[hamradio-commits] [gnss-sdr] 103/236: Fixing some numerical problems

Carles Fernandez carles_fernandez-guest at moszumanska.debian.org
Tue Apr 26 16:02:40 UTC 2016


This is an automated email from the git hooks/post-receive script.

carles_fernandez-guest pushed a commit to branch next
in repository gnss-sdr.

commit c9ff9759cc3b885e97a2bc5dba02c2160ddac184
Author: Carles Fernandez <carles.fernandez at gmail.com>
Date:   Fri Mar 18 19:46:18 2016 +0100

    Fixing some numerical problems
---
 .../volk_gnsssdr/CMakeLists.txt                    |   1 +
 .../volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h    |  56 ++
 .../volk_gnsssdr_16ic_rotatorpuppet_16ic.h         |  64 +++
 .../volk_gnsssdr_16ic_s32fc_x2_rotator_16ic.h      | 582 +++++++++++++++++++++
 .../volk_gnsssdr_16ic_x2_dot_prod_16ic.h           |  93 ++--
 .../volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h        |  31 +-
 .../volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic.h    |  24 +
 ...volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h | 398 +++++++++++++-
 ..._gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h |  61 +++
 .../volk_gnsssdr/lib/kernel_tests.h                |   7 +-
 .../volk_gnsssdr/lib/qa_utils.cc                   |   8 +-
 11 files changed, 1267 insertions(+), 58 deletions(-)

diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/CMakeLists.txt b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/CMakeLists.txt
index a855a5f..29f6036 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/CMakeLists.txt
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/CMakeLists.txt
@@ -170,6 +170,7 @@ install(FILES
     ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_common.h
     ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_avx_intrinsics.h
     ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse3_intrinsics.h
+    ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h
     ${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h
     ${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr_cpu.h
     ${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr_config_fixed.h
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h
new file mode 100644
index 0000000..49aa561
--- /dev/null
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h
@@ -0,0 +1,56 @@
+/*!
+ * \file volk_gnsssdr_neon_intrinsics.h
+ * \author Carles Fernandez, 2016. carles.fernandez(at)gmail.com
+ * \brief Holds NEON intrinsics of intrinsics.
+ * They can be used in VOLK_GNSSSDR kernels to avoid copy-paste
+ *
+ * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
+ *
+ * This file is part of GNSS-SDR.
+ *
+ * GNSS-SDR is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * GNSS-SDR is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef INCLUDED_VOLK_GNSSSDR_NEON_INTRINSICS_H_
+#define INCLUDED_VOLK_GNSSSDR_NEON_INTRINSICS_H_
+
+#include <arm_neon.h>
+
+static inline float32x4_t vdivq_f32( float32x4_t num, float32x4_t den )
+{
+    const float32x4_t q_inv0 = vrecpeq_f32( den );
+    const float32x4_t q_step0 = vrecpsq_f32( q_inv0, den );
+
+    const float32x4_t q_inv1 = vmulq_f32( q_step0, q_inv0 );
+    return vmulq_f32( num, q_inv1 );
+}
+
+
+static inline float32x4_t vsqrtq_f32( float32x4_t q_x )
+{
+    const float32x4_t q_step_0 = vrsqrteq_f32( q_x );
+    // step
+    const float32x4_t q_step_parm0 = vmulq_f32( q_x, q_step_0 );
+    const float32x4_t q_step_result0 = vrsqrtsq_f32( q_step_parm0, q_step_0 );
+    // step
+    const float32x4_t q_step_1 = vmulq_f32( q_step_0, q_step_result0 );
+    const float32x4_t q_step_parm1 = vmulq_f32( q_x, q_step_1 );
+    const float32x4_t q_step_result1 = vrsqrtsq_f32( q_step_parm1, q_step_1 );
+    // take the res
+    const float32x4_t q_step_2 = vmulq_f32( q_step_1, q_step_result1 );
+    // mul by x to get sqrt, not rsqrt
+    return vmulq_f32( q_x, q_step_2 );
+}
+
+#endif /* INCLUDED_VOLK_GNSSSDR_NEON_INTRINSICS_H_ */
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_rotatorpuppet_16ic.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_rotatorpuppet_16ic.h
index 11dfa72..245eed7 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_rotatorpuppet_16ic.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_rotatorpuppet_16ic.h
@@ -57,6 +57,22 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_generic(lv_16sc_t* outVe
 #endif /* LV_HAVE_GENERIC */
 
