[SCM] A client for connecting to 3D metaverses such as Linden Labs Secondlife(tm) and OpenSim grids branch, master, updated. upstream/1.21.0-77-g4998217
Robin Cornelius
robin.cornelius at gmail.com
Fri Sep 5 20:30:45 UTC 2008
The following commit has been merged in the master branch:
commit a0c8f812835f5f6865a4fc0a18f59dc9c2a528f2
Author: Robin Cornelius <robin.cornelius at gmail.com>
Date: Fri Sep 5 12:16:39 2008 +0100
Import the glh_linear.h header directly into tree
diff --git a/indra/llwindow/glh/glh_linear.h b/indra/llwindow/glh/glh_linear.h
new file mode 100755
index 0000000..04ae1bd
--- /dev/null
+++ b/indra/llwindow/glh/glh_linear.h
@@ -0,0 +1,1621 @@
+/*
+ glh - is a platform-indepenedent C++ OpenGL helper library
+
+
+ Copyright (c) 2000 Cass Everitt
+ Copyright (c) 2000 NVIDIA Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or
+ without modification, are permitted provided that the following
+ conditions are met:
+
+ * Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the following
+ disclaimer.
+
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following
+ disclaimer in the documentation and/or other materials
+ provided with the distribution.
+
+ * The names of contributors to this software may not be used
+ to endorse or promote products derived from this software
+ without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+
+ Cass Everitt - cass at r3.nu
+*/
+
+/*
+glh_linear.h
+*/
+
+// Author: Cass W. Everitt
+
+#ifndef GLH_LINEAR_H
+#define GLH_LINEAR_H
+
+#include <memory.h>
+#include <math.h>
+#include <assert.h>
+
+// only supports float for now...
+#define GLH_REAL_IS_FLOAT
+
+#ifdef GLH_REAL_IS_FLOAT
+# define GLH_REAL float
+# define GLH_REAL_NAMESPACE ns_float
+#endif
+
+#define GLH_QUATERNION_NORMALIZATION_THRESHOLD 64
+
+#define GLH_RAD_TO_DEG GLH_REAL(57.2957795130823208767981548141052)
+#define GLH_DEG_TO_RAD GLH_REAL(0.0174532925199432957692369076848861)
+#define GLH_ZERO GLH_REAL(0.0)
+#define GLH_ONE GLH_REAL(1.0)
+#define GLH_TWO GLH_REAL(2.0)
+#define GLH_EPSILON GLH_REAL(10e-6)
+#define GLH_PI GLH_REAL(3.1415926535897932384626433832795)
+
+#define equivalent(a,b) (((a < b + GLH_EPSILON) && (a > b - GLH_EPSILON)) ? true : false)
+
+namespace glh
+{
+
+ inline GLH_REAL to_degrees(GLH_REAL radians) { return radians*GLH_RAD_TO_DEG; }
+ inline GLH_REAL to_radians(GLH_REAL degrees) { return degrees*GLH_DEG_TO_RAD; }
+
+ // forward declarations for friend template functions.
+ template <int N, class T> class vec;
+
+ // forward declarations for friend template functions.
+ template <int N, class T>
+ bool operator == ( const vec<N,T> & v1, const vec<N,T> & v2 );
+
+ // forward declarations for friend template functions.
+ template <int N, class T>
+ bool operator != ( const vec<N,T> & v1, const vec<N,T> & v2 );
+
+ template <int N, class T>
+ class vec
+ {
+ public:
+ int size() const { return N; }
+
+ vec(const T & t = T())
+ { for(int i = 0; i < N; i++) v[i] = t; }
+ vec(const T * tp)
+ { for(int i = 0; i < N; i++) v[i] = tp[i]; }
+
+ const T * get_value() const
+ { return v; }
+
+
+ T dot( const vec<N,T> & rhs ) const
+ {
+ T r = 0;
+ for(int i = 0; i < N; i++) r += v[i]*rhs.v[i];
+ return r;
+ }
+
+ T length() const
+ {
+ T r = 0;
+ for(int i = 0; i < N; i++) r += v[i]*v[i];
+ return T(sqrt(r));
+ }
+
+ T square_norm() const
+ {
+ T r = 0;
+ for(int i = 0; i < N; i++) r += v[i]*v[i];
+ return r;
+ }
+
+ void negate()
+ { for(int i = 0; i < N; i++) v[i] = -v[i]; }
+
+
+ T normalize()
+ {
+ T sum(0);
+ for(int i = 0; i < N; i++)
+ sum += v[i]*v[i];
+ sum = T(sqrt(sum));
+ if (sum > GLH_EPSILON)
+ for(int i = 0; i < N; i++)
+ v[i] /= sum;
+ return sum;
+ }
+
+
+ vec<N,T> & set_value( const T * rhs )
+ { for(int i = 0; i < N; i++) v[i] = rhs[i]; return *this; }
+
+ T & operator [] ( int i )
+ { return v[i]; }
+
+ const T & operator [] ( int i ) const
+ { return v[i]; }
+
+ vec<N,T> & operator *= ( T d )
+ { for(int i = 0; i < N; i++) v[i] *= d; return *this;}
+
+ vec<N,T> & operator *= ( const vec<N,T> & u )
+ { for(int i = 0; i < N; i++) v[i] *= u[i]; return *this;}
+
+ vec<N,T> & operator /= ( T d )
+ { if(d == 0) return *this; for(int i = 0; i < N; i++) v[i] /= d; return *this;}
+
+ vec<N,T> & operator += ( const vec<N,T> & u )
+ { for(int i = 0; i < N; i++) v[i] += u.v[i]; return *this;}
+
+ vec<N,T> & operator -= ( const vec<N,T> & u )
