[hamradio-commits] [gnss-sdr] 46/149: Added 16 bits short int complex ultra-fast resampler, carrier wipe-off and correlator kernels (250% faster than gr_complex) enabled in tracking GPS_L1_CA_DLL_PLL_C_Aid_Tracking_16sc tracking

Carles Fernandez carles_fernandez-guest at moszumanska.debian.org
Sat Feb 6 19:43:00 UTC 2016


This is an automated email from the git hooks/post-receive script.

carles_fernandez-guest pushed a commit to branch next
in repository gnss-sdr.

commit 5ba12c6fdb1f711b79faba628593b8c3566e0f31
Author: Javier Arribas <javiarribas at gmail.com>
Date:   Mon Jan 11 16:49:37 2016 +0100

    Added 16 bits short int complex ultra-fast resampler,
    carrier wipe-off and correlator kernels (250% faster than
    gr_complex) enabled in tracking GPS_L1_CA_DLL_PLL_C_Aid_Tracking_16sc
    tracking
---
 conf/gnss-sdr_Hybrid_byte_sim.conf                 |   2 +-
 src/algorithms/tracking/adapters/CMakeLists.txt    |   3 +-
 .../gps_l1_ca_dll_pll_c_aid_tracking_16sc.cc       | 159 ++++++
 .../gps_l1_ca_dll_pll_c_aid_tracking_16sc.h        | 114 ++++
 .../tracking/gnuradio_blocks/CMakeLists.txt        |   5 +-
 .../gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.cc    | 612 +++++++++++++++++++++
 .../gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h     | 189 +++++++
 .../gps_l1_ca_dll_pll_tracking_gpu_cc_old.cc       | 606 ++++++++++++++++++++
 src/algorithms/tracking/libs/CMakeLists.txt        |   1 +
 .../tracking/libs/cpu_multicorrelator_16sc.cc      | 194 +++++++
 .../tracking/libs/cpu_multicorrelator_16sc.h       |  73 +++
 .../tracking/libs/saturated_arithmetic.h           |  31 ++
 .../libs/volk_gnsssdr_16ic_resampler_16ic.h        | 171 ++++++
 .../libs/volk_gnsssdr_16ic_x2_dot_prod_16ic.h      | 152 +++++
 .../libs/volk_gnsssdr_16ic_x2_multiply_16ic.h      | 117 ++++
 .../libs/volk_gnsssdr_16ic_xn_dot_prod_16ic_xn.h   | 175 ++++++
 .../libs/volk_gnsssdr_16ic_xn_resampler_16ic_xn.h  | 172 ++++++
 src/core/receiver/gnss_block_factory.cc            |  13 +
 18 files changed, 2784 insertions(+), 5 deletions(-)

diff --git a/conf/gnss-sdr_Hybrid_byte_sim.conf b/conf/gnss-sdr_Hybrid_byte_sim.conf
index 7ab2662..9855dca 100644
--- a/conf/gnss-sdr_Hybrid_byte_sim.conf
+++ b/conf/gnss-sdr_Hybrid_byte_sim.conf
@@ -158,7 +158,7 @@ Resampler.sample_freq_out=4000000
 
 ;######### CHANNELS GLOBAL CONFIG ############
 ;#count: Number of available GPS satellite channels.
-Channels_1C.count=12
+Channels_1C.count=1
 ;#count: Number of available Galileo satellite channels.
 Channels_1B.count=0
 ;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
diff --git a/src/algorithms/tracking/adapters/CMakeLists.txt b/src/algorithms/tracking/adapters/CMakeLists.txt
index 993c578..8b35e50 100644
--- a/src/algorithms/tracking/adapters/CMakeLists.txt
+++ b/src/algorithms/tracking/adapters/CMakeLists.txt
@@ -32,9 +32,10 @@ set(TRACKING_ADAPTER_SOURCES
      gps_l1_ca_tcp_connector_tracking.cc
      galileo_e5a_dll_pll_tracking.cc
      gps_l2_m_dll_pll_tracking.cc
+     gps_l1_ca_dll_pll_c_aid_tracking_16sc.cc
      ${OPT_TRACKING_ADAPTERS}
 )
-
+ 
 include_directories(
      $(CMAKE_CURRENT_SOURCE_DIR)
      ${CMAKE_SOURCE_DIR}/src/core/system_parameters
diff --git a/src/algorithms/tracking/adapters/gps_l1_ca_dll_pll_c_aid_tracking_16sc.cc b/src/algorithms/tracking/adapters/gps_l1_ca_dll_pll_c_aid_tracking_16sc.cc
new file mode 100644
index 0000000..c89158b
--- /dev/null
+++ b/src/algorithms/tracking/adapters/gps_l1_ca_dll_pll_c_aid_tracking_16sc.cc
@@ -0,0 +1,159 @@
+/*!
+ * \file gps_l1_ca_dll_pll_c_aid_tracking_16sc.cc
+ * \brief Implementation of an adapter of a DLL+PLL tracking loop block
+ * for GPS L1 C/A to a TrackingInterface
+ * \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
+ *         Javier Arribas, 2011. jarribas(at)cttc.es
+ *
+ * Code DLL + carrier PLL according to the algorithms described in:
+ * K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
+ * A Software-Defined GPS and Galileo Receiver. A Single-Frequency
+ * Approach, Birkhauser, 2007
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+
+#include "gps_l1_ca_dll_pll_c_aid_tracking_16sc.h"
+#include <glog/logging.h>
+#include "GPS_L1_CA.h"
+#include "configuration_interface.h"
+
+
+using google::LogMessage;
+
+GpsL1CaDllPllCAidTracking16sc::GpsL1CaDllPllCAidTracking16sc(
+        ConfigurationInterface* configuration, std::string role,
+        unsigned int in_streams, unsigned int out_streams,
+        boost::shared_ptr<gr::msg_queue> queue) :
+                role_(role), in_streams_(in_streams), out_streams_(out_streams),
+                queue_(queue)
+{
+    DLOG(INFO) << "role " << role;
+    //################# CONFIGURATION PARAMETERS ########################
+    int fs_in;
+    int vector_length;
+    int f_if;
+    bool dump;
+    std::string dump_filename;
+    std::string item_type;
+    std::string default_item_type = "gr_complex";
+    float pll_bw_hz;
+    float dll_bw_hz;
+    float early_late_space_chips;
+    item_type = configuration->property(role + ".item_type", default_item_type);
+    //vector_length = configuration->property(role + ".vector_length", 2048);
+    fs_in = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
+    f_if = configuration->property(role + ".if", 0);
+    dump = configuration->property(role + ".dump", false);
+    pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
+    dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
+    early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
+    std::string default_dump_filename = "./track_ch";
+    dump_filename = configuration->property(role + ".dump_filename",
+            default_dump_filename); //unused!
+    vector_length = std::round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
+
+    //################# MAKE TRACKING GNURadio object ###################
+    if (item_type.compare("gr_complex") == 0)
+        {
+            item_size_ = sizeof(gr_complex);
+            tracking_ = gps_l1_ca_dll_pll_c_aid_make_tracking_16sc_cc(
+                    f_if,
+                    fs_in,
+                    vector_length,
+                    queue_,
+                    dump,
+                    dump_filename,
+                    pll_bw_hz,
+                    dll_bw_hz,
+                    early_late_space_chips);
+        }
+    else
+        {
+            item_size_ = sizeof(gr_complex);
+            LOG(WARNING) << item_type << " unknown tracking item type.";
+        }
+    channel_ = 0;
+    channel_internal_queue_ = 0;
+    DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")";
+}
+
+
+GpsL1CaDllPllCAidTracking16sc::~GpsL1CaDllPllCAidTracking16sc()
+{}
+
+
+void GpsL1CaDllPllCAidTracking16sc::start_tracking()
+{
+    tracking_->start_tracking();
+}
+
+/*
+ * Set tracking channel unique ID
+ */
+void GpsL1CaDllPllCAidTracking16sc::set_channel(unsigned int channel)
+{
+    channel_ = channel;
+    tracking_->set_channel(channel);
+}
+
+/*
+ * Set tracking channel internal queue
+ */
+void GpsL1CaDllPllCAidTracking16sc::set_channel_queue(
+        concurrent_queue<int> *channel_internal_queue)
+{
+    channel_internal_queue_ = channel_internal_queue;
+    tracking_->set_channel_queue(channel_internal_queue_);
+}
+
+void GpsL1CaDllPllCAidTracking16sc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
+{
+    tracking_->set_gnss_synchro(p_gnss_synchro);
+}
+
+void GpsL1CaDllPllCAidTracking16sc::connect(gr::top_block_sptr top_block)
+{
+	if(top_block) { /* top_block is not null */};
+	//nothing to connect, now the tracking uses gr_sync_decimator
+}
+
+void GpsL1CaDllPllCAidTracking16sc::disconnect(gr::top_block_sptr top_block)
+{
+	if(top_block) { /* top_block is not null */};
+	//nothing to disconnect, now the tracking uses gr_sync_decimator
+}
+
+gr::basic_block_sptr GpsL1CaDllPllCAidTracking16sc::get_left_block()
+{
+    return tracking_;
+}
+
+gr::basic_block_sptr GpsL1CaDllPllCAidTracking16sc::get_right_block()
+{
+    return tracking_;
+}
+
diff --git a/src/algorithms/tracking/adapters/gps_l1_ca_dll_pll_c_aid_tracking_16sc.h b/src/algorithms/tracking/adapters/gps_l1_ca_dll_pll_c_aid_tracking_16sc.h
new file mode 100644
index 0000000..eb95c7c
--- /dev/null
+++ b/src/algorithms/tracking/adapters/gps_l1_ca_dll_pll_c_aid_tracking_16sc.h
@@ -0,0 +1,114 @@
+/*!
+ * \file gps_l1_ca_dll_pll_c_aid_tracking_16sc.h
+ * \brief  Interface of an adapter of a DLL+PLL tracking loop block
+ * for GPS L1 C/A to a TrackingInterface
+ * \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
+ *         Javier Arribas, 2011. jarribas(at)cttc.es
+ *
+ * Code DLL + carrier PLL according to the algorithms described in:
+ * K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
+ * A Software-Defined GPS and Galileo Receiver. A Single-Frequency
+ * Approach, Birkha user, 2007
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_H_
+#define GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_H_
+
+#include <string>
+#include <gnuradio/msg_queue.h>
+#include "tracking_interface.h"
+#include "gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h"
+
+
+class ConfigurationInterface;
+
+/*!
+ * \brief This class implements a code DLL + carrier PLL tracking loop
+ */
+class GpsL1CaDllPllCAidTracking16sc : public TrackingInterface
+{
+public:
+
+  GpsL1CaDllPllCAidTracking16sc(ConfigurationInterface* configuration,
+            std::string role,
+            unsigned int in_streams,
+            unsigned int out_streams,
+            boost::shared_ptr<gr::msg_queue> queue);
+
+    virtual ~GpsL1CaDllPllCAidTracking16sc();
+
+    std::string role()
+    {
+        return role_;
+    }
+
+    //! Returns "gps_l1_ca_dll_pll_c_aid_tracking_16sc"
+    std::string implementation()
+    {
+        return "gps_l1_ca_dll_pll_c_aid_tracking_16sc";
+    }
+    size_t item_size()
+    {
+        return item_size_;
+    }
+
+    void connect(gr::top_block_sptr top_block);
+    void disconnect(gr::top_block_sptr top_block);
+    gr::basic_block_sptr get_left_block();
+    gr::basic_block_sptr get_right_block();
+
+
+    /*!
+     * \brief Set tracking channel unique ID
+     */
+    void set_channel(unsigned int channel);
+
+    /*!
+     * \brief Set acquisition/tracking common Gnss_Synchro object pointer
+     * to efficiently exchange synchronization data between acquisition and tracking blocks
+     */
+    void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
+
+    /*!
