[hamradio-commits] [gnss-sdr] 13/236: neon hook

Carles Fernandez carles_fernandez-guest at moszumanska.debian.org
Tue Apr 26 16:02:09 UTC 2016


This is an automated email from the git hooks/post-receive script.

carles_fernandez-guest pushed a commit to branch next
in repository gnss-sdr.

commit e66ac2f4768112216993b2ac5b64a6ce66650ab5
Author: Carles Fernandez <carles.fernandez at gmail.com>
Date:   Thu Feb 11 22:53:05 2016 +0100

    neon hook
---
 ...volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h | 774 +++++++++++++--------
 ..._gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h |  31 +
 2 files changed, 498 insertions(+), 307 deletions(-)

diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h
index a958743..f49a373 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h
@@ -51,24 +51,24 @@
  */
 static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
 {
-	lv_16sc_t tmp16;
-	lv_32fc_t tmp32;
-	for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
-	{
-		result[n_vec] = lv_cmake(0,0);
-	}
-	for (unsigned int n = 0; n < num_points; n++)
-	{
-		tmp16 = *in_common++;
-		tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
-		tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
-		(*phase) *= phase_inc;
-		for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
-		{
-			lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
-			result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp)));
-		}
-	}
+    lv_16sc_t tmp16;
+    lv_32fc_t tmp32;
+    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            result[n_vec] = lv_cmake(0,0);
+        }
+    for (unsigned int n = 0; n < num_points; n++)
+        {
+            tmp16 = *in_common++;
+            tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+            tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+            (*phase) *= phase_inc;
+            for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+                {
+                    lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
+                    result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp)));
+                }
+        }
 }
 