+ { for(int i = 0; i < N; i++) v[i] -= u.v[i]; return *this;}
+
+
+ vec<N,T> operator - () const
+ { vec<N,T> rv = v; rv.negate(); return rv; }
+
+ vec<N,T> operator + ( const vec<N,T> &v) const
+ { vec<N,T> rt(*this); return rt += v; }
+
+ vec<N,T> operator - ( const vec<N,T> &v) const
+ { vec<N,T> rt(*this); return rt -= v; }
+
+ vec<N,T> operator * ( T d) const
+ { vec<N,T> rt(*this); return rt *= d; }
+
+ friend bool operator == <> ( const vec<N,T> &v1, const vec<N,T> &v2 );
+ friend bool operator != <> ( const vec<N,T> &v1, const vec<N,T> &v2 );
+
+
+ //protected:
+ T v[N];
+ };
+
+
+
+ // vector friend operators
+
+ template <int N, class T> inline
+ vec<N,T> operator * ( const vec<N,T> & b, T d )
+ {
+ vec<N,T> rt(b);
+ return rt *= d;
+ }
+
+ template <int N, class T> inline
+ vec<N,T> operator * ( T d, const vec<N,T> & b )
+ { return b*d; }
+
+ template <int N, class T> inline
+ vec<N,T> operator * ( const vec<N,T> & b, const vec<N,T> & d )
+ {
+ vec<N,T> rt(b);
+ return rt *= d;
+ }
+
+ template <int N, class T> inline
+ vec<N,T> operator / ( const vec<N,T> & b, T d )
+ { vec<N,T> rt(b); return rt /= d; }
+
+ template <int N, class T> inline
+ vec<N,T> operator + ( const vec<N,T> & v1, const vec<N,T> & v2 )
+ { vec<N,T> rt(v1); return rt += v2; }
+
+ template <int N, class T> inline
+ vec<N,T> operator - ( const vec<N,T> & v1, const vec<N,T> & v2 )
+ { vec<N,T> rt(v1); return rt -= v2; }
+
+
+ template <int N, class T> inline
+ bool operator == ( const vec<N,T> & v1, const vec<N,T> & v2 )
+ {
+ for(int i = 0; i < N; i++)
+ if(v1.v[i] != v2.v[i])
+ return false;
+ return true;
+ }
+
+ template <int N, class T> inline
+ bool operator != ( const vec<N,T> & v1, const vec<N,T> & v2 )
+ { return !(v1 == v2); }
+
+
+ typedef vec<3,unsigned char> vec3ub;
+ typedef vec<4,unsigned char> vec4ub;
+
+
+
+
+
+ namespace GLH_REAL_NAMESPACE
+ {
+ typedef GLH_REAL real;
+
+ class line;
+ class plane;
+ class matrix4;
+ class quaternion;
+ typedef quaternion rotation;
+
+ class vec2 : public vec<2,real>
+ {
+ public:
+ vec2(const real & t = real()) : vec<2,real>(t)
+ {}
+ vec2(const vec<2,real> & t) : vec<2,real>(t)
+ {}
+ vec2(const real * tp) : vec<2,real>(tp)
+ {}
+
+ vec2(real x, real y )
+ { v[0] = x; v[1] = y; }
+
+ void get_value(real & x, real & y) const
+ { x = v[0]; y = v[1]; }
+
+ vec2 & set_value( const real & x, const real & y)
+ { v[0] = x; v[1] = y; return *this; }
+
+ };
+
+
+ class vec3 : public vec<3,real>
+ {
+ public:
+ vec3(const real & t = real()) : vec<3,real>(t)
+ {}
+ vec3(const vec<3,real> & t) : vec<3,real>(t)
+ {}
+ vec3(const real * tp) : vec<3,real>(tp)
+ {}
+
+ vec3(real x, real y, real z)
+ { v[0] = x; v[1] = y; v[2] = z; }
+
+ void get_value(real & x, real & y, real & z) const
+ { x = v[0]; y = v[1]; z = v[2]; }
+
+ vec3 cross( const vec3 &rhs ) const
+ {
+ vec3 rt;
+ rt.v[0] = v[1]*rhs.v[2]-v[2]*rhs.v[1];
+ rt.v[1] = v[2]*rhs.v[0]-v[0]*rhs.v[2];
+ rt.v[2] = v[0]*rhs.v[1]-v[1]*rhs.v[0];
+ return rt;
+ }
+
+ vec3 & set_value( const real & x, const real & y, const real & z)
+ { v[0] = x; v[1] = y; v[2] = z; return *this; }
+
+ };
+
+
+ class vec4 : public vec<4,real>
+ {
+ public:
+ vec4(const real & t = real()) : vec<4,real>(t)
+ {}
+ vec4(const vec<4,real> & t) : vec<4,real>(t)
+ {}
+
+ vec4(const vec<3,real> & t, real fourth)
+
+ { v[0] = t.v[0]; v[1] = t.v[1]; v[2] = t.v[2]; v[3] = fourth; }
+ vec4(const real * tp) : vec<4,real>(tp)
+ {}
+ vec4(real x, real y, real z, real w)
+ { v[0] = x; v[1] = y; v[2] = z; v[3] = w; }
+
+ void get_value(real & x, real & y, real & z, real & w) const
+ { x = v[0]; y = v[1]; z = v[2]; w = v[3]; }
+
+ vec4 & set_value( const real & x, const real & y, const real & z, const real & w)
+ { v[0] = x; v[1] = y; v[2] = z; v[3] = w; return *this; }
+ };
+
+ inline
+ vec3 homogenize(const vec4 & v)
+ {
+ vec3 rt;
+ assert(v.v[3] != GLH_ZERO);
+ rt.v[0] = v.v[0]/v.v[3];
+ rt.v[1] = v.v[1]/v.v[3];
+ rt.v[2] = v.v[2]/v.v[3];
+ return rt;
+ }
+
+
+
+ class line
+ {
+ public:
+
+ line()
+ { set_value(vec3(0,0,0),vec3(0,0,1)); }
+
+ line( const vec3 & p0, const vec3 &p1)
+ { set_value(p0,p1); }
+
+ void set_value( const vec3 &p0, const vec3 &p1)
+ {
+ position = p0;
+ direction = p1-p0;
+ direction.normalize();
+ }
+
+ bool get_closest_points(const line &line2,
+ vec3 &pointOnThis,
+ vec3 &pointOnThat)
+ {
+
+ // quick check to see if parallel -- if so, quit.