+     * \brief Set tracking channel internal queue
+     */
+    void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
+
+    void start_tracking();
+
+private:
+    gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr tracking_;
+    size_t item_size_;
+    unsigned int channel_;
+    std::string role_;
+    unsigned int in_streams_;
+    unsigned int out_streams_;
+    boost::shared_ptr<gr::msg_queue> queue_;
+    concurrent_queue<int> *channel_internal_queue_;
+};
+
+#endif // GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_H_
diff --git a/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt b/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt
index 6e9029e..b71677b 100644
--- a/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt
+++ b/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt
@@ -16,7 +16,6 @@
 # along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
 #
 
-
 if(ENABLE_CUDA)
      set(OPT_TRACKING_BLOCKS ${OPT_TRACKING_BLOCKS} gps_l1_ca_dll_pll_tracking_gpu_cc.cc)
      set(OPT_TRACKING_INCLUDES ${OPT_TRACKING_INCLUDES} ${CUDA_INCLUDE_DIRS})
@@ -34,6 +33,7 @@ set(TRACKING_GR_BLOCKS_SOURCES
      galileo_e5a_dll_pll_tracking_cc.cc
      gps_l2_m_dll_pll_tracking_cc.cc
      gps_l1_ca_dll_pll_c_aid_tracking_cc.cc
+     gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.cc
      ${OPT_TRACKING_BLOCKS}   
 )
 
@@ -48,7 +48,6 @@ include_directories(
      ${GFlags_INCLUDE_DIRS}
      ${Boost_INCLUDE_DIRS}
      ${GNURADIO_RUNTIME_INCLUDE_DIRS}
-     ${VOLK_INCLUDE_DIRS}
      ${VOLK_GNSSSDR_INCLUDE_DIRS}
      ${OPT_TRACKING_INCLUDES}
 )
@@ -61,7 +60,7 @@ file(GLOB TRACKING_GR_BLOCKS_HEADERS "*.h")
 add_library(tracking_gr_blocks ${TRACKING_GR_BLOCKS_SOURCES} ${TRACKING_GR_BLOCKS_HEADERS})
 source_group(Headers FILES ${TRACKING_GR_BLOCKS_HEADERS})
 
-target_link_libraries(tracking_gr_blocks tracking_lib ${GNURADIO_RUNTIME_LIBRARIES} gnss_sp_libs ${Boost_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES} ${OPT_TRACKING_LIBRARIES})
+target_link_libraries(tracking_gr_blocks tracking_lib ${GNURADIO_RUNTIME_LIBRARIES} gnss_sp_libs ${Boost_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES} ${OPT_TRACKING_LIBRARIES})
 
 if(NOT VOLK_GNSSSDR_FOUND)
     add_dependencies(tracking_gr_blocks volk_gnsssdr_module)
diff --git a/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.cc b/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.cc
new file mode 100644
index 0000000..ce45da8
--- /dev/null
+++ b/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.cc
@@ -0,0 +1,612 @@
+/*!
+ * \file gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.cc
+ * \brief Implementation of a code DLL + carrier PLL tracking block
+ * \author Javier Arribas, 2015. jarribas(at)cttc.es
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#include "gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h"
+#include <cmath>
+#include <iostream>
+#include <memory>
+#include <sstream>
+#include <boost/lexical_cast.hpp>
+#include <gnuradio/io_signature.h>
+#include <volk/volk.h>
+#include <glog/logging.h>
+#include "gnss_synchro.h"
+#include "gps_sdr_signal_processing.h"
+#include "tracking_discriminators.h"
+#include "lock_detectors.h"
+#include "GPS_L1_CA.h"
+#include "control_message_factory.h"
+
+
+/*!
+ * \todo Include in definition header file
+ */
+#define CN0_ESTIMATION_SAMPLES 20
+#define MINIMUM_VALID_CN0 25
+#define MAXIMUM_LOCK_FAIL_COUNTER 50
+#define CARRIER_LOCK_THRESHOLD 0.85
+
+
+using google::LogMessage;
+
+gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr
+gps_l1_ca_dll_pll_c_aid_make_tracking_16sc_cc(
+        long if_freq,
+        long fs_in,
+        unsigned int vector_length,
+        boost::shared_ptr<gr::msg_queue> queue,
+        bool dump,
+        std::string dump_filename,
+        float pll_bw_hz,
+        float dll_bw_hz,
+        float early_late_space_chips)
+{
+    return gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr(new gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc(if_freq,
+            fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
+}
+
+
+
+void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::forecast (int noutput_items,
+        gr_vector_int &ninput_items_required)
+{
+    if (noutput_items != 0)
+        {
+            ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
+        }
+}
+
+
+
+gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc(
+        long if_freq,
+        long fs_in,
+        unsigned int vector_length,
+        boost::shared_ptr<gr::msg_queue> queue,
+        bool dump,
+        std::string dump_filename,
+        float pll_bw_hz,
+        float dll_bw_hz,
+        float early_late_space_chips) :
+        gr::block("gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
+                gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
+{
+    // initialize internal vars
+    d_queue = queue;
+    d_dump = dump;
+    d_if_freq = if_freq;
+    d_fs_in = fs_in;
+    d_vector_length = vector_length;
+    d_dump_filename = dump_filename;
+    d_correlation_length_samples = static_cast<int>(d_vector_length);
+
+    // Initialize tracking  ==========================================
+    d_code_loop_filter.set_DLL_BW(dll_bw_hz);
+    d_carrier_loop_filter.set_params(10.0, pll_bw_hz,2);
+
+    //--- DLL variables --------------------------------------------------------
+    d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
+
+    // Initialization of local code replica
+    // Get space for a vector with the C/A code replica sampled 1x/chip
+    d_ca_code = static_cast<gr_complex*>(volk_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_get_alignment()));
+    d_ca_code_16sc = static_cast<lv_16sc_t*>(volk_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t), volk_get_alignment()));
+
+    d_in_16sc = static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
+
+    // correlator outputs (scalar)
+    d_n_correlator_taps = 3; // Early, Prompt, and Late
+
+    d_correlator_outs_16sc = static_cast<lv_16sc_t*>(volk_malloc(d_n_correlator_taps*sizeof(lv_16sc_t), volk_get_alignment()));
+    for (int n = 0; n < d_n_correlator_taps; n++)
+        {
+    		d_correlator_outs_16sc[n] = lv_16sc_t(0,0);
+        }
+
+    d_local_code_shift_chips = static_cast<float*>(volk_malloc(d_n_correlator_taps*sizeof(float), volk_get_alignment()));
+    // Set TAPs delay values [chips]
+    d_local_code_shift_chips[0] = - d_early_late_spc_chips;
+    d_local_code_shift_chips[1] = 0.0;
+    d_local_code_shift_chips[2] = d_early_late_spc_chips;
+
+    multicorrelator_cpu_16sc.init(2 * d_correlation_length_samples, d_n_correlator_taps);
+
+    //--- Perform initializations ------------------------------
+    // define initial code frequency basis of NCO
+    d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
+    // define residual code phase (in chips)
+    d_rem_code_phase_samples = 0.0;
+    // define residual carrier phase
+    d_rem_carrier_phase_rad = 0.0;
+
+    // sample synchronization
+    d_sample_counter = 0;
+    //d_sample_counter_seconds = 0;
+    d_acq_sample_stamp = 0;
+
+    d_enable_tracking = false;
+    d_pull_in = false;
+    d_last_seg = 0;
+
+    // CN0 estimation and lock detector buffers
+    d_cn0_estimation_counter = 0;
+    d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
+    d_carrier_lock_test = 1;
+    d_CN0_SNV_dB_Hz = 0;
+    d_carrier_lock_fail_counter = 0;
+    d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
+
+    systemName["G"] = std::string("GPS");
+    systemName["S"] = std::string("SBAS");
+
+    set_relative_rate(1.0 / (static_cast<double>(d_vector_length) * 2.0));
+
+    d_channel_internal_queue = 0;
+    d_acquisition_gnss_synchro = 0;
+    d_channel = 0;
+    d_acq_code_phase_samples = 0.0;
+    d_acq_carrier_doppler_hz = 0.0;
+    d_carrier_doppler_hz = 0.0;
+    d_acc_carrier_phase_cycles = 0.0;
+    d_code_phase_samples = 0.0;
+
+    d_pll_to_dll_assist_secs_Ti = 0.0;
+    d_rem_code_phase_chips = 0.0;
+    d_code_phase_step_chips = 0.0;
+    d_carrier_phase_step_rad = 0.0;
+    //set_min_output_buffer((long int)300);
+}
+
+
+void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::start_tracking()
+{
+    /*
+     *  correct the code phase according to the delay between acq and trk
+     */
+    d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
+    d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
+    d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
+
+    long int acq_trk_diff_samples;
+    double acq_trk_diff_seconds;
+    acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
+    DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
+    acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
+    //doppler effect
+    // Fd=(C/(C+Vr))*F
+    double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
+    // new chip and prn sequence periods based on acq Doppler
+    double T_chip_mod_seconds;
+    double T_prn_mod_seconds;
+    double T_prn_mod_samples;
+    d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
+    d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
+    T_chip_mod_seconds = 1/d_code_freq_chips;
+    T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
+    T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
+
+    d_correlation_length_samples = round(T_prn_mod_samples);
+
+    double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
+    double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
+    double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
+    double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
+    double corrected_acq_phase_samples, delay_correction_samples;
+    corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
+    if (corrected_acq_phase_samples < 0)
+        {
+            corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
+        }
+    delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
+
+    d_acq_code_phase_samples = corrected_acq_phase_samples;
+
+    d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
+
+    d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
+
+    // DLL/PLL filter initialization
+    d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); //The carrier loop filter implements the Doppler accumulator
+    d_code_loop_filter.initialize();    // initialize the code filter
+
+    // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
+    gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
+    volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS));
+
+    multicorrelator_cpu_16sc.set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips);
+    for (int n = 0; n < d_n_correlator_taps; n++)
+        {
+            d_correlator_outs_16sc[n] = lv_16sc_t(0,0);
+        }
+
+    d_carrier_lock_fail_counter = 0;
+    d_rem_code_phase_samples = 0.0;
+    d_rem_carrier_phase_rad = 0.0;
+    d_rem_code_phase_chips = 0.0;
+    d_acc_carrier_phase_cycles = 0.0;
+    d_pll_to_dll_assist_secs_Ti = 0.0;
+    d_code_phase_samples = d_acq_code_phase_samples;
+
+    std::string sys_ = &d_acquisition_gnss_synchro->System;
+    sys = sys_.substr(0,1);
+
+    // DEBUG OUTPUT
+    std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
+    LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
+
+
+    // enable tracking
+    d_pull_in = true;
+    d_enable_tracking = true;
+
+    LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
+            << " Code Phase correction [samples]=" << delay_correction_samples
+            << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
+}
+
+
+gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::~gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc()
+{
+    d_dump_file.close();
+
+    volk_free(d_local_code_shift_chips);
+    volk_free(d_ca_code);
+
+    volk_free(d_in_16sc);
+    volk_free(d_ca_code_16sc);
+    volk_free(d_correlator_outs_16sc);
+
+    delete[] d_Prompt_buffer;
+    multicorrelator_cpu_16sc.free();
+}
+
+
+
+int gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
+        gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
+{
+    // Block input data and block output stream pointers
+    const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment
+    Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
+
+    // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
+    Gnss_Synchro current_synchro_data = Gnss_Synchro();
+
+    // process vars
+    double code_error_chips_Ti = 0.0;
+    double code_error_filt_chips = 0.0;
+    double code_error_filt_secs_Ti = 0.0;
+    double CURRENT_INTEGRATION_TIME_S;
+    double CORRECTED_INTEGRATION_TIME_S;
+    double dll_code_error_secs_Ti = 0.0;
+    double carr_phase_error_secs_Ti = 0.0;
+    double old_d_rem_code_phase_samples;
+    if (d_enable_tracking == true)
+        {
+            // Receiver signal alignment
+            if (d_pull_in == true)
+                {
+                    int samples_offset;
+                    double acq_trk_shif_correction_samples;
+                    int acq_to_trk_delay_samples;
+                    acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
+                    acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
+                    samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
+                    d_sample_counter += samples_offset; //count for the processed samples
+                    d_pull_in = false;
+                    // Fill the acquisition data
+                    current_synchro_data = *d_acquisition_gnss_synchro;
+                    *out[0] = current_synchro_data;
+                    consume_each(samples_offset); //shift input to perform alignment with local replica
+                    return 1;
+                }
+
+            // Fill the acquisition data
+            current_synchro_data = *d_acquisition_gnss_synchro;
+
+            // ################# CARRIER WIPEOFF AND CORRELATORS ##############################
+            // perform carrier wipe-off and compute Early, Prompt and Late correlation
+
+            volk_gnsssdr_32fc_convert_16ic(d_in_16sc,in,d_correlation_length_samples);
+            //std::cout << std::fixed << std::setw( 11 ) << std::setprecision( 6 );
+            //std::cout<<"in="<<in[0]<<" in 16sc="<<d_in_16sc[0]<<std::endl;
+
+            multicorrelator_cpu_16sc.set_input_output_vectors(d_correlator_outs_16sc,d_in_16sc);
+            multicorrelator_cpu_16sc.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_correlation_length_samples);
+
+            //std::cout<<"E float="<<d_correlator_outs[0]<<" E 16sc="<<d_correlator_outs_16sc[0]<<std::endl;
+            //std::cout<<"P float="<<d_correlator_outs[1]<<" P 16sc="<<d_correlator_outs_16sc[1]<<std::endl;
+            //std::cout<<"L float="<<d_correlator_outs[2]<<" L 16sc="<<d_correlator_outs_16sc[2]<<std::endl;
+
+            //std::cout<<std::endl;
+            // UPDATE INTEGRATION TIME
+            CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
+
+            // ################## PLL ##########################################################
+            // Update PLL discriminator [rads/Ti -> Secs/Ti]
+            carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(std::complex<float>(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag())) / GPS_TWO_PI; //prompt output
+            // Carrier discriminator filter
+            // NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
+            //d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
+            // Input [s/Ti] -> output [Hz]
+            d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
+            // PLL to DLL assistance [Secs/Ti]
+            d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
+            // code Doppler frequency update
+            d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
+
+            // ################## DLL ##########################################################
+            // DLL discriminator
+            code_error_chips_Ti = dll_nc_e_minus_l_normalized(std::complex<float>(d_correlator_outs_16sc[0].real(),d_correlator_outs_16sc[0].imag()), std::complex<float>(d_correlator_outs_16sc[2].real(),d_correlator_outs_16sc[2].imag())); //[chips/Ti] //early and late
+            // Code discriminator filter
+            code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
+            code_error_filt_secs_Ti = code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti]
+            // DLL code error estimation [s/Ti]
+            // TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance
+            dll_code_error_secs_Ti = - code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti;
+
+            // ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
+            // keep alignment parameters for the next input buffer
+            double T_chip_seconds;
+            double T_prn_seconds;
+            double T_prn_samples;
+            double K_blk_samples;
+            // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
+            T_chip_seconds = 1 / d_code_freq_chips;
+            T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
+            T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
+            K_blk_samples = T_prn_samples + d_rem_code_phase_samples - dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
+
+            d_correlation_length_samples = round(K_blk_samples); //round to a discrete samples
+            old_d_rem_code_phase_samples=d_rem_code_phase_samples;
+            d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_correlation_length_samples); //rounding error < 1 sample
+
+            // UPDATE REMNANT CARRIER PHASE
+            CORRECTED_INTEGRATION_TIME_S=(static_cast<double>(d_correlation_length_samples)/static_cast<double>(d_fs_in));
+            //remnant carrier phase [rad]
+            d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GPS_TWO_PI);
+            // UPDATE CARRIER PHASE ACCUULATOR
+            //carrier phase accumulator prior to update the PLL estimators (accumulated carrier in this loop depends on the old estimations!)
