	if (ret_val)
+ 		return ret_val;
+ 
+-	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
++	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+ 
+ 	/* Reset the phy to commit changes. */
+ 	phy_data |= MII_CR_RESET;
+@@ -984,7 +984,7 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ 	if (phy->wait_for_link) {
+ 		hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
+ 
+-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 						     100000, &link);
+ 		if (ret_val)
+ 			return ret_val;
+@@ -996,13 +996,13 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ 			ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
+ 			if (ret_val)
+ 				return ret_val;
+-			ret_val = e1000_phy_reset_dsp(hw);
++			ret_val = e1000e_phy_reset_dsp(hw);
+ 			if (ret_val)
+ 				return ret_val;
+ 		}
+ 
+ 		/* Try once more */
+-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
++		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 						     100000, &link);
+ 		if (ret_val)
+ 			return ret_val;
+@@ -1035,7 +1035,7 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
++ *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+  *  @hw: pointer to the HW structure
+  *  @phy_ctrl: pointer to current value of PHY_CONTROL
+  *
+@@ -1046,7 +1046,7 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+  *  caller must write to the PHY_CONTROL register for these settings to
+  *  take affect.
+  **/
+-void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
++void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+ {
+ 	struct e1000_mac_info *mac = &hw->mac;
+ 	u32 ctrl;
+@@ -1089,13 +1089,13 @@ void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+ 		hw_dbg(hw, "Forcing 10mb\n");
+ 	}
+ 
+-	e1000_config_collision_dist(hw);
++	e1000e_config_collision_dist(hw);
+ 
+ 	ew32(CTRL, ctrl);
+ }
+ 
+ /**
+- *  e1000_set_d3_lplu_state - Sets low power link up state for D3
++ *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
+  *  @hw: pointer to the HW structure
+  *  @active: boolean used to enable/disable lplu
+  *
+@@ -1108,7 +1108,7 @@ void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+  *  During driver activity, SmartSpeed should be enabled so performance is
+  *  maintained.
+  **/
+-s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
++s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -1173,14 +1173,14 @@ s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+ }
+ 
+ /**
+- *  e1000_check_downshift - Checks whether a downshift in speed occured
++ *  e1000e_check_downshift - Checks whether a downshift in speed occured
+  *  @hw: pointer to the HW structure
+  *
+  *  Success returns 0, Failure returns 1
+  *
+  *  A downshift is detected by querying the PHY link health.
+  **/
+-s32 e1000_check_downshift(struct e1000_hw *hw)
++s32 e1000e_check_downshift(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -1310,7 +1310,7 @@ static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_phy_has_link_generic - Polls PHY for link
++ *  e1000e_phy_has_link_generic - Polls PHY for link
+  *  @hw: pointer to the HW structure
+  *  @iterations: number of times to poll for link
+  *  @usec_interval: delay between polling attempts
+@@ -1318,7 +1318,7 @@ static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+  *
+  *  Polls the PHY status register for link, 'iterations' number of times.
+  **/
+-s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
++s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ 			       u32 usec_interval, bool *success)
+ {
+ 	s32 ret_val;
+@@ -1349,7 +1349,7 @@ s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ }
+ 
+ /**
+- *  e1000_get_cable_length_m88 - Determine cable length for m88 PHY
++ *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
+  *  @hw: pointer to the HW structure
+  *
+  *  Reads the PHY specific status register to retrieve the cable length
+@@ -1363,7 +1363,7 @@ s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+  *	3			110 - 140 meters
+  *	4			> 140 meters
+  **/
+-s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
++s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -1384,7 +1384,7 @@ s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
++ *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+  *  @hw: pointer to the HW structure
+  *
+  *  The automatic gain control (agc) normalizes the amplitude of the
+@@ -1394,7 +1394,7 @@ s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+  *  into a lookup table to obtain the approximate cable length
+  *  for each channel.
+  **/
+-s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
++s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -1451,7 +1451,7 @@ s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_get_phy_info_m88 - Retrieve PHY information
++ *  e1000e_get_phy_info_m88 - Retrieve PHY information
+  *  @hw: pointer to the HW structure
+  *
+  *  Valid for only copper links.  Read the PHY status register (sticky read)
+@@ -1460,7 +1460,7 @@ s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+  *  special status register to determine MDI/MDIx and current speed.  If
+  *  speed is 1000, then determine cable length, local and remote receiver.