+ if(fabs(direction.dot(line2.direction)) == 1.0)
+ return 0;
+ line l2 = line2;
+
+ // Algorithm: Brian Jean
+ //
+ register real u;
+ register real v;
+ vec3 Vr = direction;
+ vec3 Vs = l2.direction;
+ register real Vr_Dot_Vs = Vr.dot(Vs);
+ register real detA = real(1.0 - (Vr_Dot_Vs * Vr_Dot_Vs));
+ vec3 C = l2.position - position;
+ register real C_Dot_Vr = C.dot(Vr);
+ register real C_Dot_Vs = C.dot(Vs);
+
+ u = (C_Dot_Vr - Vr_Dot_Vs * C_Dot_Vs)/detA;
+ v = (C_Dot_Vr * Vr_Dot_Vs - C_Dot_Vs)/detA;
+
+ pointOnThis = position;
+ pointOnThis += direction * u;
+ pointOnThat = l2.position;
+ pointOnThat += l2.direction * v;
+
+ return 1;
+ }
+
+ vec3 get_closest_point(const vec3 &point)
+ {
+ vec3 np = point - position;
+ vec3 rp = direction*direction.dot(np)+position;
+ return rp;
+ }
+
+ const vec3 & get_position() const {return position;}
+
+ const vec3 & get_direction() const {return direction;}
+
+ //protected:
+ vec3 position;
+ vec3 direction;
+ };
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ // matrix
+
+
+ class matrix4
+ {
+
+ public:
+
+ matrix4() { make_identity(); }
+
+ matrix4( real r )
+ { set_value(r); }
+
+ matrix4( real * m )
+ { set_value(m); }
+
+ matrix4( real a00, real a01, real a02, real a03,
+ real a10, real a11, real a12, real a13,
+ real a20, real a21, real a22, real a23,
+ real a30, real a31, real a32, real a33 )
+ {
+ element(0,0) = a00;
+ element(0,1) = a01;
+ element(0,2) = a02;
+ element(0,3) = a03;
+
+ element(1,0) = a10;
+ element(1,1) = a11;
+ element(1,2) = a12;
+ element(1,3) = a13;
+
+ element(2,0) = a20;
+ element(2,1) = a21;
+ element(2,2) = a22;
+ element(2,3) = a23;
+
+ element(3,0) = a30;
+ element(3,1) = a31;
+ element(3,2) = a32;
+ element(3,3) = a33;
+ }
+
+
+ void get_value( real * mp ) const
+ {
+ int c = 0;
+ for(int j=0; j < 4; j++)
+ for(int i=0; i < 4; i++)
+ mp[c++] = element(i,j);
+ }
+
+
+ const real * get_value() const
+ { return m; }
+
+ void set_value( real * mp)
+ {
+ int c = 0;
+ for(int j=0; j < 4; j++)
+ for(int i=0; i < 4; i++)
+ element(i,j) = mp[c++];
+ }
+
+ void set_value( real r )
+ {
+ for(int i=0; i < 4; i++)
+ for(int j=0; j < 4; j++)
+ element(i,j) = r;
+ }
+
+ void make_identity()
+ {
+ element(0,0) = 1.0;
+ element(0,1) = 0.0;
+ element(0,2) = 0.0;
+ element(0,3) = 0.0;
+
+ element(1,0) = 0.0;
+ element(1,1) = 1.0;
+ element(1,2) = 0.0;
+ element(1,3) = 0.0;
+
+ element(2,0) = 0.0;
+ element(2,1) = 0.0;
+ element(2,2) = 1.0;
+ element(2,3) = 0.0;
+
+ element(3,0) = 0.0;
+ element(3,1) = 0.0;
+ element(3,2) = 0.0;
+ element(3,3) = 1.0;
+ }
+
+
+ static matrix4 identity()
+ {
+ static matrix4 mident (
+ 1.0, 0.0, 0.0, 0.0,
+ 0.0, 1.0, 0.0, 0.0,
+ 0.0, 0.0, 1.0, 0.0,
+ 0.0, 0.0, 0.0, 1.0 );
+ return mident;
+ }
+
+
+ void set_scale( real s )
+ {
+ element(0,0) = s;
+ element(1,1) = s;
+ element(2,2) = s;
+ }
+
+ void set_scale( const vec3 & s )
+ {
+ element(0,0) = s.v[0];
+ element(1,1) = s.v[1];
+ element(2,2) = s.v[2];
+ }
+
+
+ void set_translate( const vec3 & t )
+ {
+ element(0,3) = t.v[0];
+ element(1,3) = t.v[1];
+ element(2,3) = t.v[2];
+ }
+
+ void set_row(int r, const vec4 & t)
+ {
+ element(r,0) = t.v[0];
+ element(r,1) = t.v[1];
+ element(r,2) = t.v[2];
+ element(r,3) = t.v[3];
+ }
+
+ void set_column(int c, const vec4 & t)
+ {
+ element(0,c) = t.v[0];
+ element(1,c) = t.v[1];
+ element(2,c) = t.v[2];
+ element(3,c) = t.v[3];
+ }
+
+
+ void get_row(int r, vec4 & t) const
+ {
+ t.v[0] = element(r,0);
+ t.v[1] = element(r,1);
+ t.v[2] = element(r,2);
+ t.v[3] = element(r,3);
+ }
+
+ vec4 get_row(int r) const
+ {
+ vec4 v; get_row(r, v);
+ return v;
+ }
+
+ void get_column(int c, vec4 & t) const
+ {
+ t.v[0] = element(0,c);
+ t.v[1] = element(1,c);
+ t.v[2] = element(2,c);
+ t.v[3] = element(3,c);
+ }
+
+ vec4 get_column(int c) const
+ {
+ vec4 v; get_column(c, v);
+ return v;
+ }
+
+ matrix4 inverse() const
+ {
+ matrix4 minv;
+
+ real r1[8], r2[8], r3[8], r4[8];
+ real *s[4], *tmprow;
+
+ s[0] = &r1[0];
+ s[1] = &r2[0];
+ s[2] = &r3[0];
+ s[3] = &r4[0];
+
+ register int i,j,p,jj;
+ for(i=0;i<4;i++)
+ {
+ for(j=0;j<4;j++)
+ {
+ s[i][j] = element(i,j);
+ if(i==j) s[i][j+4] = 1.0;
+ else s[i][j+4] = 0.0;
+ }
+ }
+ real scp[4];
+ for(i=0;i<4;i++)
+ {
+ scp[i] = real(fabs(s[i][0]));
+ for(j=1;j<4;j++)
+ if(real(fabs(s[i][j])) > scp[i]) scp[i] = real(fabs(s[i][j]));
+ if(scp[i] == 0.0) return minv; // singular matrix!