+            d_acc_carrier_phase_cycles -= d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S;
+
+            //################### PLL COMMANDS #################################################
+            //carrier phase step (NCO phase increment per sample) [rads/sample]
+            d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
+
+            //################### DLL COMMANDS #################################################
+            //code phase step (Code resampler phase increment per sample) [chips/sample]
+            d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
+            //remnant code phase [chips]
+            d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
+
+            // ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
+            if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
+                {
+                    // fill buffer with prompt correlator output values
+                    d_Prompt_buffer[d_cn0_estimation_counter] = std::complex<float>(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag()); //prompt
+                    d_cn0_estimation_counter++;
+                }
+            else
+                {
+                    d_cn0_estimation_counter = 0;
+                    // Code lock indicator
+                    d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
+                    // Carrier lock indicator
+                    d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
+                    // Loss of lock detection
+                    if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
+                        {
+                            d_carrier_lock_fail_counter++;
+                        }
+                    else
+                        {
+                            if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
+                        }
+                    if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
+                        {
+                            std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
+                            LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
+                            std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
+                            if (d_queue != gr::msg_queue::sptr())
+                                {
+                                    d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
+                                }
+                            d_carrier_lock_fail_counter = 0;
+                            d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
+                        }
+                }
+
+            // ########### Output the tracking data to navigation and PVT ##########
+            current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
+            current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
+            // Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!)
+            current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + old_d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
+            // This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
+            current_synchro_data.Code_phase_secs = 0;
+            current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
+            current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
+            current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
+            current_synchro_data.Flag_valid_pseudorange = false;
+            *out[0] = current_synchro_data;
+
+            // ########## DEBUG OUTPUT
+            /*!
+             *  \todo The stop timer has to be moved to the signal source!
+             */
+            // debug: Second counter in channel 0
+            if (d_channel == 0)
+                {
+                    if (floor(d_sample_counter / d_fs_in) != d_last_seg)
+                        {
+                            d_last_seg = floor(d_sample_counter / d_fs_in);
+                            std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
+                            DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel <<  ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
+                                              << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
+                            //if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
+                        }
+                }
+            else
+                {
+                    if (floor(d_sample_counter / d_fs_in) != d_last_seg)
+                        {
+                            d_last_seg = floor(d_sample_counter / d_fs_in);
+                            DLOG(INFO) << "Tracking CH " << d_channel <<  ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
+                                               << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
+                        }
+                }
+        }
+    else
+        {
+            // ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
+            /*!
+             *  \todo The stop timer has to be moved to the signal source!
+             */
+            // stream to collect cout calls to improve thread safety
+            std::stringstream tmp_str_stream;
+            if (floor(d_sample_counter / d_fs_in) != d_last_seg)
+                {
+                    d_last_seg = floor(d_sample_counter / d_fs_in);
+
+                    if (d_channel == 0)
+                        {
+                            // debug: Second counter in channel 0
+                            tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
+                            std::cout << tmp_str_stream.rdbuf() << std::flush;
+                        }
+                }
+            for (int n = 0; n < d_n_correlator_taps; n++)
+                {
+                    d_correlator_outs_16sc[n] = lv_16sc_t(0,0);
+                }
+
+            current_synchro_data.System = {'G'};
+            current_synchro_data.Flag_valid_pseudorange = false;
+            *out[0] = current_synchro_data;
+        }
+
+    if(d_dump)
+        {
+            // MULTIPLEXED FILE RECORDING - Record results to file
+            float prompt_I;
+            float prompt_Q;
+            float tmp_E, tmp_P, tmp_L;
+            double tmp_double;
+            prompt_I = d_correlator_outs_16sc[1].real();
+            prompt_Q = d_correlator_outs_16sc[1].imag();
+            tmp_E = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[0].real(),d_correlator_outs_16sc[0].imag()));
+            tmp_P = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag()));
+            tmp_L = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[2].real(),d_correlator_outs_16sc[2].imag()));
+            try
+            {
+                    // EPR
+                    d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
+                    d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
+                    d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
+                    // PROMPT I and Q (to analyze navigation symbols)
+                    d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
+                    d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
+                    // PRN start sample stamp
+                    //tmp_float=(float)d_sample_counter;
+                    d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
+                    // accumulated carrier phase
+                    d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_cycles), sizeof(double));
+
+                    // carrier and code frequency
+                    d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
+                    d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
+
+                    //PLL commands
+                    d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_secs_Ti), sizeof(double));
+                    d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
+
+                    //DLL commands
+                    d_dump_file.write(reinterpret_cast<char*>(&code_error_chips_Ti), sizeof(double));
+                    d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
+
+                    // CN0 and carrier lock test
+                    d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
+                    d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
+
+                    // AUX vars (for debug purposes)
+                    tmp_double = d_rem_code_phase_samples;
+                    d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
+                    tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
+                    d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
+            }
+            catch (const std::ifstream::failure* e)
+            {
+                    LOG(WARNING) << "Exception writing trk dump file " << e->what();
+            }
+        }
+
+    consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
+    d_sample_counter += d_correlation_length_samples; //count for the processed samples
+
+    if((noutput_items == 0) || (ninput_items[0] == 0))
+        {
+            LOG(WARNING) << "noutput_items = 0";
+        }
+    return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
+}
+
+void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::set_channel(unsigned int channel)
+{
+    d_channel = channel;
+    LOG(INFO) << "Tracking Channel set to " << d_channel;
+    // ############# ENABLE DATA FILE LOG #################
+    if (d_dump == true)
+        {
+            if (d_dump_file.is_open() == false)
+                {
+                    try
+                    {
+                            d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
+                            d_dump_filename.append(".dat");
+                            d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
+                            d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
+                            LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
+                    }
+                    catch (const std::ifstream::failure* e)
+                    {
+                            LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what() << std::endl;
+                    }
+                }
+        }
+}
+
+void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
+{
+    d_channel_internal_queue = channel_internal_queue;
+}
+
+void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
+{
+    d_acquisition_gnss_synchro = p_gnss_synchro;
+}
diff --git a/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h b/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h
new file mode 100644
index 0000000..b49c99e
--- /dev/null
+++ b/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h
@@ -0,0 +1,189 @@
+/*!
+ * \file gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h
+ * \brief Interface of a code DLL + carrier PLL tracking block
+ * \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
+ *         Javier Arribas, 2011. jarribas(at)cttc.es
+ *
+ * Code DLL + carrier PLL according to the algorithms described in:
+ * K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
+ * A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
+ * Birkhauser, 2007
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_CC_H
+#define	GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_CC_H
+
+#include <fstream>
+#include <queue>
+#include <map>
+#include <string>
+#include <boost/thread/mutex.hpp>
+#include <boost/thread/thread.hpp>
+#include <gnuradio/block.h>
+#include <gnuradio/msg_queue.h>
+#include <volk/volk.h>
+#include "concurrent_queue.h"
+#include "gps_sdr_signal_processing.h"
+#include "gnss_synchro.h"
+#include "tracking_2nd_DLL_filter.h"
+#include "tracking_FLL_PLL_filter.h"
+#include "cpu_multicorrelator.h"
+#include "cpu_multicorrelator_16sc.h"
+
+class gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc;
+
+typedef boost::shared_ptr<gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc>
+        gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr;
+
+gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr
+gps_l1_ca_dll_pll_c_aid_make_tracking_16sc_cc(long if_freq,
+                                   long fs_in, unsigned
+                                   int vector_length,
+                                   boost::shared_ptr<gr::msg_queue> queue,
+                                   bool dump,
+                                   std::string dump_filename,
+                                   float pll_bw_hz,
+                                   float dll_bw_hz,
+                                   float early_late_space_chips);
+
+
+
+/*!
+ * \brief This class implements a DLL + PLL tracking loop block
+ */
+class gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc: public gr::block
+{
+public:
+    ~gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc();
+
+    void set_channel(unsigned int channel);
+    void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
+    void start_tracking();
+    void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
+
+    int general_work (int noutput_items, gr_vector_int &ninput_items,
+            gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
+
+    void forecast (int noutput_items, gr_vector_int &ninput_items_required);
+
+private:
+    friend gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr
+    gps_l1_ca_dll_pll_c_aid_make_tracking_16sc_cc(long if_freq,
+            long fs_in, unsigned
+            int vector_length,
+            boost::shared_ptr<gr::msg_queue> queue,
+            bool dump,
+            std::string dump_filename,
+            float pll_bw_hz,
+            float dll_bw_hz,
+            float early_late_space_chips);
+
+    gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc(long if_freq,
+            long fs_in, unsigned
+            int vector_length,
+            boost::shared_ptr<gr::msg_queue> queue,
+            bool dump,
+            std::string dump_filename,
+            float pll_bw_hz,
+            float dll_bw_hz,
+            float early_late_space_chips);
+
+    // tracking configuration vars
+    boost::shared_ptr<gr::msg_queue> d_queue;
+    concurrent_queue<int> *d_channel_internal_queue;
+    unsigned int d_vector_length;
+    bool d_dump;
+
+    Gnss_Synchro* d_acquisition_gnss_synchro;
+    unsigned int d_channel;
+    int d_last_seg;
+    long d_if_freq;
+    long d_fs_in;
+
+    double d_early_late_spc_chips;
+    int d_n_correlator_taps;
+
+    lv_16sc_t* d_in_16sc;
+
+    gr_complex* d_ca_code;
+    lv_16sc_t* d_ca_code_16sc;
+    float* d_local_code_shift_chips;
+    //gr_complex* d_correlator_outs;
+    lv_16sc_t* d_correlator_outs_16sc;
+    //cpu_multicorrelator multicorrelator_cpu;
+    cpu_multicorrelator_16sc multicorrelator_cpu_16sc;
+
+    // remaining code phase and carrier phase between tracking loops
+    double d_rem_code_phase_samples;
+    double d_rem_code_phase_chips;
+    double d_rem_carrier_phase_rad;
+
+    // PLL and DLL filter library
+    Tracking_2nd_DLL_filter d_code_loop_filter;
+    Tracking_FLL_PLL_filter d_carrier_loop_filter;
+
+    // acquisition
+    double d_acq_code_phase_samples;
+    double d_acq_carrier_doppler_hz;
+
+    // tracking vars
+    double d_code_freq_chips;
+    double d_code_phase_step_chips;
+    double d_carrier_doppler_hz;
+    double d_carrier_phase_step_rad;
+    double d_acc_carrier_phase_cycles;
+    double d_code_phase_samples;
+    double d_pll_to_dll_assist_secs_Ti;
+
+    //Integration period in samples
+    int d_correlation_length_samples;
+
+    //processing samples counters
+    unsigned long int d_sample_counter;
+    unsigned long int d_acq_sample_stamp;
+
+    // CN0 estimation and lock detector
+    int d_cn0_estimation_counter;
+    gr_complex* d_Prompt_buffer;
+    double d_carrier_lock_test;
+    double d_CN0_SNV_dB_Hz;
+    double d_carrier_lock_threshold;
+    int d_carrier_lock_fail_counter;
+
+    // control vars
+    bool d_enable_tracking;
+    bool d_pull_in;
+
+    // file dump
+    std::string d_dump_filename;
+    std::ofstream d_dump_file;
+
+    std::map<std::string, std::string> systemName;
+    std::string sys;
+};
+
+#endif //GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_CC_H
diff --git a/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_tracking_gpu_cc_old.cc b/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_tracking_gpu_cc_old.cc
new file mode 100644
index 0000000..3fd78c4
--- /dev/null
+++ b/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_tracking_gpu_cc_old.cc
@@ -0,0 +1,606 @@
+/*!