 #endif /*LV_HAVE_GENERIC*/
@@ -87,150 +87,149 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic(lv_16sc
  */
 static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_t* out, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a,  int num_a_vectors, unsigned int num_points)
 {
-	lv_16sc_t dotProduct = lv_cmake(0,0);
-
-	const unsigned int sse_iters = num_points / 4;
-
-	const lv_16sc_t** _in_a = in_a;
-	const lv_16sc_t* _in_common = in_common;
-	lv_16sc_t* _out = out;
-
-	__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
-
-	//todo dyn mem reg
-
-	__m128i* realcacc;
-	__m128i* imagcacc;
-
-	realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
-	imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
-
-	__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
-
-	mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
-	mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
-
-	// phase rotation registers
-	__m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg;
-	__m128i pc1, pc2;
-	__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
-	two_phase_inc[0] = phase_inc * phase_inc;
-	two_phase_inc[1] = phase_inc * phase_inc;
-	two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
-	__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
-	two_phase_acc[0] = (*phase);
-	two_phase_acc[1] = (*phase) * phase_inc;
-	two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
-	__m128 yl, yh, tmp1, tmp2, tmp3;
-	lv_16sc_t tmp16;
-	lv_32fc_t tmp32;
-
-	for(unsigned int number = 0; number < sse_iters; number++)
-	{
-		// Phase rotation on operand in_common starts here:
-
-		pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
-		//complex 32fc multiplication b=a*two_phase_acc_reg
-		yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
-		yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
-		tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
-		pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
-		tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
-		pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
-		pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
-
-		//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
-		yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
-		yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
-		tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
-		tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
-		tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
-		two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
-
-		//next two samples
-		_in_common += 2;
-		pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
-		//complex 32fc multiplication b=a*two_phase_acc_reg
-		yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
-		yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
-		tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
-		pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
-		tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
-		pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
-		pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
-
-		//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
-		yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
-		yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
-		tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
-		tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
-		tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
-		two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
-
-		// store four rotated in_common samples in the register b
-		b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
-
-		//next two samples
-		_in_common += 2;
-
-		for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
-		{
-			a = _mm_load_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
-
-			c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
-
-			c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
-			real = _mm_subs_epi16 (c, c_sr);
-
-			b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
-			a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
-
-			imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
-			imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
-
-			imag = _mm_adds_epi16(imag1, imag2);
-
-			realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real);
-			imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag);
-
-		}
-	}
-
-	for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
-	{
-		realcacc[n_vec] = _mm_and_si128 (realcacc[n_vec], mask_real);
-		imagcacc[n_vec] = _mm_and_si128 (imagcacc[n_vec], mask_imag);
-
-		result = _mm_or_si128 (realcacc[n_vec], imagcacc[n_vec]);
-
-		_mm_store_si128((__m128i*)dotProductVector, result); // Store the results back into the dot product vector
-		dotProduct = lv_cmake(0,0);
-		for (int i = 0; i<4; ++i)
-		{
-			dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
-					sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
-		}
-		_out[n_vec] = dotProduct;
-	}
-	free(realcacc);
-	free(imagcacc);
-
-	_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
-	(*phase) = lv_cmake(two_phase_acc[0], two_phase_acc[0]);
-
-	for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
-	{
-		for(unsigned int n  = sse_iters * 4; n < num_points; n++)
-		{
-			tmp16 = *in_common++;
-			tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
-			tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
-			(*phase) *= phase_inc;
-			lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
-			_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
-					sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
-		}
-	}
+    lv_16sc_t dotProduct = lv_cmake(0,0);
+
+    const unsigned int sse_iters = num_points / 4;
+
+    const lv_16sc_t** _in_a = in_a;
+    const lv_16sc_t* _in_common = in_common;
+    lv_16sc_t* _out = out;
+
+    __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
+
+    //todo dyn mem reg
+
+    __m128i* realcacc;
+    __m128i* imagcacc;
+
+    realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
+    imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
+
+    __m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
+
+    mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
+    mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
+
+    // phase rotation registers
+    __m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg;
+    __m128i pc1, pc2;
+    __attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
+    two_phase_inc[0] = phase_inc * phase_inc;
+    two_phase_inc[1] = phase_inc * phase_inc;
+    two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
+    __attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
+    two_phase_acc[0] = (*phase);
+    two_phase_acc[1] = (*phase) * phase_inc;
+    two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
+    __m128 yl, yh, tmp1, tmp2, tmp3;
+    lv_16sc_t tmp16;
+    lv_32fc_t tmp32;
+
+    for(unsigned int number = 0; number < sse_iters; number++)
+        {
+            // Phase rotation on operand in_common starts here:
+
+            pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            //complex 32fc multiplication b=a*two_phase_acc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+            pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
+
+            //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+            //next two samples
+            _in_common += 2;
+            pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            //complex 32fc multiplication b=a*two_phase_acc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+            pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
+
+            //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+            // store four rotated in_common samples in the register b
+            b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
+
+            //next two samples
+            _in_common += 2;
+
+            for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+                {
+                    a = _mm_load_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+
+                    c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
+
+                    c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+                    real = _mm_subs_epi16(c, c_sr);
+
+                    b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
+                    a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
+
+                    imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+                    imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+
+                    imag = _mm_adds_epi16(imag1, imag2);
+
+                    realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real);
+                    imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag);
+                }
+        }
+
+    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            realcacc[n_vec] = _mm_and_si128(realcacc[n_vec], mask_real);
+            imagcacc[n_vec] = _mm_and_si128(imagcacc[n_vec], mask_imag);
+
+            result = _mm_or_si128(realcacc[n_vec], imagcacc[n_vec]);
+
+            _mm_store_si128((__m128i*)dotProductVector, result); // Store the results back into the dot product vector
+            dotProduct = lv_cmake(0,0);
+            for (int i = 0; i < 4; ++i)
+                {
+                    dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
+                            sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
+                }
+            _out[n_vec] = dotProduct;
+        }
+    free(realcacc);
+    free(imagcacc);
+
+    _mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
+    (*phase) = lv_cmake(two_phase_acc[0], two_phase_acc[0]);
+
+    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            for(unsigned int n  = sse_iters * 4; n < num_points; n++)
+                {
+                    tmp16 = *in_common++;
+                    tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+                    tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+                    (*phase) *= phase_inc;
+                    lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
+                    _out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
+                            sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
+                }
+        }
 