 
+#ifdef LV_HAVE_GENERIC
+static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_generic_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
+{
+    // phases must be normalized. Phase rotator expects a complex exponential input!
+    float rem_carrier_phase_in_rad = 0.345;
+    float phase_step_rad = 0.123;
+    lv_32fc_t phase[1];
+    phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
+    lv_32fc_t phase_inc[1];
+    phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
+    volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic_reload(outVector, inVector, phase_inc[0], phase, num_points);
+}
+
+#endif /* LV_HAVE_GENERIC */
+
+
 #ifdef LV_HAVE_SSE3
 static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
 {
@@ -74,6 +90,22 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse3(lv_16sc_t* outVec
 
 
 #ifdef LV_HAVE_SSE3
+static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse3_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
+{
+    // phases must be normalized. Phase rotator expects a complex exponential input!
+    float rem_carrier_phase_in_rad = 0.345;
+    float phase_step_rad = 0.123;
+    lv_32fc_t phase[1];
+    phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
+    lv_32fc_t phase_inc[1];
+    phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
+    volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3_reload(outVector, inVector, phase_inc[0], phase, num_points);
+}
+
+#endif /* LV_HAVE_SSE3 */
+
+
+#ifdef LV_HAVE_SSE3
 static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
 {
     // phases must be normalized. Phase rotator expects a complex exponential input!
@@ -89,6 +121,22 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse3(lv_16sc_t* outVec
 #endif /* LV_HAVE_SSE3 */
 
 
+#ifdef LV_HAVE_SSE3
+static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse3_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
+{
+    // phases must be normalized. Phase rotator expects a complex exponential input!
+    float rem_carrier_phase_in_rad = 0.345;
+    float phase_step_rad = 0.123;
+    lv_32fc_t phase[1];
+    phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
+    lv_32fc_t phase_inc[1];
+    phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
+    volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3_reload(outVector, inVector, phase_inc[0], phase, num_points);
+}
+
+#endif /* LV_HAVE_SSE3 */
+
+
 #ifdef LV_HAVE_NEON
 static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
 {
@@ -105,4 +153,20 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon(lv_16sc_t* outVecto
 #endif /* LV_HAVE_NEON */
 
 
+#ifdef LV_HAVE_NEON
+static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
+{
+    // phases must be normalized. Phase rotator expects a complex exponential input!
+    float rem_carrier_phase_in_rad = 0.345;
+    float phase_step_rad = 0.123;
+    lv_32fc_t phase[1];
+    phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
+    lv_32fc_t phase_inc[1];
+    phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
+    volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon_reload(outVector, inVector, phase_inc[0], phase, num_points);
+}
+
+#endif /* LV_HAVE_NEON */
+
+
 #endif /* INCLUDED_volk_gnsssdr_16ic_rotatorpuppet_16ic_H */
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_s32fc_x2_rotator_16ic.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_s32fc_x2_rotator_16ic.h
index 4c8ed98..832b34a 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_s32fc_x2_rotator_16ic.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_s32fc_x2_rotator_16ic.h
@@ -61,6 +61,7 @@
 
 #include <volk_gnsssdr/volk_gnsssdr_complex.h>
 #include <math.h>
+//#include <stdio.h>
 