+ * \file gps_l1_ca_dll_pll_tracking_gpu_cc.cc
+ * \brief Implementation of a code DLL + carrier PLL tracking block, GPU ACCELERATED
+ * \author Javier Arribas, 2015. jarribas(at)cttc.es
+ *
+ * Code DLL + carrier PLL according to the algorithms described in:
+ * [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
+ * A Software-Defined GPS and Galileo Receiver. A Single-Frequency
+ * Approach, Birkhauser, 2007
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#include "gps_l1_ca_dll_pll_tracking_gpu_cc.h"
+#include <cmath>
+#include <iostream>
+#include <memory>
+#include <sstream>
+#include <boost/lexical_cast.hpp>
+#include <gnuradio/io_signature.h>
+#include <glog/logging.h>
+#include "gnss_synchro.h"
+#include "gps_sdr_signal_processing.h"
+#include "tracking_discriminators.h"
+#include "lock_detectors.h"
+#include "GPS_L1_CA.h"
+#include "control_message_factory.h"
+#include <volk/volk.h> //volk_alignement
+// includes
+#include <cuda_profiler_api.h>
+
+
+/*!
+ * \todo Include in definition header file
+ */
+#define CN0_ESTIMATION_SAMPLES 20
+#define MINIMUM_VALID_CN0 25
+#define MAXIMUM_LOCK_FAIL_COUNTER 50
+#define CARRIER_LOCK_THRESHOLD 0.85
+
+
+using google::LogMessage;
+
+gps_l1_ca_dll_pll_tracking_gpu_cc_sptr
+gps_l1_ca_dll_pll_make_tracking_gpu_cc(
+        long if_freq,
+        long fs_in,
+        unsigned int vector_length,
+        boost::shared_ptr<gr::msg_queue> queue,
+        bool dump,
+        std::string dump_filename,
+        float pll_bw_hz,
+        float dll_bw_hz,
+        float early_late_space_chips)
+{
+    return gps_l1_ca_dll_pll_tracking_gpu_cc_sptr(new Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(if_freq,
+            fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
+}
+
+
+void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::forecast (int noutput_items,
+        gr_vector_int &ninput_items_required)
+{
+    ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
+}
+
+
+
+Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
+        long if_freq,
+        long fs_in,
+        unsigned int vector_length,
+        boost::shared_ptr<gr::msg_queue> queue,
+        bool dump,
+        std::string dump_filename,
+        float pll_bw_hz,
+        float dll_bw_hz,
+        float early_late_space_chips) :
+        gr::block("Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
+                gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
+{
+    // initialize internal vars
+    d_queue = queue;
+    d_dump = dump;
+    d_if_freq = if_freq;
+    d_fs_in = fs_in;
+    d_vector_length = vector_length;
+    d_dump_filename = dump_filename;
+
+    // Initialize tracking  ==========================================
+    d_code_loop_filter.set_DLL_BW(dll_bw_hz);
+    d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
+
+    //--- DLL variables --------------------------------------------------------
+    d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
+
+    // Set GPU flags
+    cudaSetDeviceFlags(cudaDeviceMapHost);
+    //allocate host memory
+    //pinned memory mode - use special function to get OS-pinned memory
+    int N_CORRELATORS = 3;
+    // Get space for a vector with the C/A code replica sampled 1x/chip
+    cudaHostAlloc((void**)&d_ca_code, (GPS_L1_CA_CODE_LENGTH_CHIPS* sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined);
+    // Get space for the resampled early / prompt / late local replicas
+    cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float),  cudaHostAllocMapped || cudaHostAllocWriteCombined);
+    cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined);
+    // correlator outputs (scalar)
+    cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocMapped ||  cudaHostAllocWriteCombined );
+
+    //map to EPL pointers
+    d_Early = &d_corr_outs_gpu[0];
+    d_Prompt =  &d_corr_outs_gpu[1];
+    d_Late = &d_corr_outs_gpu[2];
+
+    //--- Perform initializations ------------------------------
+    multicorrelator_gpu = new cuda_multicorrelator();
+    //local code resampler on GPU
+    multicorrelator_gpu->init_cuda_integrated_resampler(2 * d_vector_length, GPS_L1_CA_CODE_LENGTH_CHIPS, 3);
+    multicorrelator_gpu->set_input_output_vectors(d_corr_outs_gpu, in_gpu);
+
+    // define initial code frequency basis of NCO
+    d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
+    // define residual code phase (in chips)
+    d_rem_code_phase_samples = 0.0;
+    // define residual carrier phase
+    d_rem_carr_phase_rad = 0.0;
+
+    // sample synchronization
+    d_sample_counter = 0;
+    //d_sample_counter_seconds = 0;
+    d_acq_sample_stamp = 0;
+
+    d_enable_tracking = false;
+    d_pull_in = false;
+    d_last_seg = 0;
+
+    d_current_prn_length_samples = static_cast<int>(d_vector_length);
+
+    // CN0 estimation and lock detector buffers
+    d_cn0_estimation_counter = 0;
+    d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
+    d_carrier_lock_test = 1;
+    d_CN0_SNV_dB_Hz = 0;
+    d_carrier_lock_fail_counter = 0;
+    d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
+
+    systemName["G"] = std::string("GPS");
+    systemName["S"] = std::string("SBAS");
+
+
+    set_relative_rate(1.0/((double)d_vector_length*2));
+
+    d_channel_internal_queue = 0;
+    d_acquisition_gnss_synchro = 0;
+    d_channel = 0;
+    d_acq_code_phase_samples = 0.0;
+    d_acq_carrier_doppler_hz = 0.0;
+    d_carrier_doppler_hz = 0.0;
+    d_acc_carrier_phase_rad = 0.0;
+    d_code_phase_samples = 0.0;
+    d_acc_code_phase_secs = 0.0;
+    //set_min_output_buffer((long int)300);
+}
+
+
+void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
+{
+    /*
+     *  correct the code phase according to the delay between acq and trk
+     */
+    d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
+    d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
+    d_acq_sample_stamp =  d_acquisition_gnss_synchro->Acq_samplestamp_samples;
+
+    long int acq_trk_diff_samples;
+    double acq_trk_diff_seconds;
+    acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
+    DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
+    acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
+    //doppler effect
+    // Fd=(C/(C+Vr))*F
+    double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
+    // new chip and prn sequence periods based on acq Doppler
+    double T_chip_mod_seconds;
+    double T_prn_mod_seconds;
+    double T_prn_mod_samples;
+    d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
+    T_chip_mod_seconds = 1.0/d_code_freq_chips;
+    T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
+    T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
+
+    d_current_prn_length_samples = round(T_prn_mod_samples);
+
+    double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
+    double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
+    double T_prn_diff_seconds=  T_prn_true_seconds - T_prn_mod_seconds;
+    double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
+    double corrected_acq_phase_samples, delay_correction_samples;
+    corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
+    if (corrected_acq_phase_samples < 0)
+        {
+            corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
+        }
+    delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
+
+    d_acq_code_phase_samples = corrected_acq_phase_samples;
+
+    d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
+
+    // DLL/PLL filter initialization
+    d_carrier_loop_filter.initialize(); // initialize the carrier filter
+    d_code_loop_filter.initialize();    // initialize the code filter
+
+    // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
+    gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
+
+    d_local_code_shift_chips[0] = - d_early_late_spc_chips;
+    d_local_code_shift_chips[1] = 0.0;
+    d_local_code_shift_chips[2] = d_early_late_spc_chips;
+
+    multicorrelator_gpu->set_local_code_and_taps(GPS_L1_CA_CODE_LENGTH_CHIPS, d_ca_code, d_local_code_shift_chips, 3);
+
+    d_carrier_lock_fail_counter = 0;
+    d_rem_code_phase_samples = 0;
+    d_rem_carr_phase_rad = 0;
+    d_acc_carrier_phase_rad = 0;
+    d_acc_code_phase_secs = 0;
+
+    d_code_phase_samples = d_acq_code_phase_samples;
+
+    std::string sys_ = &d_acquisition_gnss_synchro->System;
+    sys = sys_.substr(0,1);
+
+    // DEBUG OUTPUT
+    std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
+    LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
+
+
+    // enable tracking
+    d_pull_in = true;
+    d_enable_tracking = true;
+
+    LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
+            << " Code Phase correction [samples]=" << delay_correction_samples
+            << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
+}
+
+
+Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
+{
+    d_dump_file.close();
+    cudaFreeHost(in_gpu);
+    cudaFreeHost(d_corr_outs_gpu);
+    cudaFreeHost(d_local_code_shift_chips);
+    cudaFreeHost(d_ca_code);
+    multicorrelator_gpu->free_cuda();
+    delete(multicorrelator_gpu);
+    delete[] d_Prompt_buffer;
+}
+
+
+
+int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
+        gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
+{
+    // process vars
+	double carr_error_hz=0.0;
+	double carr_error_filt_hz=0.0;
+	double code_error_chips=0.0;
+	double code_error_filt_chips=0.0;
+
+    // Block input data and block output stream pointers
+    const gr_complex* in = (gr_complex*) input_items[0];
+    Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
+
+    // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
+    Gnss_Synchro current_synchro_data = Gnss_Synchro();
+
+    if (d_enable_tracking == true)
+        {
+            // Receiver signal alignment
+            if (d_pull_in == true)
+                {
+					int samples_offset;
+					double acq_trk_shif_correction_samples;
+					int acq_to_trk_delay_samples;
+					acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
+					acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
+					samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
+					// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
+					//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
+					d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
+					d_pull_in = false;
+					//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
+					// Fill the acquisition data
+					current_synchro_data = *d_acquisition_gnss_synchro;
+					*out[0] = current_synchro_data;
+					consume_each(samples_offset); //shift input to perform alignment with local replica
+					return 1;
+                }
+
+            // Fill the acquisition data
+            current_synchro_data = *d_acquisition_gnss_synchro;
+
+            // UPDATE NCO COMMAND
+            double phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
+
+        	//code resampler on GPU (new)
+            double code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
+            double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
+
+            std::cout<<"rem_code_phase_chips="<<rem_code_phase_chips<<" d_current_prn_length_samples="<<d_current_prn_length_samples<<std::endl;
+            memcpy(in_gpu, in, sizeof(gr_complex) * d_current_prn_length_samples);
+            cudaProfilerStart();
+            multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda( static_cast<float>(d_rem_carr_phase_rad),
+            		static_cast<float>(phase_step_rad),
+            		static_cast<float>(code_phase_step_chips),
+            		static_cast<float>(rem_code_phase_chips),
+            		d_current_prn_length_samples, 3);
+            cudaProfilerStop();
+
+            // ################## PLL ##########################################################
+            // PLL discriminator
+            carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
+            // Carrier discriminator filter
+            carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
+            // New carrier Doppler frequency estimation
+            d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
+            // New code Doppler frequency estimation
+            d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
+            //carrier phase accumulator for (K) doppler estimation
+            d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
+            //remanent carrier phase to prevent overflow in the code NCO
+            d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
+            d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
+
+            // ################## DLL ##########################################################
+            // DLL discriminator
+            code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti]
+            // Code discriminator filter
+            code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
+            //Code phase accumulator
+            double code_error_filt_secs;
+            code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
+            d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
+
+            // ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
+            // keep alignment parameters for the next input buffer
+            double T_chip_seconds;
+            double T_prn_seconds;
+            double T_prn_samples;
+            double K_blk_samples;
+            // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
+            T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
+            T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
+            T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
+            K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
+            d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
+            //d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
+
+            // ####### CN0 ESTIMATION AND LOCK DETECTORS ######
+            if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
+                {
+                    // fill buffer with prompt correlator output values
+                    d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
+                    d_cn0_estimation_counter++;
+                }
+            else
+                {
+                    d_cn0_estimation_counter = 0;
+                    // Code lock indicator
+                    d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
+                    // Carrier lock indicator
+                    d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
+                    // Loss of lock detection
+                    if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
+                        {
+                            d_carrier_lock_fail_counter++;
+                        }
+                    else
+                        {
+                            if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
+                        }
+                    if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
+                        {
+                            std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
+                            LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
+                            std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
+                            if (d_queue != gr::msg_queue::sptr())
+                                {
+                                    d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
+                                }
+                            d_carrier_lock_fail_counter = 0;
+                            d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
+                        }
+                }
+            // ########### Output the tracking data to navigation and PVT ##########
+            current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
+            current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
+
+            // Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
+            //compute remnant code phase samples BEFORE the Tracking timestamp
+            //d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
+            //current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
+
+            // Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
+            current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
+            //compute remnant code phase samples AFTER the Tracking timestamp
+            d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
+
+            //current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
+            // This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
+            current_synchro_data.Code_phase_secs = 0;
+            current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
+            current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
+            current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
+            current_synchro_data.Flag_valid_pseudorange = false;
+            *out[0] = current_synchro_data;
+
+            // ########## DEBUG OUTPUT
+            /*!