+ }
+
+ int pivot_to;
+ real scp_max;
+ for(i=0;i<4;i++)
+ {
+ // select pivot row
+ pivot_to = i;
+ scp_max = real(fabs(s[i][i]/scp[i]));
+ // find out which row should be on top
+ for(p=i+1;p<4;p++)
+ if(real(fabs(s[p][i]/scp[p])) > scp_max)
+ { scp_max = real(fabs(s[p][i]/scp[p])); pivot_to = p; }
+ // Pivot if necessary
+ if(pivot_to != i)
+ {
+ tmprow = s[i];
+ s[i] = s[pivot_to];
+ s[pivot_to] = tmprow;
+ real tmpscp;
+ tmpscp = scp[i];
+ scp[i] = scp[pivot_to];
+ scp[pivot_to] = tmpscp;
+ }
+
+ real mji;
+ // perform gaussian elimination
+ for(j=i+1;j<4;j++)
+ {
+ mji = s[j][i]/s[i][i];
+ s[j][i] = 0.0;
+ for(jj=i+1;jj<8;jj++)
+ s[j][jj] -= mji*s[i][jj];
+ }
+ }
+ if(s[3][3] == 0.0) return minv; // singular matrix!
+
+ //
+ // Now we have an upper triangular matrix.
+ //
+ // x x x x | y y y y
+ // 0 x x x | y y y y
+ // 0 0 x x | y y y y
+ // 0 0 0 x | y y y y
+ //
+ // we'll back substitute to get the inverse
+ //
+ // 1 0 0 0 | z z z z
+ // 0 1 0 0 | z z z z
+ // 0 0 1 0 | z z z z
+ // 0 0 0 1 | z z z z
+ //
+
+ real mij;
+ for(i=3;i>0;i--)
+ {
+ for(j=i-1;j > -1; j--)
+ {
+ mij = s[j][i]/s[i][i];
+ for(jj=j+1;jj<8;jj++)
+ s[j][jj] -= mij*s[i][jj];
+ }
+ }
+
+ for(i=0;i<4;i++)
+ for(j=0;j<4;j++)
+ minv(i,j) = s[i][j+4] / s[i][i];
+
+ return minv;
+ }
+
+
+ matrix4 transpose() const
+ {
+ matrix4 mtrans;
+
+ for(int i=0;i<4;i++)
+ for(int j=0;j<4;j++)
+ mtrans(i,j) = element(j,i);
+ return mtrans;
+ }
+
+ matrix4 & mult_right( const matrix4 & b )
+ {
+ matrix4 mt(*this);
+ set_value(real(0));
+
+ for(int i=0; i < 4; i++)
+ for(int j=0; j < 4; j++)
+ for(int c=0; c < 4; c++)
+ element(i,j) += mt(i,c) * b(c,j);
+ return *this;
+ }
+
+ matrix4 & mult_left( const matrix4 & b )
+ {
+ matrix4 mt(*this);
+ set_value(real(0));
+
+ for(int i=0; i < 4; i++)
+ for(int j=0; j < 4; j++)
+ for(int c=0; c < 4; c++)
+ element(i,j) += b(i,c) * mt(c,j);
+ return *this;
+ }
+
+ // dst = M * src
+ void mult_matrix_vec( const vec3 &src, vec3 &dst ) const
+ {
+ real w = (
+ src.v[0] * element(3,0) +
+ src.v[1] * element(3,1) +
+ src.v[2] * element(3,2) +
+ element(3,3) );
+
+ assert(w != GLH_ZERO);
+
+ dst.v[0] = (
+ src.v[0] * element(0,0) +
+ src.v[1] * element(0,1) +
+ src.v[2] * element(0,2) +
+ element(0,3) ) / w;
+ dst.v[1] = (
+ src.v[0] * element(1,0) +
+ src.v[1] * element(1,1) +
+ src.v[2] * element(1,2) +
+ element(1,3) ) / w;
+ dst.v[2] = (
+ src.v[0] * element(2,0) +
+ src.v[1] * element(2,1) +
+ src.v[2] * element(2,2) +
+ element(2,3) ) / w;
+ }
+
+ void mult_matrix_vec( vec3 & src_and_dst) const
+ { mult_matrix_vec(vec3(src_and_dst), src_and_dst); }
+
+
+ // dst = src * M
+ void mult_vec_matrix( const vec3 &src, vec3 &dst ) const
+ {
+ real w = (
+ src.v[0] * element(0,3) +
+ src.v[1] * element(1,3) +
+ src.v[2] * element(2,3) +
+ element(3,3) );
+
+ assert(w != GLH_ZERO);
+
+ dst.v[0] = (
+ src.v[0] * element(0,0) +
+ src.v[1] * element(1,0) +
+ src.v[2] * element(2,0) +
+ element(3,0) ) / w;
+ dst.v[1] = (
+ src.v[0] * element(0,1) +
+ src.v[1] * element(1,1) +
+ src.v[2] * element(2,1) +
+ element(3,1) ) / w;
+ dst.v[2] = (
+ src.v[0] * element(0,2) +
+ src.v[1] * element(1,2) +
+ src.v[2] * element(2,2) +
+ element(3,2) ) / w;
+ }
+
+
+ void mult_vec_matrix( vec3 & src_and_dst) const
+ { mult_vec_matrix(vec3(src_and_dst), src_and_dst); }
+
+ // dst = M * src
+ void mult_matrix_vec( const vec4 &src, vec4 &dst ) const
+ {
+ dst.v[0] = (
+ src.v[0] * element(0,0) +
+ src.v[1] * element(0,1) +
+ src.v[2] * element(0,2) +
+ src.v[3] * element(0,3));
+ dst.v[1] = (
+ src.v[0] * element(1,0) +
+ src.v[1] * element(1,1) +