+  **/
+-s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
++s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32  ret_val;
+@@ -1472,7 +1472,7 @@ s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+ 		return -E1000_ERR_CONFIG;
+ 	}
+ 
+-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+@@ -1525,7 +1525,7 @@ s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_get_phy_info_igp - Retrieve igp PHY information
++ *  e1000e_get_phy_info_igp - Retrieve igp PHY information
+  *  @hw: pointer to the HW structure
+  *
+  *  Read PHY status to determine if link is up.  If link is up, then
+@@ -1533,14 +1533,14 @@ s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+  *  determine on the cable length, local and remote receiver.
+  **/
+-s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
++s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+ 	u16 data;
+ 	bool link;
+ 
+-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
++	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+ 	if (ret_val)
+ 		return ret_val;
+ 
+@@ -1588,13 +1588,13 @@ s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_phy_sw_reset - PHY software reset
++ *  e1000e_phy_sw_reset - PHY software reset
+  *  @hw: pointer to the HW structure
+  *
+  *  Does a software reset of the PHY by reading the PHY control register and
+  *  setting/write the control register reset bit to the PHY.
+  **/
+-s32 e1000_phy_sw_reset(struct e1000_hw *hw)
++s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
+ {
+ 	s32 ret_val;
+ 	u16 phy_ctrl;
+@@ -1614,7 +1614,7 @@ s32 e1000_phy_sw_reset(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_phy_hw_reset_generic - PHY hardware reset
++ *  e1000e_phy_hw_reset_generic - PHY hardware reset
+  *  @hw: pointer to the HW structure
+  *
+  *  Verify the reset block is not blocking us from resetting.  Acquire
+@@ -1622,7 +1622,7 @@ s32 e1000_phy_sw_reset(struct e1000_hw *hw)
+  *  bit in the PHY.  Wait the appropriate delay time for the device to
+  *  reset and relase the semaphore (if necessary).
+  **/
+-s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
++s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
+ {
+ 	struct e1000_phy_info *phy = &hw->phy;
+ 	s32 ret_val;
+@@ -1653,13 +1653,13 @@ s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_get_cfg_done - Generic configuration done
++ *  e1000e_get_cfg_done - Generic configuration done
+  *  @hw: pointer to the HW structure
+  *
+  *  Generic function to wait 10 milli-seconds for configuration to complete
+  *  and return success.
+  **/
+-s32 e1000_get_cfg_done(struct e1000_hw *hw)
++s32 e1000e_get_cfg_done(struct e1000_hw *hw)
+ {
+ 	mdelay(10);
+ 	return 0;
+@@ -1698,12 +1698,12 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+ }
+ 
+ /**
+- *  e1000_get_phy_type_from_id - Get PHY type from id
++ *  e1000e_get_phy_type_from_id - Get PHY type from id
+  *  @phy_id: phy_id read from the phy
+  *
+  *  Returns the phy type from the id.
+  **/
+-enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
++enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
+ {
+ 	enum e1000_phy_type phy_type = e1000_phy_unknown;
+ 
+@@ -1736,13 +1736,13 @@ enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
+ }
+ 
+ /**
+- *  e1000_commit_phy - Soft PHY reset
++ *  e1000e_commit_phy - Soft PHY reset
+  *  @hw: pointer to the HW structure
+  *
+  *  Performs a soft PHY reset on those that apply. This is a function pointer
+  *  entry point called by drivers.
+  **/
+-s32 e1000_commit_phy(struct e1000_hw *hw)
++s32 e1000e_commit_phy(struct e1000_hw *hw)
+ {
+ 	if (hw->phy.ops.commit_phy)
+ 		return hw->phy.ops.commit_phy(hw);
+-
+To unsubscribe from this list: send the line "unsubscribe netdev" in
+the body of a message to majordomo at vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.html
+
+Return-Path: <netdev-owner at vger.kernel.org>
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Subject: [PATCH 3/6] e1000e: Use dma_alloc_coherent where possible
+To: jeff at garzik.org
+Cc: netdev at vger.kernel.org, akpm at linux-foundation.org,
+	andi at firstfloor.org
+Date:	Fri, 10 Aug 2007 13:00:52 -0700
+Message-ID: <20070810200052.21509.19321.stgit at localhost.localdomain>
+In-Reply-To: <20070810200038.21509.77815.stgit at localhost.localdomain>
+References: <20070810200038.21509.77815.stgit at localhost.localdomain>
+User-Agent: StGIT/0.12.1
+
+Instead of using pci_alloc_consistent at GFP_ATOMIC we can be
+more reliable at startup and use dma_alloc_coherent instead with
+GFP_KERNEL.