+             *  \todo The stop timer has to be moved to the signal source!
+             */
+            // debug: Second counter in channel 0
+            if (d_channel == 0)
+                {
+                    if (floor(d_sample_counter / d_fs_in) != d_last_seg)
+                        {
+                            d_last_seg = floor(d_sample_counter / d_fs_in);
+                            std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
+                            DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel <<  ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
+                                      << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
+                            //if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
+                        }
+                }
+            else
+                {
+                    if (floor(d_sample_counter / d_fs_in) != d_last_seg)
+                        {
+                            d_last_seg = floor(d_sample_counter / d_fs_in);
+                            DLOG(INFO) << "Tracking CH " << d_channel <<  ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
+                                       << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
+                        }
+                }
+        }
+    else
+        {
+            // ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
+            /*!
+             *  \todo The stop timer has to be moved to the signal source!
+             */
+            // stream to collect cout calls to improve thread safety
+            std::stringstream tmp_str_stream;
+            if (floor(d_sample_counter / d_fs_in) != d_last_seg)
+                {
+                    d_last_seg = floor(d_sample_counter / d_fs_in);
+
+                    if (d_channel == 0)
+                        {
+                            // debug: Second counter in channel 0
+                            tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
+                            std::cout << tmp_str_stream.rdbuf() << std::flush;
+                        }
+                }
+            *d_Early = gr_complex(0,0);
+            *d_Prompt = gr_complex(0,0);
+            *d_Late = gr_complex(0,0);
+
+            current_synchro_data.System = {'G'};
+            current_synchro_data.Flag_valid_pseudorange = false;
+            *out[0] = current_synchro_data;
+        }
+
+    if(d_dump)
+        {
+            // MULTIPLEXED FILE RECORDING - Record results to file
+            float prompt_I;
+            float prompt_Q;
+            float tmp_E, tmp_P, tmp_L;
+            float tmp_float;
+            double tmp_double;
+            prompt_I = (*d_Prompt).real();
+            prompt_Q = (*d_Prompt).imag();
+            tmp_E = std::abs<float>(*d_Early);
+            tmp_P = std::abs<float>(*d_Prompt);
+            tmp_L = std::abs<float>(*d_Late);
+            try
+            {
+
+                // EPR
+                d_dump_file.write((char*)&tmp_E, sizeof(float));
+                d_dump_file.write((char*)&tmp_P, sizeof(float));
+                d_dump_file.write((char*)&tmp_L, sizeof(float));
+                // PROMPT I and Q (to analyze navigation symbols)
+                d_dump_file.write((char*)&prompt_I, sizeof(float));
+                d_dump_file.write((char*)&prompt_Q, sizeof(float));
+                // PRN start sample stamp
+                //tmp_float=(float)d_sample_counter;
+                d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
+                // accumulated carrier phase
+                tmp_float = d_acc_carrier_phase_rad;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+
+                // carrier and code frequency
+                tmp_float = d_carrier_doppler_hz;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+                tmp_float = d_code_freq_chips;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+
+                //PLL commands
+                tmp_float = carr_error_hz;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+                tmp_float = carr_error_filt_hz;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+
+                //DLL commands
+                tmp_float = code_error_chips;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+                tmp_float = code_error_filt_chips;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+
+                // CN0 and carrier lock test
+                tmp_float = d_CN0_SNV_dB_Hz;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+                tmp_float = d_carrier_lock_test;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+
+                // AUX vars (for debug purposes)
+                tmp_float = d_rem_code_phase_samples;
+                d_dump_file.write((char*)&tmp_float, sizeof(float));
+                tmp_double = (double)(d_sample_counter + d_current_prn_length_samples);
+                d_dump_file.write((char*)&tmp_double, sizeof(double));
+            }
+            catch (std::ifstream::failure e)
+            {
+                    LOG(WARNING) << "Exception writing trk dump file " << e.what();
+            }
+        }
+
+    consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
+    d_sample_counter += d_current_prn_length_samples; //count for the processed samples
+    //LOG(INFO)<<"GPS tracking output end on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter<<std::endl;
+    return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
+}
+
+
+
+void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel(unsigned int channel)
+{
+    d_channel = channel;
+    LOG(INFO) << "Tracking Channel set to " << d_channel;
+    // ############# ENABLE DATA FILE LOG #################
+    if (d_dump == true)
+        {
+            if (d_dump_file.is_open() == false)
+                {
+                    try
+                    {
+                            d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
+                            d_dump_filename.append(".dat");
+                            d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
+                            d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
+                            LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
+                    }
+                    catch (std::ifstream::failure e)
+                    {
+                            LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
+                    }
+                }
+        }
+}
+
+
+
+void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
+{
+    d_channel_internal_queue = channel_internal_queue;
+}
+
+
+void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
+{
+    d_acquisition_gnss_synchro = p_gnss_synchro;
+}
diff --git a/src/algorithms/tracking/libs/CMakeLists.txt b/src/algorithms/tracking/libs/CMakeLists.txt
index 505c626..f15b9b9 100644
--- a/src/algorithms/tracking/libs/CMakeLists.txt
+++ b/src/algorithms/tracking/libs/CMakeLists.txt
@@ -33,6 +33,7 @@ endif(ENABLE_CUDA)
 set(TRACKING_LIB_SOURCES   
      correlator.cc
      cpu_multicorrelator.cc
+     cpu_multicorrelator_16sc.cc
      lock_detectors.cc
      tcp_communication.cc
      tcp_packet_data.cc
diff --git a/src/algorithms/tracking/libs/cpu_multicorrelator_16sc.cc b/src/algorithms/tracking/libs/cpu_multicorrelator_16sc.cc
new file mode 100644
index 0000000..572ec32
--- /dev/null
+++ b/src/algorithms/tracking/libs/cpu_multicorrelator_16sc.cc
@@ -0,0 +1,194 @@
+/*!
+ * \file cpu_multicorrelator_16sc.cc
+ * \brief High optimized CPU vector multiTAP correlator class
+ * \authors <ul>
+ *          <li> Javier Arribas, 2015. jarribas(at)cttc.es
+ *          </ul>
+ *
+ * Class that implements a high optimized vector multiTAP correlator class for CPUs
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+#include "cpu_multicorrelator_16sc.h"
+#include <cmath>
+#include <iostream>
+#include <gnuradio/fxpt.h>  // fixed point sine and cosine
+
+#define LV_HAVE_GENERIC
+#define LV_HAVE_SSE2
+#include "volk_gnsssdr_16ic_x2_dot_prod_16ic.h"
+#include "volk_gnsssdr_16ic_x2_multiply_16ic.h"
+#include "volk_gnsssdr_16ic_resampler_16ic.h"
+#include "volk_gnsssdr_16ic_xn_resampler_16ic_xn.h"
+#include "volk_gnsssdr_16ic_xn_dot_prod_16ic_xn.h"
+
+bool cpu_multicorrelator_16sc::init(
+		int max_signal_length_samples,
+		int n_correlators
+		)
+{
+
+	// ALLOCATE MEMORY FOR INTERNAL vectors
+    size_t size = max_signal_length_samples * sizeof(lv_16sc_t);
+
+    // NCO signal
+    d_nco_in = static_cast<lv_16sc_t*>(volk_malloc(size, volk_get_alignment()));
+
+    // Doppler-free signal
+    d_sig_doppler_wiped = static_cast<lv_16sc_t*>(volk_malloc(size, volk_get_alignment()));
+
+    d_local_codes_resampled = new lv_16sc_t*[n_correlators];
+    for (int n = 0; n < n_correlators; n++)
+        {
+            d_local_codes_resampled[n] = static_cast<lv_16sc_t*>(volk_malloc(size, volk_get_alignment()));
+        }
+    d_n_correlators = n_correlators;
+    return true;
+}
+
+
+
+bool cpu_multicorrelator_16sc::set_local_code_and_taps(
+		int code_length_chips,
+		const lv_16sc_t* local_code_in,
+		float *shifts_chips
+		)
+{
+    d_local_code_in = local_code_in;
+    d_shifts_chips = shifts_chips;
+    d_code_length_chips = code_length_chips;
+    return true;
+}
+
+
+bool cpu_multicorrelator_16sc::set_input_output_vectors(lv_16sc_t* corr_out, const lv_16sc_t* sig_in)
+{
+    // Save CPU pointers
+    d_sig_in = sig_in;
+    d_corr_out = corr_out;
+    return true;
+}
+
+
+
+void cpu_multicorrelator_16sc::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
+{
+
+	float *tmp_code_phases_chips;
+	tmp_code_phases_chips=static_cast<float*>(volk_malloc(d_n_correlators*sizeof(float), volk_get_alignment()));
+	for (int n=0;n<d_n_correlators;n++)
+	{
+		tmp_code_phases_chips[n]=d_shifts_chips[n]-rem_code_phase_chips;
+	}
+
+	volk_gnsssdr_16ic_xn_resampler_16ic_xn_sse2(d_local_codes_resampled,
+			d_local_code_in,
+			tmp_code_phases_chips,
+			code_phase_step_chips,
+			correlator_length_samples,
+			d_code_length_chips,
+			d_n_correlators);
+
+	volk_free(tmp_code_phases_chips);
+
+//    float local_code_chip_index;
+//    for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
+//        {
+//            for (int n = 0; n < correlator_length_samples; n++)
+//                {
+//                    // resample code for current tap
+//                    local_code_chip_index = std::fmod(code_phase_step_chips*static_cast<float>(n)+ d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
+//                    //Take into account that in multitap correlators, the shifts can be negative!