+ src.v[2] * element(1,2) +
+ src.v[3] * element(1,3));
+ dst.v[2] = (
+ src.v[0] * element(2,0) +
+ src.v[1] * element(2,1) +
+ src.v[2] * element(2,2) +
+ src.v[3] * element(2,3));
+ dst.v[3] = (
+ src.v[0] * element(3,0) +
+ src.v[1] * element(3,1) +
+ src.v[2] * element(3,2) +
+ src.v[3] * element(3,3));
+ }
+
+ void mult_matrix_vec( vec4 & src_and_dst) const
+ { mult_matrix_vec(vec4(src_and_dst), src_and_dst); }
+
+
+ // dst = src * M
+ void mult_vec_matrix( const vec4 &src, vec4 &dst ) const
+ {
+ dst.v[0] = (
+ src.v[0] * element(0,0) +
+ src.v[1] * element(1,0) +
+ src.v[2] * element(2,0) +
+ src.v[3] * element(3,0));
+ dst.v[1] = (
+ src.v[0] * element(0,1) +
+ src.v[1] * element(1,1) +
+ src.v[2] * element(2,1) +
+ src.v[3] * element(3,1));
+ dst.v[2] = (
+ src.v[0] * element(0,2) +
+ src.v[1] * element(1,2) +
+ src.v[2] * element(2,2) +
+ src.v[3] * element(3,2));
+ dst.v[3] = (
+ src.v[0] * element(0,3) +
+ src.v[1] * element(1,3) +
+ src.v[2] * element(2,3) +
+ src.v[3] * element(3,3));
+ }
+
+
+ void mult_vec_matrix( vec4 & src_and_dst) const
+ { mult_vec_matrix(vec4(src_and_dst), src_and_dst); }
+
+
+ // dst = M * src
+ void mult_matrix_dir( const vec3 &src, vec3 &dst ) const
+ {
+ dst.v[0] = (
+ src.v[0] * element(0,0) +
+ src.v[1] * element(0,1) +
+ src.v[2] * element(0,2) ) ;
+ dst.v[1] = (
+ src.v[0] * element(1,0) +
+ src.v[1] * element(1,1) +
+ src.v[2] * element(1,2) ) ;
+ dst.v[2] = (
+ src.v[0] * element(2,0) +
+ src.v[1] * element(2,1) +
+ src.v[2] * element(2,2) ) ;
+ }
+
+
+ void mult_matrix_dir( vec3 & src_and_dst) const
+ { mult_matrix_dir(vec3(src_and_dst), src_and_dst); }
+
+
+ // dst = src * M
+ void mult_dir_matrix( const vec3 &src, vec3 &dst ) const
+ {
+ dst.v[0] = (
+ src.v[0] * element(0,0) +
+ src.v[1] * element(1,0) +
+ src.v[2] * element(2,0) ) ;
+ dst.v[1] = (
+ src.v[0] * element(0,1) +
+ src.v[1] * element(1,1) +
+ src.v[2] * element(2,1) ) ;
+ dst.v[2] = (
+ src.v[0] * element(0,2) +
+ src.v[1] * element(1,2) +
+ src.v[2] * element(2,2) ) ;
+ }
+
+
+ void mult_dir_matrix( vec3 & src_and_dst) const
+ { mult_dir_matrix(vec3(src_and_dst), src_and_dst); }
+
+
+ real & operator () (int row, int col)
+ { return element(row,col); }
+
+ const real & operator () (int row, int col) const
+ { return element(row,col); }
+
+ real & element (int row, int col)
+ { return m[row | (col<<2)]; }
+
+ const real & element (int row, int col) const
+ { return m[row | (col<<2)]; }
+
+ matrix4 & operator *= ( const matrix4 & mat )
+ {
+ mult_right( mat );
+ return *this;
+ }
+
+ matrix4 & operator *= ( const real & r )
+ {
+ for (int i = 0; i < 4; ++i)
+ {
+ element(0,i) *= r;
+ element(1,i) *= r;
+ element(2,i) *= r;
+ element(3,i) *= r;
+ }
+ return *this;
+ }
+
+ matrix4 & operator += ( const matrix4 & mat )
+ {
+ for (int i = 0; i < 4; ++i)
+ {
+ element(0,i) += mat.element(0,i);
+ element(1,i) += mat.element(1,i);
+ element(2,i) += mat.element(2,i);
+ element(3,i) += mat.element(3,i);
+ }
+ return *this;
+ }
+
+ friend matrix4 operator * ( const matrix4 & m1, const matrix4 & m2 );
+ friend bool operator == ( const matrix4 & m1, const matrix4 & m2 );
+ friend bool operator != ( const matrix4 & m1, const matrix4 & m2 );
+
+ //protected:
+ real m[16];
+ };
+
+ inline
+ matrix4 operator * ( const matrix4 & m1, const matrix4 & m2 )
+ {
+ matrix4 product;
+
+ product = m1;
+ product.mult_right(m2);
+
+ return product;
+ }
+
+ inline
+ bool operator ==( const matrix4 &m1, const matrix4 &m2 )
+ {
+ return (
+ m1(0,0) == m2(0,0) &&
+ m1(0,1) == m2(0,1) &&
+ m1(0,2) == m2(0,2) &&
+ m1(0,3) == m2(0,3) &&
+ m1(1,0) == m2(1,0) &&