 
 #ifdef LV_HAVE_GENERIC
@@ -76,6 +77,56 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(lv_16sc_t* ou
             tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
             *outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
             (*phase) *= phase_inc;
+            // Regenerate phase
+            if (i % 512 == 0)
+                {
+                    //printf("Phase before regeneration %i: %f,%f  Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
+#ifdef __cplusplus
+                    (*phase) /= std::abs((*phase));
+#else
+                    (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+#endif
+                    //printf("Phase after regeneration %i: %f,%f  Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
+                }
+        }
+}
+
+#endif /* LV_HAVE_GENERIC */
+
+
+#ifdef LV_HAVE_GENERIC
+
+static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
+{
+    unsigned int ROTATOR_RELOAD = 512;
+    unsigned int n = 0;
+    unsigned int j = 0;
+    lv_16sc_t tmp16;
+    lv_32fc_t tmp32;
+    for (; n < num_points / ROTATOR_RELOAD; n++)
+        {
+            for (j = 0; j < ROTATOR_RELOAD; j++)
+                {
+                    tmp16 = *inVector++;
+                    tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+                    *outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+                    (*phase) *= phase_inc;
+                }
+            // Regenerate phase
+            //printf("Phase before regeneration %i: %f,%f  Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
+#ifdef __cplusplus
+            (*phase) /= std::abs((*phase));
+#else
+            (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+#endif
+            //printf("Phase after regeneration %i: %f,%f  Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
+        }
+    for (j = 0; j < num_points % ROTATOR_RELOAD; j++)
+        {
+            tmp16 = *inVector++;
+            tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+            *outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+            (*phase) *= phase_inc;
         }
 }
 
@@ -130,6 +181,7 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3(lv_16sc_t* out
             //next two samples
             _in += 2;
             a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            __builtin_prefetch(_in + 8);
             //complex 32fc multiplication b=a*two_phase_acc_reg
             yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
             yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
@@ -151,6 +203,16 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3(lv_16sc_t* out
             result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
             _mm_store_si128((__m128i*)_out, result);
 
+            // Regenerate phase
+            if ((number % 512) == 0)
+                {
+                    tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
+                    tmp2 = _mm_hadd_ps(tmp1, tmp1);
+                    tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
+                    tmp2 = _mm_sqrt_ps(tmp1);
+                    two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
+                }
+
             //next two samples
             _in += 2;
             _out += 4;
@@ -171,6 +233,158 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3(lv_16sc_t* out
 #endif /* LV_HAVE_SSE3 */
 
 
+
+#ifdef LV_HAVE_SSE3
+#include <pmmintrin.h>
+
+static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
+{
+    const unsigned int sse_iters = num_points / 4;
+    const unsigned int ROTATOR_RELOAD = 512;
+    __m128 a, b, two_phase_acc_reg, two_phase_inc_reg;
+    __m128i c1, c2, result;
+    __attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
+    two_phase_inc[0] = phase_inc * phase_inc;
+    two_phase_inc[1] = phase_inc * phase_inc;
+    two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
+    __attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
+    two_phase_acc[0] = (*phase);
+    two_phase_acc[1] = (*phase) * phase_inc;
+    two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
+
+    const lv_16sc_t* _in = inVector;
+
+    lv_16sc_t* _out = outVector;
+
+    __m128 yl, yh, tmp1, tmp2, tmp3;
+    lv_16sc_t tmp16;
+    lv_32fc_t tmp32;
+
+    for (unsigned int n = 0; n < sse_iters / ROTATOR_RELOAD; n++)
+        {
+            for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
+                {
+                    a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+                    //complex 32fc multiplication b=a*two_phase_acc_reg
+                    yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                    yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                    tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                    a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                    tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                    b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+                    c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
+
+                    //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+                    yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                    yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                    tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                    tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                    tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                    two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+                    //next two samples
+                    _in += 2;
+                    a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+                    __builtin_prefetch(_in + 8);
+                    //complex 32fc multiplication b=a*two_phase_acc_reg
+                    yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                    yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                    tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                    a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                    tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                    b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+                    c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
+
+                    //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+                    yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                    yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                    tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                    tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                    tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                    two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+                    // store four output samples
+                    result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
+                    _mm_store_si128((__m128i*)_out, result);
+
+                    //next two samples
+                    _in += 2;
+                    _out += 4;
+                }
+            // Regenerate phase
+            tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
+            tmp2 = _mm_hadd_ps(tmp1, tmp1);
+            tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
+            tmp2 = _mm_sqrt_ps(tmp1);
+            two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
+        }
+
+    for (unsigned int j = 0; j < sse_iters % ROTATOR_RELOAD; j++)
+        {
+            a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            //complex 32fc multiplication b=a*two_phase_acc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+            c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
+
+            //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+            //next two samples
+            _in += 2;
+            a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            __builtin_prefetch(_in + 8);
+            //complex 32fc multiplication b=a*two_phase_acc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+            c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
+
+            //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+            // store four output samples
+            result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
+            _mm_store_si128((__m128i*)_out, result);
+
+            //next two samples
+            _in += 2;
+            _out += 4;
+        }
+
+    _mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
+    (*phase) = two_phase_acc[0];
+
+    for (unsigned int i = sse_iters * 4; i < num_points; ++i)
+        {
+            tmp16 = *_in++;
+            tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+            *_out++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+            (*phase) *= phase_inc;
+        }
+}
+
+#endif /* LV_HAVE_SSE3 */
+
+
+
 #ifdef LV_HAVE_SSE3
 #include <pmmintrin.h>
 