+//                    if (local_code_chip_index < 0.0) local_code_chip_index += d_code_length_chips;
+//                    d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[static_cast<int>(round(local_code_chip_index))];
+//                }
+//        }
+}
+
+
+void cpu_multicorrelator_16sc::update_local_carrier(int correlator_length_samples, float rem_carr_phase_rad, float phase_step_rad)
+{
+    float sin_f, cos_f;
+    int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
+    int phase_rad_i = gr::fxpt::float_to_fixed(rem_carr_phase_rad);
+
+    for(int i = 0; i < correlator_length_samples; i++)
+        {
+            gr::fxpt::sincos(phase_rad_i, &sin_f, &cos_f);
+            d_nco_in[i] = lv_16sc_t((short int)(cos_f*2.0), (short int)(-sin_f*2.0));
+            phase_rad_i += phase_step_rad_i;
+        }
+}
+
+bool cpu_multicorrelator_16sc::Carrier_wipeoff_multicorrelator_resampler(
+        float rem_carrier_phase_in_rad,
+        float phase_step_rad,
+        float rem_code_phase_chips,
+        float code_phase_step_chips,
+        int signal_length_samples)
+{
+    update_local_carrier(signal_length_samples, rem_carrier_phase_in_rad, phase_step_rad);
+
+    //std::cout<<"d_nco_in 16sc="<<d_nco_in[23]<<std::endl;
+    volk_gnsssdr_16ic_x2_multiply_16ic_a_sse2(d_sig_doppler_wiped,d_sig_in,d_nco_in,signal_length_samples);
+    //std::cout<<"d_sig_doppler_wiped 16sc="<<d_sig_doppler_wiped[23]<<std::endl;
+	update_local_code(signal_length_samples,rem_code_phase_chips, code_phase_step_chips);
+
+	volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_a_sse2(d_corr_out, d_sig_doppler_wiped, (const lv_16sc_t**)d_local_codes_resampled,signal_length_samples,d_n_correlators);
+
+    //for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
+    //    {
+    //		volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(&d_corr_out[current_correlator_tap], d_sig_doppler_wiped, d_local_codes_resampled[current_correlator_tap],signal_length_samples);
+    //    }
+    return true;
+}
+
+
+cpu_multicorrelator_16sc::cpu_multicorrelator_16sc()
+{
+    d_sig_in = NULL;
+    d_nco_in = NULL;
+    d_sig_doppler_wiped = NULL;
+    d_local_code_in = NULL;
+    d_shifts_chips = NULL;
+    d_corr_out = NULL;
+    d_local_codes_resampled = NULL;
+    d_code_length_chips = 0;
+    d_n_correlators = 0;
+}
+
+bool cpu_multicorrelator_16sc::free()
+{
+    // Free memory
+    if (d_sig_doppler_wiped != NULL) volk_free(d_sig_doppler_wiped);
+    if (d_nco_in != NULL) volk_free(d_nco_in);
+    for (int n = 0; n < d_n_correlators; n++)
+        {
+            volk_free(d_local_codes_resampled[n]);
+        }
+    delete d_local_codes_resampled;
+    return true;
+}
+
diff --git a/src/algorithms/tracking/libs/cpu_multicorrelator_16sc.h b/src/algorithms/tracking/libs/cpu_multicorrelator_16sc.h
new file mode 100644
index 0000000..2863d1f
--- /dev/null
+++ b/src/algorithms/tracking/libs/cpu_multicorrelator_16sc.h
@@ -0,0 +1,73 @@
+/*!
+ * \file cpu_multicorrelator_16sc.h
+ * \brief High optimized CPU vector multiTAP correlator class for lv_16sc_t (short int complex)
+ * \authors <ul>
+ *          <li> Javier Arribas, 2016. jarribas(at)cttc.es
+ *          </ul>
+ *
+ * Class that implements a high optimized vector multiTAP correlator class for CPUs
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#ifndef GNSS_SDR_CPU_MULTICORRELATOR_16SC_H_
+#define GNSS_SDR_CPU_MULTICORRELATOR_16SC_H_
+
+#include <volk/volk.h> //include original volk first!
+#include "volk_gnsssdr/volk_gnsssdr.h"
+
+
+/*!
+ * \brief Class that implements carrier wipe-off and correlators.
+ */
+class cpu_multicorrelator_16sc
+{
+public:
+    cpu_multicorrelator_16sc();
+    bool init(int max_signal_length_samples, int n_correlators);
+    bool set_local_code_and_taps(int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips);
+    bool set_input_output_vectors(lv_16sc_t* corr_out, const lv_16sc_t* sig_in);
+    void update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips);
+    void update_local_carrier(int correlator_length_samples, float rem_carr_phase_rad, float phase_step_rad);
+    bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples);
+    bool free();
+
+private:
+    // Allocate the device input vectors
+    const lv_16sc_t *d_sig_in;
+    lv_16sc_t *d_nco_in;
+    lv_16sc_t **d_local_codes_resampled;
+    lv_16sc_t *d_sig_doppler_wiped;
+    const lv_16sc_t *d_local_code_in;
+    lv_16sc_t *d_corr_out;
+    float *d_shifts_chips;
+    int d_code_length_chips;
+    int d_n_correlators;
+    bool update_local_code();
+    bool update_local_carrier();
+};
+
+
+#endif /* CPU_MULTICORRELATOR_H_ */
diff --git a/src/algorithms/tracking/libs/saturated_arithmetic.h b/src/algorithms/tracking/libs/saturated_arithmetic.h
new file mode 100644
index 0000000..b9f95d4
--- /dev/null
+++ b/src/algorithms/tracking/libs/saturated_arithmetic.h
@@ -0,0 +1,31 @@
+#ifndef SATURATED_ARITHMETIC_H_
+#define SATURATED_ARITHMETIC_H_
+
+#include <limits.h>
+//#include <types.h>
+static inline int16_t sat_adds16b(int16_t x, int16_t y)
+{
+//	int16_t ux = x;
+//	int16_t uy = y;
+//	int16_t res = ux + uy;
+//
+//	/* Calculate overflowed result. (Don't change the sign bit of ux) */
+//	ux = (ux >> 15) + SHRT_MAX;
+//
+//	/* Force compiler to use cmovns instruction */
+//	if ((int16_t) ((ux ^ uy) | ~(uy ^ res)) >= 0)
+//	{
+//		res = ux;
+//	}
+//
+//	return res;
+
+	int32_t res = (int32_t) x + (int32_t) y;
+
+	if (res < SHRT_MIN) res = SHRT_MIN;
+	if (res > SHRT_MAX) res = SHRT_MAX;
+
+	return res;
+}
+
+#endif /*SATURATED_ARITHMETIC_H_*/
diff --git a/src/algorithms/tracking/libs/volk_gnsssdr_16ic_resampler_16ic.h b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_resampler_16ic.h
new file mode 100644
index 0000000..4580225
--- /dev/null
+++ b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_resampler_16ic.h
@@ -0,0 +1,171 @@
+/*!
+ * \file volk_gnsssdr_16ic_resampler_16ic.h
+ * \brief Volk protokernel: resample a 16 bits complex vector
+ * \authors <ul>
+ *          <li> Javier Arribas, 2015. jarribas(at)cttc.es
+ *          </ul>
+ *
+ * Volk protokernel that multiplies two 16 bits vectors (8 bits the real part 
+ * and 8 bits the imaginary part) and accumulates them
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#ifndef INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H
+#define INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H
+
+#include <volk_gnsssdr/volk_gnsssdr_common.h>
+#include <volk_gnsssdr/volk_gnsssdr_complex.h>
+#include <cmath>
+//#pragma STDC FENV_ACCESS ON
+
+#ifdef LV_HAVE_GENERIC
+
+//int round_int( float r ) {
+//    return (r > 0.0) ? (r + 0.5) : (r - 0.5);
+//}
+/*!
+ \brief Multiplies the two input complex vectors, point-by-point, storing the result in the third vector
+ \param cVector The vector where the result will be stored
+ \param aVector One of the vectors to be multiplied
+ \param bVector One of the vectors to be multiplied
+ \param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
+ */
+static inline void volk_gnsssdr_16ic_resampler_16ic_generic(lv_16sc_t* result, const lv_16sc_t* local_code, float rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, unsigned int code_length_chips)
+{
+    int local_code_chip_index;
+    //fesetround(FE_TONEAREST);
+    for (unsigned int n = 0; n < num_output_samples; n++)
+        {
+			// resample code for current tap
+			local_code_chip_index = round(code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips-0.5f);
+	    	if (local_code_chip_index < 0.0) local_code_chip_index += code_length_chips;
+	    	if (local_code_chip_index > (code_length_chips-1)) local_code_chip_index -= code_length_chips;
+			//std::cout<<"g["<<n<<"]="<<code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips-0.5f<<","<<local_code_chip_index<<" ";
+			result[n] = local_code[local_code_chip_index];
+        }
+    //std::cout<<std::endl;
+}
+
+#endif /*LV_HAVE_GENERIC*/
+
+
+#ifdef LV_HAVE_SSE2
+#include <emmintrin.h>
+static inline void volk_gnsssdr_16ic_resampler_16ic_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, float rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, int code_length_chips)//, int* scratch_buffer, float* scratch_buffer_float)
+{
+
+	_MM_SET_ROUNDING_MODE (_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
+    unsigned int number;
+    const unsigned int quarterPoints = num_output_samples / 4;
+
+	lv_16sc_t* _result = result;
+
+    __attribute__((aligned(16))) int local_code_chip_index[4];
+    __m128 _rem_code_phase,_code_phase_step_chips;
+    __m128i _code_length_chips,_code_length_chips_minus1;
+    __m128 _code_phase_out,_code_phase_out_with_offset;
+    rem_code_phase_chips=rem_code_phase_chips-0.5f;
+
+    _rem_code_phase =  _mm_load1_ps(&rem_code_phase_chips); //load float to all four float values in m128 register
+    _code_phase_step_chips = _mm_load1_ps(&code_phase_step_chips); //load float to all four float values in m128 register
+    __attribute__((aligned(16))) int four_times_code_length_chips_minus1[4];
+    four_times_code_length_chips_minus1[0]=code_length_chips-1;
+    four_times_code_length_chips_minus1[1]=code_length_chips-1;
+    four_times_code_length_chips_minus1[2]=code_length_chips-1;
+    four_times_code_length_chips_minus1[3]=code_length_chips-1;
+
+    __attribute__((aligned(16))) int four_times_code_length_chips[4];
+    four_times_code_length_chips[0]=code_length_chips;
+    four_times_code_length_chips[1]=code_length_chips;
+    four_times_code_length_chips[2]=code_length_chips;
+    four_times_code_length_chips[3]=code_length_chips;
+
+    _code_length_chips = _mm_loadu_si128((__m128i*)&four_times_code_length_chips); //load float to all four float values in m128 register
+    _code_length_chips_minus1 = _mm_loadu_si128((__m128i*)&four_times_code_length_chips_minus1); //load float to all four float values in m128 register
+
+    __m128i negative_indexes, overflow_indexes,_code_phase_out_int, _code_phase_out_int_neg,_code_phase_out_int_over;
+
+    __m128i zero=_mm_setzero_si128();
+
+
+    __attribute__((aligned(16))) float init_idx_float[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
+    __m128 _4output_index=_mm_load_ps(init_idx_float);
+    __attribute__((aligned(16))) float init_4constant_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
+    __m128 _4constant_float=_mm_load_ps(init_4constant_float);
+
+    //__attribute__((aligned(16))) int output_indexes[4];
+
+    for(number=0;number < quarterPoints; number++){
+    	_code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step
+    	_code_phase_out_with_offset = _mm_add_ps(_code_phase_out,_rem_code_phase); //add the phase offset
+    	_code_phase_out_int=_mm_cvtps_epi32(_code_phase_out_with_offset); //convert to integer
+
+    	negative_indexes=_mm_cmplt_epi32 (_code_phase_out_int, zero); //test for negative values
+    	_code_phase_out_int_neg=_mm_add_epi32(_code_phase_out_int,_code_length_chips); //the negative values branch
+    	//_code_phase_out_int_over=_mm_or_si128(_mm_and_si128(_code_phase_out_int_neg,_code_phase_out_int),_mm_andnot_si128(negative_indexes,_code_phase_out_int));
+    	_code_phase_out_int_neg=_mm_xor_si128(_code_phase_out_int,_mm_and_si128( negative_indexes,_mm_xor_si128( _code_phase_out_int_neg, _code_phase_out_int )));
+
+    	overflow_indexes=_mm_cmpgt_epi32  (_code_phase_out_int_neg, _code_length_chips_minus1); //test for overflow values
+    	_code_phase_out_int_over=_mm_sub_epi32(_code_phase_out_int_neg,_code_length_chips); //the negative values branch
+    	_code_phase_out_int_over=_mm_xor_si128(_code_phase_out_int_neg,_mm_and_si128( overflow_indexes,_mm_xor_si128( _code_phase_out_int_over, _code_phase_out_int_neg )));
+
+    	_mm_storeu_si128((__m128i*)local_code_chip_index,_code_phase_out_int_over); // Store the results back
+
+    	//_mm_store_ps((float*)_scratch_buffer_float,_code_phase_out_with_offset);
+
+    	//todo: optimize the local code lookup table with intrinsics, if possible
+    	*_result++=local_code[local_code_chip_index[0]];
+    	*_result++=local_code[local_code_chip_index[1]];
+    	*_result++=local_code[local_code_chip_index[2]];
+    	*_result++=local_code[local_code_chip_index[3]];
+
+    	_4output_index = _mm_add_ps(_4output_index,_4constant_float);
+    	//_scratch_buffer_float+=4;
+
+    }
+
+    for(number = quarterPoints * 4;number < num_output_samples; number++){
+    	local_code_chip_index[0]=static_cast<int>(code_phase_step_chips*static_cast<float>(number) + rem_code_phase_chips+0.5f);
+    	if (local_code_chip_index[0] < 0.0) local_code_chip_index[0] += code_length_chips-1;
+    	if (local_code_chip_index[0]  > (code_length_chips-1)) local_code_chip_index[0] -= code_length_chips;
+    	*_result++=local_code[local_code_chip_index[0]];
+    	//*_scratch_buffer_float++=code_phase_step_chips*static_cast<float>(number)+rem_code_phase_chips;
+    }
+
+//    for(unsigned int n=0;n<num_output_samples;n++)
+//    {
+//
+//		std::cout<<"s["<<n<<"]="<<scratch_buffer_float[n]<<","<<scratch_buffer[n]<<" ";
+//    }
+//    std::cout<<std::endl;
+
+
+
+
+}
+#endif /* LV_HAVE_SSE2 */
+
+#endif /*INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H*/
diff --git a/src/algorithms/tracking/libs/volk_gnsssdr_16ic_x2_dot_prod_16ic.h b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_x2_dot_prod_16ic.h
new file mode 100644
index 0000000..75164cd
--- /dev/null
+++ b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_x2_dot_prod_16ic.h
@@ -0,0 +1,152 @@
+/*!