+ m1(1,1) == m2(1,1) &&
+ m1(1,2) == m2(1,2) &&
+ m1(1,3) == m2(1,3) &&
+ m1(2,0) == m2(2,0) &&
+ m1(2,1) == m2(2,1) &&
+ m1(2,2) == m2(2,2) &&
+ m1(2,3) == m2(2,3) &&
+ m1(3,0) == m2(3,0) &&
+ m1(3,1) == m2(3,1) &&
+ m1(3,2) == m2(3,2) &&
+ m1(3,3) == m2(3,3) );
+ }
+
+ inline
+ bool operator != ( const matrix4 & m1, const matrix4 & m2 )
+ { return !( m1 == m2 ); }
+
+
+
+
+
+
+
+
+
+
+
+
+
+ class quaternion
+ {
+ public:
+
+ quaternion()
+ {
+ *this = identity();
+ }
+
+ quaternion( const real v[4] )
+ {
+ set_value( v );
+ }
+
+
+ quaternion( real q0, real q1, real q2, real q3 )
+ {
+ set_value( q0, q1, q2, q3 );
+ }
+
+
+ quaternion( const matrix4 & m )
+ {
+ set_value( m );
+ }
+
+
+ quaternion( const vec3 &axis, real radians )
+ {
+ set_value( axis, radians );
+ }
+
+
+ quaternion( const vec3 &rotateFrom, const vec3 &rotateTo )
+ {
+ set_value( rotateFrom, rotateTo );
+ }
+
+ quaternion( const vec3 & from_look, const vec3 & from_up,
+ const vec3 & to_look, const vec3& to_up)
+ {
+ set_value(from_look, from_up, to_look, to_up);
+ }
+
+ const real * get_value() const
+ {
+ return &q[0];
+ }
+
+ void get_value( real &q0, real &q1, real &q2, real &q3 ) const
+ {
+ q0 = q[0];
+ q1 = q[1];
+ q2 = q[2];
+ q3 = q[3];
+ }
+
+ quaternion & set_value( real q0, real q1, real q2, real q3 )
+ {
+ q[0] = q0;
+ q[1] = q1;
+ q[2] = q2;
+ q[3] = q3;
+ counter = 0;
+ return *this;
+ }
+
+ void get_value( vec3 &axis, real &radians ) const
+ {
+ radians = real(acos( q[3] ) * GLH_TWO);
+ if ( radians == GLH_ZERO )
+ axis = vec3( 0.0, 0.0, 1.0 );
+ else
+ {
+ axis.v[0] = q[0];
+ axis.v[1] = q[1];
+ axis.v[2] = q[2];
+ axis.normalize();
+ }
+ }
+
+ void get_value( matrix4 & m ) const
+ {
+ real s, xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
+
+ real norm = q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3];
+
+ s = (equivalent(norm,GLH_ZERO)) ? GLH_ZERO : ( GLH_TWO / norm );
+
+ xs = q[0] * s;
+ ys = q[1] * s;
+ zs = q[2] * s;
+
+ wx = q[3] * xs;
+ wy = q[3] * ys;
+ wz = q[3] * zs;
+
+ xx = q[0] * xs;
+ xy = q[0] * ys;
+ xz = q[0] * zs;
+
+ yy = q[1] * ys;
+ yz = q[1] * zs;
+ zz = q[2] * zs;
+
+ m(0,0) = real( GLH_ONE - ( yy + zz ));
+ m(1,0) = real ( xy + wz );
+ m(2,0) = real ( xz - wy );
+
+ m(0,1) = real ( xy - wz );
+ m(1,1) = real ( GLH_ONE - ( xx + zz ));
+ m(2,1) = real ( yz + wx );
+
+ m(0,2) = real ( xz + wy );
+ m(1,2) = real ( yz - wx );
+ m(2,2) = real ( GLH_ONE - ( xx + yy ));
+
+ m(3,0) = m(3,1) = m(3,2) = m(0,3) = m(1,3) = m(2,3) = GLH_ZERO;
+ m(3,3) = GLH_ONE;
+ }
+
+ quaternion & set_value( const real * qp )
+ {
+ memcpy(q,qp,sizeof(real) * 4);
+
+ counter = 0;
+ return *this;
+ }
+
+ quaternion & set_value( const matrix4 & m )
+ {
+ real tr, s;
+ int i, j, k;
+ const int nxt[3] = { 1, 2, 0 };
+
+ tr = m(0,0) + m(1,1) + m(2,2);
+
+ if ( tr > GLH_ZERO )
+ {
+ s = real(sqrt( tr + m(3,3) ));
+ q[3] = real ( s * 0.5 );
+ s = real(0.5) / s;
+
+ q[0] = real ( ( m(1,2) - m(2,1) ) * s );
+ q[1] = real ( ( m(2,0) - m(0,2) ) * s );
+ q[2] = real ( ( m(0,1) - m(1,0) ) * s );
+ }
+ else
+ {
+ i = 0;
+ if ( m(1,1) > m(0,0) )
+ i = 1;
+
+ if ( m(2,2) > m(i,i) )
+ i = 2;
+
+ j = nxt[i];
+ k = nxt[j];
+
+ s = real(sqrt( ( m(i,j) - ( m(j,j) + m(k,k) )) + GLH_ONE ));
+
+ q[i] = real ( s * 0.5 );
+ s = real(0.5 / s);
+
+ q[3] = real ( ( m(j,k) - m(k,j) ) * s );
+ q[j] = real ( ( m(i,j) + m(j,i) ) * s );
+ q[k] = real ( ( m(i,k) + m(k,i) ) * s );
+ }
+
+ counter = 0;
+ return *this;
+ }
+
+ quaternion & set_value( const vec3 &axis, real theta )
+ {
+ real sqnorm = axis.square_norm();
+
+ if (sqnorm <= GLH_EPSILON)
+ {
+ // axis too small.