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+
+ drivers/net/e1000e/ethtool.c |   16 ++++++++--------
+ drivers/net/e1000e/netdev.c  |    9 ++++++---
+ 2 files changed, 14 insertions(+), 11 deletions(-)
+
+diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
+index c9d74a8..d184116 100644
+--- a/drivers/net/e1000e/ethtool.c
++++ b/drivers/net/e1000e/ethtool.c
+@@ -962,13 +962,13 @@ static void e1000_free_desc_rings(struct e1000_adapter *adapter)
+ 	}
+ 
+ 	if (tx_ring->desc) {
+-		pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
+-				    tx_ring->dma);
++		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
++				  tx_ring->dma);
+ 		tx_ring->desc = NULL;
+ 	}
+ 	if (rx_ring->desc) {
+-		pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
+-				    rx_ring->dma);
++		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
++				  rx_ring->dma);
+ 		rx_ring->desc = NULL;
+ 	}
+ 
+@@ -1004,8 +1004,8 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+ 
+ 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
+ 	tx_ring->size = ALIGN(tx_ring->size, 4096);
+-	tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
+-			&tx_ring->dma);
++	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
++					   &tx_ring->dma, GFP_KERNEL);
+ 	if (!tx_ring->desc) {
+ 		ret_val = 2;
+ 		goto err_nomem;
+@@ -1065,8 +1065,8 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+ 	memset(rx_ring->buffer_info, 0, size);
+ 
+ 	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
+-	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
+-					     &rx_ring->dma);
++	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
++					   &rx_ring->dma, GFP_KERNEL);
+ 	if (!rx_ring->desc) {
+ 		ret_val = 5;
+ 		goto err_nomem;
+diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
+index d711e14..51c9024 100644
+--- a/drivers/net/e1000e/netdev.c
++++ b/drivers/net/e1000e/netdev.c
+@@ -1344,7 +1344,8 @@ static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
+ {
+ 	struct pci_dev *pdev = adapter->pdev;
+ 
+-	ring->desc = pci_alloc_consistent(pdev, ring->size, &ring->dma);
++	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
++					GFP_KERNEL);
+ 	if (!ring->desc)
+ 		return -ENOMEM;
+ 
+@@ -1479,7 +1480,8 @@ void e1000e_free_tx_resources(struct e1000_adapter *adapter)
+ 	vfree(tx_ring->buffer_info);
+ 	tx_ring->buffer_info = NULL;
+ 
+-	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
++	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
++			  tx_ring->dma);
+ 	tx_ring->desc = NULL;
+ }
+ 
+@@ -1503,7 +1505,8 @@ void e1000e_free_rx_resources(struct e1000_adapter *adapter)
+ 	kfree(rx_ring->ps_pages);
+ 	rx_ring->ps_pages = NULL;
+ 
+-	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
++	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
++			  rx_ring->dma);
+ 	rx_ring->desc = NULL;
+ }
+ 
+-
+To unsubscribe from this list: send the line "unsubscribe netdev" in
+the body of a message to majordomo at vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.html
+
+Return-Path: <netdev-owner at vger.kernel.org>
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Subject: [PATCH 4/6] e1000e: Use time_after to account for jiffies wrapping
+To: jeff at garzik.org
+Cc: netdev at vger.kernel.org, akpm at linux-foundation.org,
+	andi at firstfloor.org
+Date:	Fri, 10 Aug 2007 13:00:57 -0700
+Message-ID: <20070810200057.21509.18676.stgit at localhost.localdomain>
+In-Reply-To: <20070810200038.21509.77815.stgit at localhost.localdomain>
+References: <20070810200038.21509.77815.stgit at localhost.localdomain>
+User-Agent: StGIT/0.12.1
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+
+ drivers/net/e1000e/ethtool.c |    2 +-
+ 1 files changed, 1 insertions(+), 1 deletions(-)
+
+diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
+index d184116..d14cc4b 100644
+--- a/drivers/net/e1000e/ethtool.c
++++ b/drivers/net/e1000e/ethtool.c
+@@ -1411,7 +1411,7 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
+ 			 * enough time to complete the receives, if it's
+ 			 * exceeded, break and error off
+ 			 */
+-		} while (good_cnt < 64 && jiffies < (time + 20));
++		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
+ 		if (good_cnt != 64) {
+ 			ret_val = 13; /* ret_val is the same as mis-compare */
+ 			break;
+-
+To unsubscribe from this list: send the line "unsubscribe netdev" in
+the body of a message to majordomo at vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.html
+
+Return-Path: <netdev-owner at vger.kernel.org>
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Subject: [PATCH 5/6] e1000e: error handling for pci_map_single calls.