+ * \file volk_gnsssdr_16ic_x2_dot_prod_16ic.h
+ * \brief Volk protokernel: multiplies two 16 bits vectors and accumulates them
+ * \authors <ul>
+ *          <li> Javier Arribas, 2015. jarribas(at)cttc.es
+ *          </ul>
+ *
+ * Volk protokernel that multiplies two 16 bits vectors (8 bits the real part 
+ * and 8 bits the imaginary part) and accumulates them
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#ifndef INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H
+#define INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H
+
+#include <volk_gnsssdr/volk_gnsssdr_common.h>
+#include <volk_gnsssdr/volk_gnsssdr_complex.h>
+#include <stdio.h>
+#include <string.h>
+#include "saturated_arithmetic.h"
+
+#ifdef LV_HAVE_GENERIC
+/*!
+ \brief Multiplies the two input complex vectors and accumulates them, storing the result in the third vector
+ \param cVector The vector where the accumulated result will be stored
+ \param aVector One of the vectors to be multiplied and accumulated
+ \param bVector One of the vectors to be multiplied and accumulated
+ \param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
+ */
+static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_generic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
+{
+	result[0]=lv_16sc_t(0,0);
+	for (unsigned int n=0;n<num_points;n++)
+	{
+		//r*a.r - i*a.i, i*a.r + r*a.i
+		//result[0]+=in_a[n]*in_b[n];
+		lv_16sc_t tmp=in_a[n]*in_b[n];
+		result[0].real(sat_adds16b(result[0].real(),tmp.real()));
+		result[0].imag(sat_adds16b(result[0].imag(),tmp.imag()));
+	}
+}
+
+#endif /*LV_HAVE_GENERIC*/
+
+
+#ifdef LV_HAVE_SSE2
+#include <emmintrin.h>
+static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
+{
+
+	lv_16sc_t dotProduct=lv_16sc_t(0,0);
+
+    const unsigned int sse_iters = num_points / 4;
+
+	const lv_16sc_t* _in_a = in_a;
+	const lv_16sc_t* _in_b = in_b;
+	lv_16sc_t* _out = out;
+
+    if (sse_iters>0)
+        {
+
+
+		__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, realcacc, imagcacc, result;
+
+        realcacc = _mm_setzero_si128();
+        imagcacc = _mm_setzero_si128();
+
+        mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
+        mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
+
+		for(unsigned int number = 0;number < sse_iters; number++)
+			{
+	    	//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
+	    	//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
+	    	// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
+	            a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+	            b = _mm_loadu_si128((__m128i*)_in_b);
+	            c=_mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
+
+	            c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+	            real = _mm_subs_epi16 (c,c_sr);
+
+	            b_sl = _mm_slli_si128(b,2); // b3.r, b2.i ....
+	            a_sl = _mm_slli_si128(a,2); // a3.r, a2.i ....
+
+	            imag1 = _mm_mullo_epi16(a,b_sl); // a3.i*b3.r, ....
+	            imag2 = _mm_mullo_epi16(b,a_sl); // b3.i*a3.r, ....
+
+	            imag = _mm_adds_epi16(imag1,imag2); //with saturation aritmetic!
+
+                realcacc = _mm_adds_epi16 (realcacc, real);
+                imagcacc = _mm_adds_epi16 (imagcacc, imag);
+
+				_in_a += 4;
+				_in_b += 4;
+
+			}
+
+
+			realcacc = _mm_and_si128 (realcacc, mask_real);
+			imagcacc = _mm_and_si128 (imagcacc, mask_imag);
+
+			result = _mm_or_si128 (realcacc, imagcacc);
+
+			__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
+
+			_mm_storeu_si128((__m128i*)dotProductVector,result); // Store the results back into the dot product vector
+
+			for (int i = 0; i<4; ++i)
+				{
+					dotProduct.real(sat_adds16b(dotProduct.real(),dotProductVector[i].real()));
+					dotProduct.imag(sat_adds16b(dotProduct.imag(),dotProductVector[i].imag()));
+				}
+        }
+
+    for (unsigned int i = 0; i<(num_points % 4); ++i)
+        {
+            //dotProduct += (*_in_a++) * (*_in_b++);
+    		lv_16sc_t tmp=(*_in_a++) * (*_in_b++);
+			dotProduct.real(sat_adds16b(dotProduct.real(),tmp.real()));
+			dotProduct.imag(sat_adds16b(dotProduct.imag(),tmp.imag()));
+
+        }
+
+    *_out = dotProduct;
+}
+#endif /* LV_HAVE_SSE2 */
+
+#endif /*INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H*/
diff --git a/src/algorithms/tracking/libs/volk_gnsssdr_16ic_x2_multiply_16ic.h b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_x2_multiply_16ic.h
new file mode 100644
index 0000000..8710207
--- /dev/null
+++ b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_x2_multiply_16ic.h
@@ -0,0 +1,117 @@
+/*!
+ * \file volk_gnsssdr_16ic_x2_dot_prod_16ic.h
+ * \brief Volk protokernel: multiplies two 16 bits vectors and accumulates them
+ * \authors <ul>
+ *          <li> Javier Arribas, 2015. jarribas(at)cttc.es
+ *          </ul>
+ *
+ * Volk protokernel that multiplies two 16 bits vectors (8 bits the real part 
+ * and 8 bits the imaginary part) and accumulates them
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#ifndef INCLUDED_volk_gnsssdr_16ic_x2_multiply_16ic_a_H
+#define INCLUDED_volk_gnsssdr_16ic_x2_multiply_16ic_a_H
+
+#include <volk_gnsssdr/volk_gnsssdr_common.h>
+#include <volk_gnsssdr/volk_gnsssdr_complex.h>
+#include <stdio.h>
+#include <string.h>
+
+#ifdef LV_HAVE_GENERIC
+/*!
+ \brief Multiplies the two input complex vectors, point-by-point, storing the result in the third vector
+ \param cVector The vector where the result will be stored
+ \param aVector One of the vectors to be multiplied
+ \param bVector One of the vectors to be multiplied
+ \param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
+ */
+static inline void volk_gnsssdr_16ic_x2_multiply_16ic_generic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
+{
+	for (unsigned int n=0;n<num_points;n++)
+	{
+		//r*a.r - i*a.i, i*a.r + r*a.i
+		result[n]=in_a[n]*in_b[n];
+	}
+}
+
+#endif /*LV_HAVE_GENERIC*/
+
+
+#ifdef LV_HAVE_SSE2
+#include <emmintrin.h>
+static inline void volk_gnsssdr_16ic_x2_multiply_16ic_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
+{
+    const unsigned int sse_iters = num_points / 4;
+    __m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
+
+    mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
+    mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
+
+    const lv_16sc_t* _in_a = in_a;
+    const lv_16sc_t* _in_b = in_b;
+    lv_16sc_t* _out = out;
+    for(unsigned int number = 0;number < sse_iters; number++)
+        {
+
+    	//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
+    	//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
+    	// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
+            a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+            b = _mm_loadu_si128((__m128i*)_in_b);
+            c=_mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
+
+            c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+            real = _mm_subs_epi16 (c,c_sr);
+            real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0,  a3.r*b3.r- a3.i*b3.i
+
+            b_sl = _mm_slli_si128(b,2); // b3.r, b2.i ....
+            a_sl = _mm_slli_si128(a,2); // a3.r, a2.i ....
+
+            imag1 = _mm_mullo_epi16(a,b_sl); // a3.i*b3.r, ....
+            imag2 = _mm_mullo_epi16(b,a_sl); // b3.i*a3.r, ....
+
+            imag = _mm_adds_epi16(imag1,imag2);
+            imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
+
+            result = _mm_or_si128 (real, imag);
+
+            _mm_storeu_si128((__m128i*)_out, result);
+
+            _in_a += 4;
+            _in_b += 4;
+            _out += 4;
+
+        }
+
+    for (unsigned int i = 0; i<(num_points % 4); ++i)
+        {
+            *_out++ = (*_in_a++) * (*_in_b++);
+        }
+}
+#endif /* LV_HAVE_SSE2 */
+
+#endif /*INCLUDED_volk_gnsssdr_16ic_x2_multiply_16ic_a_H*/
diff --git a/src/algorithms/tracking/libs/volk_gnsssdr_16ic_xn_dot_prod_16ic_xn.h b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_xn_dot_prod_16ic_xn.h
new file mode 100644
index 0000000..99c4566
--- /dev/null
+++ b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_xn_dot_prod_16ic_xn.h
@@ -0,0 +1,175 @@
+/*!
+ * \file volk_gnsssdr_16ic_x2_dot_prod_16ic.h
+ * \brief Volk protokernel: multiplies two 16 bits vectors and accumulates them
+ * \authors <ul>
+ *          <li> Javier Arribas, 2015. jarribas(at)cttc.es
+ *          </ul>
+ *
+ * Volk protokernel that multiplies two 16 bits vectors (8 bits the real part 
+ * and 8 bits the imaginary part) and accumulates them
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#ifndef INCLUDED_volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_u_H
+#define INCLUDED_volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_u_H
+
+#include <volk_gnsssdr/volk_gnsssdr_common.h>
+#include <volk_gnsssdr/volk_gnsssdr_complex.h>
+#include <stdio.h>
+#include <string.h>
+#include "saturated_arithmetic.h"
+
+#ifdef LV_HAVE_GENERIC
+/*!
+ \brief Multiplies the two input complex vectors and accumulates them, storing the result in the third vector
+ \param cVector The vector where the accumulated result will be stored
+ \param aVector One of the vectors to be multiplied and accumulated
+ \param bVector One of the vectors to be multiplied and accumulated
+ \param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
+ */
+static inline void volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_generic(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_16sc_t** in_a, unsigned int num_points, int num_a_vectors)
+{
+
+
+	for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
+	{
+		result[n_vec]=lv_16sc_t(0,0);
+		for (unsigned int n=0;n<num_points;n++)
+		{
+			//r*a.r - i*a.i, i*a.r + r*a.i
+			//result[n_vec]+=in_common[n]*in_a[n_vec][n];
+			lv_16sc_t tmp=in_common[n]*in_a[n_vec][n];
+			result[n_vec].real(sat_adds16b(result[n_vec].real(),tmp.real()));
+			result[n_vec].imag(sat_adds16b(result[n_vec].imag(),tmp.imag()));
+		}
+		//std::cout<<"in_common[0]="<<in_common[0]<<"in_a[n_vec][0]="<<in_a[n_vec][0]<<std::endl;
+		//std::cout<<"in_common[0]*in_a[n_vec][0]="<<in_common[0]*in_a[n_vec][0]<<std::endl;
+
+	}
+}
+
+#endif /*LV_HAVE_GENERIC*/
+
+
+#ifdef LV_HAVE_SSE2
+#include <emmintrin.h>
+static inline void volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_common, const lv_16sc_t** in_a, unsigned int num_points, int num_a_vectors)
+{
+
+	lv_16sc_t dotProduct=lv_16sc_t(0,0);
+
+    const unsigned int sse_iters = num_points / 4;
+
+	const lv_16sc_t** _in_a = in_a;
+	const lv_16sc_t* _in_common = in_common;
+	lv_16sc_t* _out = out;
+
+    if (sse_iters>0)
+        {
+
+		__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
+
+		//todo dyn mem reg
+
+		__m128i* realcacc;
+		__m128i* imagcacc;
+
+    	realcacc=(__m128i*)calloc(num_a_vectors,sizeof(__m128i)); //calloc also sets memory to 0
+    	imagcacc=(__m128i*)calloc(num_a_vectors,sizeof(__m128i)); //calloc also sets memory to 0
+
+
+		__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
+
+        mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
+        mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
+
+		for(unsigned int number = 0;number < sse_iters; number++)
+			{
+	    	//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
+	    	//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
+	    	// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
+
+            	b = _mm_loadu_si128((__m128i*)_in_common); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+            	for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
+            	{
+
+					a = _mm_loadu_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+
+					c=_mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
+
+					c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+					real = _mm_subs_epi16 (c,c_sr);
+
+					b_sl = _mm_slli_si128(b,2); // b3.r, b2.i ....