+ x = y = z = 0.0;
+ w = 1.0;
+ }
+ else
+ {
+ theta *= real(0.5);
+ real sin_theta = real(sin(theta));
+
+ if (!equivalent(sqnorm,GLH_ONE))
+ sin_theta /= real(sqrt(sqnorm));
+ x = sin_theta * axis.v[0];
+ y = sin_theta * axis.v[1];
+ z = sin_theta * axis.v[2];
+ w = real(cos(theta));
+ }
+ return *this;
+ }
+
+ quaternion & set_value( const vec3 & rotateFrom, const vec3 & rotateTo )
+ {
+ vec3 p1, p2;
+ real alpha;
+
+ p1 = rotateFrom;
+ p1.normalize();
+ p2 = rotateTo;
+ p2.normalize();
+
+ alpha = p1.dot(p2);
+
+ if(equivalent(alpha,GLH_ONE))
+ {
+ *this = identity();
+ return *this;
+ }
+
+ // ensures that the anti-parallel case leads to a positive dot
+ if(equivalent(alpha,-GLH_ONE))
+ {
+ vec3 v;
+
+ if(p1.v[0] != p1.v[1] || p1.v[0] != p1.v[2])
+ v = vec3(p1.v[1], p1.v[2], p1.v[0]);
+ else
+ v = vec3(-p1.v[0], p1.v[1], p1.v[2]);
+
+ v -= p1 * p1.dot(v);
+ v.normalize();
+
+ set_value(v, GLH_PI);
+ return *this;
+ }
+
+ p1 = p1.cross(p2);
+ p1.normalize();
+ set_value(p1,real(acos(alpha)));
+
+ counter = 0;
+ return *this;
+ }
+
+ quaternion & set_value( const vec3 & from_look, const vec3 & from_up,
+ const vec3 & to_look, const vec3 & to_up)
+ {
+ quaternion r_look = quaternion(from_look, to_look);
+
+ vec3 rotated_from_up(from_up);
+ r_look.mult_vec(rotated_from_up);
+
+ quaternion r_twist = quaternion(rotated_from_up, to_up);
+
+ *this = r_twist;
+ *this *= r_look;
+ return *this;
+ }
+
+ quaternion & operator *= ( const quaternion & qr )
+ {
+ quaternion ql(*this);
+
+ w = ql.w * qr.w - ql.x * qr.x - ql.y * qr.y - ql.z * qr.z;
+ x = ql.w * qr.x + ql.x * qr.w + ql.y * qr.z - ql.z * qr.y;
+ y = ql.w * qr.y + ql.y * qr.w + ql.z * qr.x - ql.x * qr.z;
+ z = ql.w * qr.z + ql.z * qr.w + ql.x * qr.y - ql.y * qr.x;
+
+ counter += qr.counter;
+ counter++;
+ counter_normalize();
+ return *this;
+ }
+
+ void normalize()
+ {
+ real rnorm = GLH_ONE / real(sqrt(w * w + x * x + y * y + z * z));
+ if (equivalent(rnorm, GLH_ZERO))
+ return;
+ x *= rnorm;
+ y *= rnorm;
+ z *= rnorm;
+ w *= rnorm;
+ counter = 0;
+ }
+
+ friend bool operator == ( const quaternion & q1, const quaternion & q2 );
+
+ friend bool operator != ( const quaternion & q1, const quaternion & q2 );
+
+ friend quaternion operator * ( const quaternion & q1, const quaternion & q2 );
+
+ bool equals( const quaternion & r, real tolerance ) const
+ {
+ real t;
+
+ t = (
+ (q[0]-r.q[0])*(q[0]-r.q[0]) +
+ (q[1]-r.q[1])*(q[1]-r.q[1]) +
+ (q[2]-r.q[2])*(q[2]-r.q[2]) +
+ (q[3]-r.q[3])*(q[3]-r.q[3]) );
+ if(t > GLH_EPSILON)
+ return false;
+ return 1;
+ }
+
+ quaternion & conjugate()
+ {
+ q[0] *= -GLH_ONE;
+ q[1] *= -GLH_ONE;
+ q[2] *= -GLH_ONE;
+ return *this;
+ }
+
+ quaternion & invert()
+ {
+ return conjugate();
+ }
+
+ quaternion inverse() const
+ {
+ quaternion r = *this;
+ return r.invert();
+ }
+
+ //
+ // Quaternion multiplication with cartesian vector
+ // v' = q*v*q(star)
+ //
+ void mult_vec( const vec3 &src, vec3 &dst ) const
+ {
+ real v_coef = w * w - x * x - y * y - z * z;
+ real u_coef = GLH_TWO * (src.v[0] * x + src.v[1] * y + src.v[2] * z);
+ real c_coef = GLH_TWO * w;
+
+ dst.v[0] = v_coef * src.v[0] + u_coef * x + c_coef * (y * src.v[2] - z * src.v[1]);
+ dst.v[1] = v_coef * src.v[1] + u_coef * y + c_coef * (z * src.v[0] - x * src.v[2]);
+ dst.v[2] = v_coef * src.v[2] + u_coef * z + c_coef * (x * src.v[1] - y * src.v[0]);
+ }
+
+ void mult_vec( vec3 & src_and_dst) const
+ {
+ mult_vec(vec3(src_and_dst), src_and_dst);
+ }
+
+ void scale_angle( real scaleFactor )
+ {
+ vec3 axis;
+ real radians;
+
+ get_value(axis, radians);
+ radians *= scaleFactor;
+ set_value(axis, radians);
+ }
+
+ static quaternion slerp( const quaternion & p, const quaternion & q, real alpha )
+ {
+ quaternion r;
+
+ real cos_omega = p.x * q.x + p.y * q.y + p.z * q.z + p.w * q.w;
+ // if B is on opposite hemisphere from A, use -B instead
+
+ int bflip;
+ if ( ( bflip = (cos_omega < GLH_ZERO)) )
+ cos_omega = -cos_omega;
+
+ // complementary interpolation parameter
+ real beta = GLH_ONE - alpha;
+
+ if(cos_omega <= GLH_ONE - GLH_EPSILON)
+ return p;
+
+ real omega = real(acos(cos_omega));
+ real one_over_sin_omega = GLH_ONE / real(sin(omega));
+
+ beta = real(sin(omega*beta) * one_over_sin_omega);
+ alpha = real(sin(omega*alpha) * one_over_sin_omega);
+
+ if (bflip)
+ alpha = -alpha;
+