 }
 #endif /* LV_HAVE_SSE3 */
@@ -248,151 +247,312 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_
  */
 static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_t* out, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a,  int num_a_vectors, unsigned int num_points)
 {
-	lv_16sc_t dotProduct = lv_cmake(0,0);
-
-	const unsigned int sse_iters = num_points / 4;
-
-	const lv_16sc_t** _in_a = in_a;
-	const lv_16sc_t* _in_common = in_common;
-	lv_16sc_t* _out = out;
-
-	__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
-
-	//todo dyn mem reg
-
-	__m128i* realcacc;
-	__m128i* imagcacc;
-
-	realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
-	imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
-
-	__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
-
-	mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
-	mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
-
-	// phase rotation registers
-	__m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg;
-	__m128i pc1, pc2;
-	__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
-	two_phase_inc[0] = phase_inc * phase_inc;
-	two_phase_inc[1] = phase_inc * phase_inc;
-	two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
-	__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
-	two_phase_acc[0] = (*phase);
-	two_phase_acc[1] = (*phase) * phase_inc;
-	two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
-	__m128 yl, yh, tmp1, tmp2, tmp3;
-	lv_16sc_t tmp16;
-	lv_32fc_t tmp32;
-
-	for(unsigned int number = 0; number < sse_iters; number++)
-	{
-		// Phase rotation on operand in_common starts here:
-
-		pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
-		//complex 32fc multiplication b=a*two_phase_acc_reg
-		yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
-		yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
-		tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
-		pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
-		tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
-		pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
-		pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
-
-		//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
-		yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
-		yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
-		tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
-		tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
-		tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
-		two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
-
-		//next two samples
-		_in_common += 2;
-		pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
-		//complex 32fc multiplication b=a*two_phase_acc_reg
-		yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
-		yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
-		tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
-		pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
-		tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
-		pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
-		pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
-
-		//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
-		yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
-		yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
-		tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
-		tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
-		tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
-		two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
-
-		// store four rotated in_common samples in the register b
-		b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
-
-		//next two samples
-		_in_common += 2;
-
-		for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
-		{
-			a = _mm_loadu_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
-
-			c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
-
-			c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
-			real = _mm_subs_epi16 (c, c_sr);
-
-			b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
-			a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
-
-			imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
-			imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
-
-			imag = _mm_adds_epi16(imag1, imag2);
-
-			realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real);
-			imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag);
-
-		}
-	}
-
-	for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
-	{
-		realcacc[n_vec] = _mm_and_si128 (realcacc[n_vec], mask_real);
-		imagcacc[n_vec] = _mm_and_si128 (imagcacc[n_vec], mask_imag);
-
-		result = _mm_or_si128 (realcacc[n_vec], imagcacc[n_vec]);
-
-		_mm_storeu_si128((__m128i*)dotProductVector, result); // Store the results back into the dot product vector
-		dotProduct = lv_cmake(0,0);
-		for (int i = 0; i<4; ++i)
-		{
-			dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
-					sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
-		}
-		_out[n_vec] = dotProduct;
-	}
-	free(realcacc);
-	free(imagcacc);
-
-	_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
-	(*phase) = lv_cmake(two_phase_acc[0], two_phase_acc[0]);
-
-	for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
-	{
-		for(unsigned int n  = sse_iters * 4; n < num_points; n++)
-		{
-			tmp16 = *in_common++;
-			tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
-			tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
-			(*phase) *= phase_inc;
-			lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
-			_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
-					sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
-		}
-	}
-
+    lv_16sc_t dotProduct = lv_cmake(0,0);
+
+    const unsigned int sse_iters = num_points / 4;
+
+    const lv_16sc_t** _in_a = in_a;
+    const lv_16sc_t* _in_common = in_common;
+    lv_16sc_t* _out = out;
+
+    __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
+
+    //todo dyn mem reg
+
+    __m128i* realcacc;
+    __m128i* imagcacc;
+
+    realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
+    imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
+
+    __m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
+
+    mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
+    mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
+
+    // phase rotation registers