+					a_sl = _mm_slli_si128(a,2); // a3.r, a2.i ....
+
+					imag1 = _mm_mullo_epi16(a,b_sl); // a3.i*b3.r, ....
+					imag2 = _mm_mullo_epi16(b,a_sl); // b3.i*a3.r, ....
+
+					imag = _mm_adds_epi16(imag1,imag2);
+
+					realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real);
+					imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag);
+
+            	}
+				_in_common += 4;
+
+			}
+
+			for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
+			{
+				realcacc[n_vec] = _mm_and_si128 (realcacc[n_vec], mask_real);
+				imagcacc[n_vec] = _mm_and_si128 (imagcacc[n_vec], mask_imag);
+
+				result = _mm_or_si128 (realcacc[n_vec], imagcacc[n_vec]);
+
+				_mm_storeu_si128((__m128i*)dotProductVector,result); // Store the results back into the dot product vector
+				dotProduct=lv_16sc_t(0,0);
+				for (int i = 0; i<4; ++i)
+					{
+						dotProduct.real(sat_adds16b(dotProduct.real(),dotProductVector[i].real()));
+						dotProduct.imag(sat_adds16b(dotProduct.imag(),dotProductVector[i].imag()));
+					}
+				_out[n_vec]=dotProduct;
+			}
+			free(realcacc);
+			free(imagcacc);
+        }
+
+	for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
+	{
+		for(unsigned int n  = sse_iters * 4;n < num_points; n++){
+
+				lv_16sc_t tmp=in_common[n]*in_a[n_vec][n];
+				_out[n_vec].real(sat_adds16b(_out[n_vec].real(),tmp.real()));
+				_out[n_vec].imag(sat_adds16b(_out[n_vec].imag(),tmp.imag()));
+			}
+	}
+
+}
+#endif /* LV_HAVE_SSE2 */
+
+#endif /*INCLUDED_volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_u_H*/
diff --git a/src/algorithms/tracking/libs/volk_gnsssdr_16ic_xn_resampler_16ic_xn.h b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_xn_resampler_16ic_xn.h
new file mode 100644
index 0000000..69c70f3
--- /dev/null
+++ b/src/algorithms/tracking/libs/volk_gnsssdr_16ic_xn_resampler_16ic_xn.h
@@ -0,0 +1,172 @@
+/*!
+ * \file volk_gnsssdr_16ic_xn_resampler_16ic_xn.h
+ * \brief Volk protokernel: resample a 16 bits complex vector
+ * \authors <ul>
+ *          <li> Javier Arribas, 2015. jarribas(at)cttc.es
+ *          </ul>
+ *
+ * Volk protokernel that multiplies two 16 bits vectors (8 bits the real part 
+ * and 8 bits the imaginary part) and accumulates them
+ *
+ * -------------------------------------------------------------------------
+ *
+ * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
+ *
+ * GNSS-SDR is a software defined Global Navigation
+ *          Satellite Systems receiver
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * -------------------------------------------------------------------------
+ */
+
+#ifndef INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_a_H
+#define INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_a_H
+
+#include <volk_gnsssdr/volk_gnsssdr_common.h>
+#include <volk_gnsssdr/volk_gnsssdr_complex.h>
+#include <cmath>
+//#pragma STDC FENV_ACCESS ON
+
+#ifdef LV_HAVE_GENERIC
+
+//int round_int( float r ) {
+//    return (r > 0.0) ? (r + 0.5) : (r - 0.5);
+//}
+/*!
+ \brief Multiplies the two input complex vectors, point-by-point, storing the result in the third vector
+ \param cVector The vector where the result will be stored
+ \param aVector One of the vectors to be multiplied
+ \param bVector One of the vectors to be multiplied
+ \param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
+ */
+
+static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_generic(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, unsigned int code_length_chips, int num_out_vectors)
+{
+    int local_code_chip_index;
+    //fesetround(FE_TONEAREST);
+    for (int current_vector = 0; current_vector < num_out_vectors; current_vector++)
+    {
+		for (unsigned int n = 0; n < num_output_samples; n++)
+			{
+				// resample code for current tap
+				local_code_chip_index = round(code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips[current_vector]-0.5f);
+				if (local_code_chip_index < 0.0) local_code_chip_index += code_length_chips;
+				if (local_code_chip_index > (code_length_chips-1)) local_code_chip_index -= code_length_chips;
+				//std::cout<<"g["<<n<<"]="<<code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips-0.5f<<","<<local_code_chip_index<<" ";
+				result[current_vector][n] = local_code[local_code_chip_index];
+			}
+    }
+    //std::cout<<std::endl;
+}
+
+#endif /*LV_HAVE_GENERIC*/
+
+
+#ifdef LV_HAVE_SSE2
+#include <emmintrin.h>
+static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_sse2(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, unsigned int code_length_chips, int num_out_vectors)
+{
+
+	_MM_SET_ROUNDING_MODE (_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
+    unsigned int number;
+    const unsigned int quarterPoints = num_output_samples / 4;
+
+	lv_16sc_t** _result = result;
+    __attribute__((aligned(16))) int local_code_chip_index[4];
+    float tmp_rem_code_phase_chips;
+    __m128 _rem_code_phase,_code_phase_step_chips;
+    __m128i _code_length_chips,_code_length_chips_minus1;
+    __m128 _code_phase_out,_code_phase_out_with_offset;
+
+    _code_phase_step_chips = _mm_load1_ps(&code_phase_step_chips); //load float to all four float values in m128 register
+    __attribute__((aligned(16))) int four_times_code_length_chips_minus1[4];
+    four_times_code_length_chips_minus1[0]=code_length_chips-1;
+    four_times_code_length_chips_minus1[1]=code_length_chips-1;
+    four_times_code_length_chips_minus1[2]=code_length_chips-1;
+    four_times_code_length_chips_minus1[3]=code_length_chips-1;
+
+    __attribute__((aligned(16))) int four_times_code_length_chips[4];
+    four_times_code_length_chips[0]=code_length_chips;
+    four_times_code_length_chips[1]=code_length_chips;
+    four_times_code_length_chips[2]=code_length_chips;
+    four_times_code_length_chips[3]=code_length_chips;
+
+    _code_length_chips = _mm_loadu_si128((__m128i*)&four_times_code_length_chips); //load float to all four float values in m128 register
+    _code_length_chips_minus1 = _mm_loadu_si128((__m128i*)&four_times_code_length_chips_minus1); //load float to all four float values in m128 register
+
+    __m128i negative_indexes, overflow_indexes,_code_phase_out_int, _code_phase_out_int_neg,_code_phase_out_int_over;
+
+    __m128i zero=_mm_setzero_si128();
+
+    __attribute__((aligned(16))) float init_idx_float[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
+    __m128 _4output_index=_mm_load_ps(init_idx_float);
+    __attribute__((aligned(16))) float init_4constant_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
+    __m128 _4constant_float=_mm_load_ps(init_4constant_float);
+
+    int current_vector=0;
+    int sample_idx=0;
+    for(number=0;number < quarterPoints; number++){
+    	//common to all outputs
+    	_code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step
+
+    	//output vector dependant (different code phase offset)
+    	for(current_vector=0;current_vector<num_out_vectors;current_vector++)
+    	{
+    		tmp_rem_code_phase_chips=rem_code_phase_chips[current_vector]-0.5f; // adjust offset to perform correct rounding (chip transition at 0)
+    	    _rem_code_phase =  _mm_load1_ps(&tmp_rem_code_phase_chips); //load float to all four float values in m128 register
+
+			_code_phase_out_with_offset = _mm_add_ps(_code_phase_out,_rem_code_phase); //add the phase offset
+			_code_phase_out_int=_mm_cvtps_epi32(_code_phase_out_with_offset); //convert to integer
+
+			negative_indexes=_mm_cmplt_epi32 (_code_phase_out_int, zero); //test for negative values
+			_code_phase_out_int_neg=_mm_add_epi32(_code_phase_out_int,_code_length_chips); //the negative values branch
+			_code_phase_out_int_neg=_mm_xor_si128(_code_phase_out_int,_mm_and_si128( negative_indexes,_mm_xor_si128( _code_phase_out_int_neg, _code_phase_out_int )));
+
+			overflow_indexes=_mm_cmpgt_epi32  (_code_phase_out_int_neg, _code_length_chips_minus1); //test for overflow values
+			_code_phase_out_int_over=_mm_sub_epi32(_code_phase_out_int_neg,_code_length_chips); //the negative values branch
+			_code_phase_out_int_over=_mm_xor_si128(_code_phase_out_int_neg,_mm_and_si128( overflow_indexes,_mm_xor_si128( _code_phase_out_int_over, _code_phase_out_int_neg )));
+
+			_mm_storeu_si128((__m128i*)local_code_chip_index,_code_phase_out_int_over); // Store the results back
+
+			//todo: optimize the local code lookup table with intrinsics, if possible
+			_result[current_vector][sample_idx]=local_code[local_code_chip_index[0]];
+			_result[current_vector][sample_idx+1]=local_code[local_code_chip_index[1]];
+			_result[current_vector][sample_idx+2]=local_code[local_code_chip_index[2]];
+			_result[current_vector][sample_idx+3]=local_code[local_code_chip_index[3]];
+
+
+    	}
+    	_4output_index = _mm_add_ps(_4output_index,_4constant_float);
+    	sample_idx+=4;
+    }
+
+    for(number = quarterPoints * 4;number < num_output_samples; number++){
+
+    	for(current_vector=0;current_vector<num_out_vectors;current_vector++)
+    	{
+			local_code_chip_index[0]=static_cast<int>(code_phase_step_chips*static_cast<float>(number) + rem_code_phase_chips[current_vector]);
+			if (local_code_chip_index[0] < 0.0) local_code_chip_index[0] += code_length_chips-1;
+			if (local_code_chip_index[0]  > (code_length_chips-1)) local_code_chip_index[0] -= code_length_chips;
+			_result[current_vector][number]=local_code[local_code_chip_index[0]];
+    	}
+
+    }
+
+}
+#endif /* LV_HAVE_SSE2 */
+
+#endif /*INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_a_H*/
diff --git a/src/core/receiver/gnss_block_factory.cc b/src/core/receiver/gnss_block_factory.cc
index c5c74f3..5c17fde 100644
--- a/src/core/receiver/gnss_block_factory.cc
+++ b/src/core/receiver/gnss_block_factory.cc
@@ -79,6 +79,7 @@
 #include "galileo_e5a_noncoherent_iq_acquisition_caf.h"
 #include "gps_l1_ca_dll_pll_tracking.h"
 #include "gps_l1_ca_dll_pll_c_aid_tracking.h"
+#include "gps_l1_ca_dll_pll_c_aid_tracking_16sc.h"
 #include "gps_l1_ca_dll_pll_optim_tracking.h"
 #include "gps_l1_ca_dll_fll_pll_tracking.h"
 #include "gps_l1_ca_tcp_connector_tracking.h"
@@ -1318,6 +1319,12 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
                     out_streams, queue));
             block = std::move(block_);
         }
+    else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking_16sc") == 0)
+        {
+            std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTracking16sc(configuration.get(), role, in_streams,
+                    out_streams, queue));
+            block = std::move(block_);
+        }
     else if (implementation.compare("GPS_L1_CA_DLL_PLL_Optim_Tracking") == 0)
         {
             std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaDllPllOptimTracking(configuration.get(), role, in_streams,
@@ -1589,6 +1596,12 @@ std::unique_ptr<TrackingInterface> GNSSBlockFactory::GetTrkBlock(
                     out_streams, queue));
             block = std::move(block_);
         }
+    else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking_16sc") == 0)
+        {
+            std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTracking16sc(configuration.get(), role, in_streams,
+                    out_streams, queue));
+            block = std::move(block_);
+        }
     else if (implementation.compare("GPS_L1_CA_DLL_PLL_Optim_Tracking") == 0)
         {
             std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllOptimTracking(configuration.get(), role, in_streams,

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-hamradio/gnss-sdr.git



More information about the pkg-hamradio-commits mailing list