+ r.x = beta * p.q[0]+ alpha * q.q[0];
+ r.y = beta * p.q[1]+ alpha * q.q[1];
+ r.z = beta * p.q[2]+ alpha * q.q[2];
+ r.w = beta * p.q[3]+ alpha * q.q[3];
+ return r;
+ }
+
+ static quaternion identity()
+ {
+ static quaternion ident( vec3( 0.0, 0.0, 0.0 ), GLH_ONE );
+ return ident;
+ }
+
+ real & operator []( int i )
+ {
+ assert(i < 4);
+ return q[i];
+ }
+
+ const real & operator []( int i ) const
+ {
+ assert(i < 4);
+ return q[i];
+ }
+
+ protected:
+
+ void counter_normalize()
+ {
+ if (counter > GLH_QUATERNION_NORMALIZATION_THRESHOLD)
+ normalize();
+ }
+
+ union
+ {
+ struct
+ {
+ real q[4];
+ };
+ struct
+ {
+ real x;
+ real y;
+ real z;
+ real w;
+ };
+ };
+
+ // renormalization counter
+ unsigned char counter;
+ };
+
+ inline
+ bool operator == ( const quaternion & q1, const quaternion & q2 )
+ {
+ return (equivalent(q1.x, q2.x) &&
+ equivalent(q1.y, q2.y) &&
+ equivalent(q1.z, q2.z) &&
+ equivalent(q1.w, q2.w) );
+ }
+
+ inline
+ bool operator != ( const quaternion & q1, const quaternion & q2 )
+ {
+ return ! ( q1 == q2 );
+ }
+
+ inline
+ quaternion operator * ( const quaternion & q1, const quaternion & q2 )
+ {
+ quaternion r(q1);
+ r *= q2;
+ return r;
+ }
+
+
+
+
+
+
+
+
+
+
+ class plane
+ {
+ public:
+
+ plane()
+ {
+ planedistance = 0.0;
+ planenormal.set_value( 0.0, 0.0, 1.0 );
+ }
+
+
+ plane( const vec3 &p0, const vec3 &p1, const vec3 &p2 )
+ {
+ vec3 v0 = p1 - p0;
+ vec3 v1 = p2 - p0;
+ planenormal = v0.cross(v1);
+ planenormal.normalize();
+ planedistance = p0.dot(planenormal);
+ }
+
+ plane( const vec3 &normal, real distance )
+ {
+ planedistance = distance;
+ planenormal = normal;
+ planenormal.normalize();
+ }
+
+ plane( const vec3 &normal, const vec3 &point )
+ {
+ planenormal = normal;
+ planenormal.normalize();
+ planedistance = point.dot(planenormal);
+ }
+
+ void offset( real d )
+ {
+ planedistance += d;
+ }
+
+ bool intersect( const line &l, vec3 &intersection ) const
+ {
+ vec3 pos, dir;
+ vec3 pn = planenormal;
+ real pd = planedistance;
+
+ pos = l.get_position();
+ dir = l.get_direction();
+
+ if(dir.dot(pn) == 0.0) return 0;
+ pos -= pn*pd;
+ // now we're talking about a plane passing through the origin
+ if(pos.dot(pn) < 0.0) pn.negate();
+ if(dir.dot(pn) > 0.0) dir.negate();
+ vec3 ppos = pn * pos.dot(pn);
+ pos = (ppos.length()/dir.dot(-pn))*dir;
+ intersection = l.get_position();
+ intersection += pos;
+ return 1;
+ }
+ void transform( const matrix4 &matrix )
+ {
+ matrix4 invtr = matrix.inverse();
+ invtr = invtr.transpose();
+
+ vec3 pntOnplane = planenormal * planedistance;
+ vec3 newPntOnplane;
+ vec3 newnormal;
+
+ invtr.mult_dir_matrix(planenormal, newnormal);
+ matrix.mult_vec_matrix(pntOnplane, newPntOnplane);
+
+ newnormal.normalize();
+ planenormal = newnormal;
+ planedistance = newPntOnplane.dot(planenormal);
+ }
+
+ bool is_in_half_space( const vec3 &point ) const
+ {
+
+ if(( point.dot(planenormal) - planedistance) < 0.0)
+ return 0;
+ return 1;
+ }
+
+
+ real distance( const vec3 & point ) const
+ {
+ return planenormal.dot(point - planenormal*planedistance);
+ }
+
+ const vec3 &get_normal() const
+ {
+ return planenormal;
+ }
+
+
+ real get_distance_from_origin() const
+ {
+ return planedistance;
+ }
+
+
+ friend bool operator == ( const plane & p1, const plane & p2 );
+
+
+ friend bool operator != ( const plane & p1, const plane & p2 );
+
+ //protected:
+ vec3 planenormal;
+ real planedistance;
+ };
+
+ inline
+ bool operator == (const plane & p1, const plane & p2 )
+ {
+ return ( p1.planedistance == p2.planedistance && p1.planenormal == p2.planenormal);
+ }
+
+ inline
+ bool operator != ( const plane & p1, const plane & p2 )
+ { return ! (p1 == p2); }
+
+
+
+ } // "ns_##GLH_REAL"
+
+ // make common typedefs...
+#ifdef GLH_REAL_IS_FLOAT
+ typedef GLH_REAL_NAMESPACE::vec2 vec2f;
+ typedef GLH_REAL_NAMESPACE::vec3 vec3f;
+ typedef GLH_REAL_NAMESPACE::vec4 vec4f;
+ typedef GLH_REAL_NAMESPACE::quaternion quaternionf;
+ typedef GLH_REAL_NAMESPACE::quaternion rotationf;
+ typedef GLH_REAL_NAMESPACE::line linef;
+ typedef GLH_REAL_NAMESPACE::plane planef;
+ typedef GLH_REAL_NAMESPACE::matrix4 matrix4f;
+#endif
+
+
+
+
+} // namespace glh
+
+
+
+#endif
+
--
A client for connecting to 3D metaverses such as Linden Labs Secondlife(tm) and OpenSim grids
More information about the Pkg-games-commits
mailing list