+    __m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg;
+    __m128i pc1, pc2;
+    __attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
+    two_phase_inc[0] = phase_inc * phase_inc;
+    two_phase_inc[1] = phase_inc * phase_inc;
+    two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
+    __attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
+    two_phase_acc[0] = (*phase);
+    two_phase_acc[1] = (*phase) * phase_inc;
+    two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
+    __m128 yl, yh, tmp1, tmp2, tmp3;
+    lv_16sc_t tmp16;
+    lv_32fc_t tmp32;
+
+    for(unsigned int number = 0; number < sse_iters; number++)
+        {
+            // Phase rotation on operand in_common starts here:
+
+            pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            //complex 32fc multiplication b=a*two_phase_acc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+            pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
+
+            //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+            //next two samples
+            _in_common += 2;
+            pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            //complex 32fc multiplication b=a*two_phase_acc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+            pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
+
+            //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+            // store four rotated in_common samples in the register b
+            b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
+
+            //next two samples
+            _in_common += 2;
+
+            for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+                {
+                    a = _mm_loadu_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+
+                    c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
+
+                    c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+                    real = _mm_subs_epi16 (c, c_sr);
+
+                    b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
+                    a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
+
+                    imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+                    imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+
+                    imag = _mm_adds_epi16(imag1, imag2);
+
+                    realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
+                    imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
+
+                }
+        }
+
+    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            realcacc[n_vec] = _mm_and_si128 (realcacc[n_vec], mask_real);
+            imagcacc[n_vec] = _mm_and_si128 (imagcacc[n_vec], mask_imag);
+
+            result = _mm_or_si128(realcacc[n_vec], imagcacc[n_vec]);
+
+            _mm_storeu_si128((__m128i*)dotProductVector, result); // Store the results back into the dot product vector
+            dotProduct = lv_cmake(0,0);
+            for (int i = 0; i<4; ++i)
+                {
+                    dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
+                            sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
+                }
+            _out[n_vec] = dotProduct;
+        }
+    free(realcacc);
+    free(imagcacc);
+
+    _mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
+    (*phase) = lv_cmake(two_phase_acc[0], two_phase_acc[0]);
+
+    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            for(unsigned int n  = sse_iters * 4; n < num_points; n++)
+                {
+                    tmp16 = *in_common++;
+                    tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+                    tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+                    (*phase) *= phase_inc;
+                    lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
+                    _out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
+                            sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
+                }
+        }
+    _out[2] =
 }
 #endif /* LV_HAVE_SSE3 */
+
+
+#ifdef LV_HAVE_NEON
+#include <arm_neon.h>
+
+static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t* out, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a,  int num_a_vectors, unsigned int num_points)
+{
+//    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+//        {
+//            result[n_vec] = lv_cmake(0,0);
+//        }
+    lv_16sc_t dotProduct = lv_cmake(0,0);
+
+    const unsigned int neon_iters = num_points / 4;
+
+    const lv_16sc_t** _in_a = in_a;
+    const lv_16sc_t* _in_common = in_common;
+    lv_16sc_t* _out = out;
+    lv_16sc_t tmp16_;
+    lv_32fc_t tmp32_;
+
+    lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
+    __VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
+    __VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
+
+    float32x4_t _phase4_real = vld1q_f32(__phase4_real);
+    float32x4_t _phase4_imag = vld1q_f32(__phase4_imag);
+
+    lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc;
+    lv_32fc_t phase3 = phase2 * phase_inc;
+    lv_32fc_t phase4 = phase3 * phase_inc;
+
+    __VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
+    __VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
+
+    float32x4_t _phase_real = vld1q_f32(__phase_real);
+    float32x4_t _phase_imag = vld1q_f32(__phase_imag);
+
+    float32x4_t half = vdupq_n_f32(0.5f);
+    int16x4x2_t tmp16;
+    int32x4x2_t tmp32i;
+    float32x4x2_t tmp32f, tmp_real, tmp_imag;
+    float32x4_t sign, PlusHalf, Round;
+
+    int16x4x2_t* accumulator;
+    accumulator = (int16x4x2_t*)calloc(num_a_vectors, sizeof(int16x4x2_t));
+
+    int16x4x2_t tmp_real, tmp_imag;
+
+    for(int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            accumulator[n_vec].val[0] = vdup_n_s16(0);
+            accumulator[n_vec].val[1] = vdup_n_s16(0);
+        }
+
+    if (neon_iters > 0)
+        {
+            int16x4x2_t a_val, b_val, c_val;
+
+
+            for(unsigned int number = 0; number < neon_iters; number++)
+                {
+                    /* load 4 complex numbers (int 16 bits each component) */
+                    tmp16 = vld2_s16((int16_t*)_in_common);
+                    __builtin_prefetch(_in_common + 8);