+To: jeff at garzik.org
+Cc: netdev at vger.kernel.org, akpm at linux-foundation.org,
+	andi at firstfloor.org
+Date:	Fri, 10 Aug 2007 13:01:02 -0700
+Message-ID: <20070810200102.21509.97953.stgit at localhost.localdomain>
+In-Reply-To: <20070810200038.21509.77815.stgit at localhost.localdomain>
+References: <20070810200038.21509.77815.stgit at localhost.localdomain>
+User-Agent: StGIT/0.12.1
+
+Add proper error handling for various callers of pci_map_single.
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+
+ drivers/net/e1000e/e1000.h   |    2 ++
+ drivers/net/e1000e/ethtool.c |   16 +++++++++++---
+ drivers/net/e1000e/netdev.c  |   49 +++++++++++++++++++++++++++++++++++++++---
+ 3 files changed, 61 insertions(+), 6 deletions(-)
+
+diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h
+index 3475e48..e3cd877 100644
+--- a/drivers/net/e1000e/e1000.h
++++ b/drivers/net/e1000e/e1000.h
+@@ -220,6 +220,7 @@ struct e1000_adapter {
+ 	u32 tx_fifo_head;
+ 	u32 tx_head_addr;
+ 	u32 tx_fifo_size;
++	u32 tx_dma_failed;
+ 
+ 	/*
+ 	 * RX
+@@ -241,6 +242,7 @@ struct e1000_adapter {
+ 	u64 gorcl_old;
+ 	u32 gorcl;
+ 	u32 alloc_rx_buff_failed;
++	u32 rx_dma_failed;
+ 
+ 	unsigned int rx_ps_pages;
+ 	u16 rx_ps_bsize0;
+diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
+index d14cc4b..0e80406 100644
+--- a/drivers/net/e1000e/ethtool.c
++++ b/drivers/net/e1000e/ethtool.c
+@@ -91,6 +91,8 @@ static const struct e1000_stats e1000_gstrings_stats[] = {
+ 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
+ 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
+ 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
++	{ "rx_dma_failed", E1000_STAT(rx_dma_failed) },
++	{ "tx_dma_failed", E1000_STAT(tx_dma_failed) },
+ };
+ 
+ #define E1000_GLOBAL_STATS_LEN	\
+@@ -1042,6 +1044,10 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+ 		tx_ring->buffer_info[i].dma =
+ 			pci_map_single(pdev, skb->data, skb->len,
+ 				       PCI_DMA_TODEVICE);
++		if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
++			ret_val = 4;
++			goto err_nomem;
++		}
+ 		tx_desc->buffer_addr = cpu_to_le64(
+ 					 tx_ring->buffer_info[i].dma);
+ 		tx_desc->lower.data = cpu_to_le32(skb->len);
+@@ -1059,7 +1065,7 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+ 	size = rx_ring->count * sizeof(struct e1000_buffer);
+ 	rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
+ 	if (!rx_ring->buffer_info) {
+-		ret_val = 4;
++		ret_val = 5;
+ 		goto err_nomem;
+ 	}
+ 	memset(rx_ring->buffer_info, 0, size);
+@@ -1068,7 +1074,7 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+ 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
+ 					   &rx_ring->dma, GFP_KERNEL);
+ 	if (!rx_ring->desc) {
+-		ret_val = 5;
++		ret_val = 6;
+ 		goto err_nomem;
+ 	}
+ 	memset(rx_ring->desc, 0, rx_ring->size);
+@@ -1093,7 +1099,7 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+ 
+ 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
+ 		if (!skb) {
+-			ret_val = 6;
++			ret_val = 7;
+ 			goto err_nomem;
+ 		}
+ 		skb_reserve(skb, NET_IP_ALIGN);
+@@ -1101,6 +1107,10 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+ 		rx_ring->buffer_info[i].dma =
+ 			pci_map_single(pdev, skb->data, 2048,