@@ -241,6 +455,16 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3(lv_16sc_t* out
             result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
             _mm_storeu_si128((__m128i*)_out, result);
 
+            // Regenerate phase
+            if ((number % 512) == 0)
+                {
+                    tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
+                    tmp2 = _mm_hadd_ps(tmp1, tmp1);
+                    tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
+                    tmp2 = _mm_sqrt_ps(tmp1);
+                    two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
+                }
+
             //next two samples
             _in += 2;
             _out += 4;
@@ -261,6 +485,156 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3(lv_16sc_t* out
 #endif /* LV_HAVE_SSE3 */
 
 
+#ifdef LV_HAVE_SSE3
+#include <pmmintrin.h>
+
+static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
+{
+    const unsigned int sse_iters = num_points / 4;
+     unsigned int ROTATOR_RELOAD = 512;
+     __m128 a, b, two_phase_acc_reg, two_phase_inc_reg;
+     __m128i c1, c2, result;
+     __attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
+     two_phase_inc[0] = phase_inc * phase_inc;
+     two_phase_inc[1] = phase_inc * phase_inc;
+     two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
+     __attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
+     two_phase_acc[0] = (*phase);
+     two_phase_acc[1] = (*phase) * phase_inc;
+     two_phase_acc_reg = _mm_load_ps((float*) two_phase_acc);
+
+     const lv_16sc_t* _in = inVector;
+
+     lv_16sc_t* _out = outVector;
+
+     __m128 yl, yh, tmp1, tmp2, tmp3;
+     lv_16sc_t tmp16;
+     lv_32fc_t tmp32;
+
+     for (unsigned int n = 0; n < sse_iters / ROTATOR_RELOAD; n++)
+         {
+             for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
+                 {
+                     a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+                     //complex 32fc multiplication b=a*two_phase_acc_reg
+                     yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                     yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                     tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                     a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                     tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                     b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+                     c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
+
+                     //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+                     yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                     yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                     tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                     tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                     tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                     two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+                     //next two samples
+                     _in += 2;
+                     a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+                     __builtin_prefetch(_in + 8);
+                     //complex 32fc multiplication b=a*two_phase_acc_reg
+                     yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                     yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                     tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                     a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                     tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                     b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+                     c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
+
+                     //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+                     yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                     yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                     tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                     tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                     tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                     two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+                     // store four output samples
+                     result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
+                     _mm_storeu_si128((__m128i*)_out, result);
+
+                     //next two samples
+                     _in += 2;
+                     _out += 4;
+                 }
+             // Regenerate phase
+             tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
+             tmp2 = _mm_hadd_ps(tmp1, tmp1);
+             tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
+             tmp2 = _mm_sqrt_ps(tmp1);
+             two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
+         }
+
+     for (unsigned int j = 0; j < sse_iters % ROTATOR_RELOAD; j++)
+         {
+             a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+             //complex 32fc multiplication b=a*two_phase_acc_reg
+             yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+             yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+             tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+             a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
+             tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+             b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+             c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
+
+             //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+             yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+             yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+             tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+             tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+             tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+             two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+             //next two samples
+             _in += 2;
+             a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+             __builtin_prefetch(_in + 8);
+             //complex 32fc multiplication b=a*two_phase_acc_reg
+             yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+             yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+             tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+             a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
+             tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+             b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+             c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
+
+             //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+             yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+             yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+             tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+             tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+             tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+             two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+             // store four output samples
+             result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
+             _mm_storeu_si128((__m128i*)_out, result);
+
+             //next two samples
+             _in += 2;
+             _out += 4;
+         }
+
+     _mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
+     (*phase) = two_phase_acc[0];
+
+     for (unsigned int i = sse_iters * 4; i < num_points; ++i)
+         {
+             tmp16 = *_in++;
+             tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+             *_out++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+             (*phase) *= phase_inc;
+         }
+}
+
+#endif /* LV_HAVE_SSE3 */
+
+
 #ifdef LV_HAVE_NEON
 #include <arm_neon.h>
 