+                    _in_common += 4;
+
+                    /* promote them to int 32 bits */
+                    tmp32i.val[0] = vmovl_s16(tmp16.val[0]);
+                    tmp32i.val[1] = vmovl_s16(tmp16.val[1]);
+
+                    /* promote them to float 32 bits */
+                    tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
+                    tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
+
+                    /* complex multiplication of four complex samples (float 32 bits each component) */
+                    tmp_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
+                    tmp_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
+                    tmp_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
+                    tmp_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
+
+                    tmp32f.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
+                    tmp32f.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
+
+                    /* downcast results to int32 */
+                    /* in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); */
+                    sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
+                    PlusHalf = vaddq_f32(tmp32f.val[0], half);
+                    Round = vsubq_f32(PlusHalf, sign);
+                    tmp32i.val[0] = vcvtq_s32_f32(Round);
+
+                    sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
+                    PlusHalf = vaddq_f32(tmp32f.val[1], half);
+                    Round = vsubq_f32(PlusHalf, sign);
+                    tmp32i.val[1] = vcvtq_s32_f32(Round);
+
+                    /* downcast results to int16 */
+                    tmp16.val[0] = vqmovn_s32(tmp32i.val[0]);
+                    tmp16.val[1] = vqmovn_s32(tmp32i.val[1]);
+
+                    /* compute next four phases */
+                    tmp_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
+                    tmp_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
+                    tmp_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
+                    tmp_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
+
+                    _phase_real = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
+                    _phase_imag = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
+
+
+                    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+                        {
+                            a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+                            //__builtin_prefetch(_in_a[n_vec] + 8);
+
+                            // multiply the real*real and imag*imag to get real result
+                            // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
+                            tmp_real.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
+                            // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
+                            tmp_real.val[1] = vmul_s16(a_val.val[1], b_val.val[1]);
+
+                            // Multiply cross terms to get the imaginary result
+                            // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
+                            tmp_imag.val[0] = vmul_s16(a_val.val[0], b_val.val[1]);
+                            // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
+                            tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
+
+                            c_val.val[0] = vsub_s16(tmp_real.val[0], tmp_real.val[1]);
+                            c_val.val[1] = vadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
+
+                            accumulator[n_vec].val[0] = vadd_s16(accumulator[n_vec].val[0], c_val.val[0]);
+                            accumulator[n_vec].val[1] = vadd_s16(accumulator[n_vec].val[1], c_val.val[1]);
+                        }
+
+
+
+
+                }
+
+
+        }
+
+
+    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            for(unsigned int n  = sse_iters * 4; n < num_points; n++)
+                {
+                    tmp16_ = *in_common++;
+                    tmp32_ = lv_cmake((float)lv_creal(tmp16_), (float)lv_cimag(tmp16_)) * (*phase);
+                    tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_)));
+                    (*phase) *= phase_inc;
+                    lv_16sc_t tmp = tmp16_ * in_a[n_vec][n];
+                    _out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
+                            sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
+                }
+        }
+}
+
+
+#endif /* LV_HAVE_NEON */
+
 #endif /*INCLUDED_volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_H*/
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h
index 28ca966..a49259d 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h
@@ -132,6 +132,37 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_u_sse3(lv_1
 
 #endif // SSE3
 
+#ifdef LV_HAVE_NEON
+
+static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_neon(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
+{
+    // phases must be normalized. Phase rotator expects a complex exponential input!
+    float rem_carrier_phase_in_rad = 0.345;
+    float phase_step_rad = 0.123;
+    lv_32fc_t phase[1];
+    phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
+    lv_32fc_t phase_inc[1];
+    phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
+
+    int num_a_vectors = 3;
+    lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
+    for(unsigned int n = 0; n < num_a_vectors; n++)
+    {
+       in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t)*num_points, volk_gnsssdr_get_alignment());
+       memcpy(in_a[n], in, sizeof(lv_16sc_t)*num_points);
+    }
+    result = (lv_16sc_t*)calloc(num_points, sizeof(lv_16sc_t));
+    volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points);
+
+    for(unsigned int n = 0; n < num_a_vectors; n++)
+    {
+        volk_gnsssdr_free(in_a[n]);
+    }
+    volk_gnsssdr_free(in_a);
+}
+
+#endif // NEON
+
 #endif  // INCLUDED_volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_H
 
 

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-hamradio/gnss-sdr.git



More information about the pkg-hamradio-commits mailing list