+ 				       PCI_DMA_FROMDEVICE);
++		if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
++			ret_val = 8;
++			goto err_nomem;
++		}
+ 		rx_desc->buffer_addr =
+ 			cpu_to_le64(rx_ring->buffer_info[i].dma);
+ 		memset(skb->data, 0x00, skb->len);
+diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
+index 51c9024..8ebe238 100644
+--- a/drivers/net/e1000e/netdev.c
++++ b/drivers/net/e1000e/netdev.c
+@@ -195,6 +195,11 @@ map_skb:
+ 		buffer_info->dma = pci_map_single(pdev, skb->data,
+ 						  adapter->rx_buffer_len,
+ 						  PCI_DMA_FROMDEVICE);
++		if (pci_dma_mapping_error(buffer_info->dma)) {
++			dev_err(&pdev->dev, "RX DMA map failed\n");
++			adapter->rx_dma_failed++;
++			break;
++		}
+ 
+ 		rx_desc = E1000_RX_DESC(*rx_ring, i);
+ 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+@@ -255,6 +260,13 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
+ 							   ps_page->page,
+ 							   0, PAGE_SIZE,
+ 							   PCI_DMA_FROMDEVICE);
++					if (pci_dma_mapping_error(
++							ps_page->dma)) {
++						dev_err(&adapter->pdev->dev,
++						  "RX DMA page map failed\n");
++						adapter->rx_dma_failed++;
++						goto no_buffers;
++					}
+ 				}
+ 				/*
+ 				 * Refresh the desc even if buffer_addrs
+@@ -286,6 +298,14 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
+ 		buffer_info->dma = pci_map_single(pdev, skb->data,
+ 						  adapter->rx_ps_bsize0,
+ 						  PCI_DMA_FROMDEVICE);
++		if (pci_dma_mapping_error(buffer_info->dma)) {
++			dev_err(&pdev->dev, "RX DMA map failed\n");
++			adapter->rx_dma_failed++;
++			/* cleanup skb */
++			dev_kfree_skb_any(skb);
++			buffer_info->skb = NULL;
++			break;
++		}
+ 
+ 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
+ 
+@@ -374,6 +394,11 @@ check_page:
+ 							buffer_info->page, 0,
+ 							PAGE_SIZE,
+ 							PCI_DMA_FROMDEVICE);
++		if (pci_dma_mapping_error(buffer_info->dma)) {
++			dev_err(&adapter->pdev->dev, "RX DMA page map failed\n");
++			adapter->rx_dma_failed++;
++			break;
++		}
+ 
+ 		rx_desc = E1000_RX_DESC(*rx_ring, i);
+ 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+@@ -3214,6 +3239,11 @@ static int e1000_tx_map(struct e1000_adapter *adapter,
+ 				skb->data + offset,
+ 				size,
+ 				PCI_DMA_TODEVICE);
++		if (pci_dma_mapping_error(buffer_info->dma)) {
++			dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
++			adapter->tx_dma_failed++;
++			return -1;
++		}
+ 		buffer_info->next_to_watch = i;
+ 
+ 		len -= size;
+@@ -3247,6 +3277,13 @@ static int e1000_tx_map(struct e1000_adapter *adapter,
+ 					offset,
+ 					size,
+ 					PCI_DMA_TODEVICE);
++			if (pci_dma_mapping_error(buffer_info->dma)) {
++				dev_err(&adapter->pdev->dev,
++					"TX DMA page map failed\n");
++				adapter->tx_dma_failed++;
++				return -1;
++			}
++
+ 			buffer_info->next_to_watch = i;
+ 
+ 			len -= size;
+@@ -3512,9 +3549,15 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
+ 	if (skb->protocol == htons(ETH_P_IP))
+ 		tx_flags |= E1000_TX_FLAGS_IPV4;
+ 
+-	e1000_tx_queue(adapter, tx_flags,
+-		       e1000_tx_map(adapter, skb, first,
+-				    max_per_txd, nr_frags, mss));
++	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
++	if (count < 0) {
++		/* handle pci_map_single() error in e1000_tx_map */
++		dev_kfree_skb_any(skb);
++		spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
++		return NETDEV_TX_BUSY;
++	}
++
++	e1000_tx_queue(adapter, tx_flags, count);
+ 
+ 	netdev->trans_start = jiffies;
+ 
+-
+To unsubscribe from this list: send the line "unsubscribe netdev" in
+the body of a message to majordomo at vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.html
+
+Return-Path: <netdev-owner at vger.kernel.org>
+From: Auke Kok <auke-jan.h.kok at intel.com>
+Subject: [PATCH 6/6] e1000e: Remove two compile warnings
+To: jeff at garzik.org
+Cc: netdev at vger.kernel.org, akpm at linux-foundation.org,
+	andi at firstfloor.org
+Date:	Fri, 10 Aug 2007 13:01:07 -0700
+Message-ID: <20070810200107.21509.74125.stgit at localhost.localdomain>
+In-Reply-To: <20070810200038.21509.77815.stgit at localhost.localdomain>
+References: <20070810200038.21509.77815.stgit at localhost.localdomain>
+User-Agent: StGIT/0.12.1
+MIME-Version: 1.0
+
+CC [M]  drivers/net/e1000e/lib.o
+drivers/net/e1000e/lib.c: In function 'e1000e_read_nvm_eerd':
+drivers/net/e1000e/lib.c:1941: warning: 'ret_val' may be used uninitialized
+in this function
+  CC [M]  drivers/net/e1000e/phy.o
+drivers/net/e1000e/phy.c: In function 'e1000e_phy_has_link_generic':
+drivers/net/e1000e/phy.c:1324: warning: 'ret_val' may be used
+uninitialized in this function
+
+Signed-off-by: Auke Kok <auke-jan.h.kok at intel.com>
+---
+
+ drivers/net/e1000e/lib.c |    2 +-
+ drivers/net/e1000e/phy.c |    2 +-
+ 2 files changed, 2 insertions(+), 2 deletions(-)
+
+diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
+index a04c1e4..6645c21 100644
+--- a/drivers/net/e1000e/lib.c
++++ b/drivers/net/e1000e/lib.c
+@@ -1938,7 +1938,7 @@ s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ {
+ 	struct e1000_nvm_info *nvm = &hw->nvm;
+ 	u32 i, eerd = 0;
+-	s32 ret_val;
++	s32 ret_val = 0;
+ 
+ 	/* A check for invalid values:  offset too large, too many words,
+ 	 * and not enough words. */
+diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
+index 1efb47a..7932318 100644
+--- a/drivers/net/e1000e/phy.c
++++ b/drivers/net/e1000e/phy.c
+@@ -1321,7 +1321,7 @@ static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+ s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ 			       u32 usec_interval, bool *success)
+ {
+-	s32 ret_val;
++	s32 ret_val = 0;
+ 	u16 i, phy_status;
+ 
+ 	for (i = 0; i < iterations; i++) {
+-
+To unsubscribe from this list: send the line "unsubscribe netdev" in
+the body of a message to majordomo at vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.html
+

Modified: dists/trunk/linux-2.6/debian/patches/series/1~experimental.1
==============================================================================
--- dists/trunk/linux-2.6/debian/patches/series/1~experimental.1	(original)
+++ dists/trunk/linux-2.6/debian/patches/series/1~experimental.1	Wed Oct  3 19:18:52 2007
@@ -43,3 +43,5 @@
 + bugfix/arm/disable-bcm43xx.patch
 + bugfix/all/git-ieee1394.patch
 + features/all/v7-iwlwifi-add-iwlwifi-wireless-drivers.patch
++ features/all/e1000e-20070806.patch
++ features/all/e1000e-fixes.patch



More information about the Kernel-svn-changes mailing list