@@ -271,6 +645,10 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(lv_16sc_t* outVe
     lv_16sc_t tmp16_;
     lv_32fc_t tmp32_;
 
+    float arg_phase0 = cargf(*phase);
+    float arg_phase_inc = cargf(phase_inc);
+    float phase_est = 0.0;
+
     const lv_16sc_t* _in = inVector;
     lv_16sc_t* _out = outVector;
 
@@ -351,7 +729,211 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(lv_16sc_t* outVe
                     /* store the four complex results */
                     vst2_s16((int16_t*)_out, tmp16);
                     _out += 4;
+                    // Regenerate phase
+                    if ((i % 512) == 0)
+                        {
+                            //printf("Computed phase:  %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0]))));
+                            phase_est = arg_phase0 + (i + 1) * 4 * arg_phase_inc;
+                            //printf("Estimated phase: %f\n\n", cos(phase_est));
+
+                            *phase = lv_cmake(cos(phase_est), sin(phase_est));
+                            phase2 = (lv_32fc_t)(*phase) * phase_inc;
+                            phase3 = phase2 * phase_inc;
+                            phase4 = phase3 * phase_inc;
+
+                            __VOLK_ATTR_ALIGNED(16) float32_t  ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
+                            __VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
+
+                            _phase_real = vld1q_f32(____phase_real);
+                            _phase_imag = vld1q_f32(____phase_imag);
+                        }
+                }
+            vst1q_f32((float32_t*)__phase_real, _phase_real);
+            vst1q_f32((float32_t*)__phase_imag, _phase_imag);
+
+            (*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]);
+        }
+    for(i = 0; i < neon_iters % 4; ++i)
+        {
+            tmp16_ = *_in++;
+            tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase);
+            *_out++ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_)));
+            (*phase) *= phase_inc;
+        }
+}
+
+#endif /* LV_HAVE_NEON */
+
+
+#ifdef LV_HAVE_NEON
+#include <arm_neon.h>
+
+static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
+{
+    unsigned int i = 0;
+    const unsigned int neon_iters = num_points / 4;
+    const unsigned int ROTATOR_RELOAD = 512;
+
+    lv_16sc_t tmp16_;
+    lv_32fc_t tmp32_;
+
+    float arg_phase0 = cargf(*phase);
+    float arg_phase_inc = cargf(phase_inc);
+    float phase_est = 0.0;
+
+    const lv_16sc_t* _in = inVector;
+    lv_16sc_t* _out = outVector;
+
+    lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
+    __VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
+    __VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
+
+    float32x4_t _phase4_real = vld1q_f32(__phase4_real);
+    float32x4_t _phase4_imag = vld1q_f32(__phase4_imag);
+
+    lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc;
+    lv_32fc_t phase3 = phase2 * phase_inc;
+    lv_32fc_t phase4 = phase3 * phase_inc;
+
+    __VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
+    __VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
+
+    float32x4_t _phase_real = vld1q_f32(__phase_real);
+    float32x4_t _phase_imag = vld1q_f32(__phase_imag);
+
+    float32x4_t half = vdupq_n_f32(0.5f);
+    int16x4x2_t tmp16;
+    int32x4x2_t tmp32i;
+    float32x4x2_t tmp32f, tmp_real, tmp_imag;
+    float32x4_t sign, PlusHalf, Round;
+
+    if (neon_iters > 0)
+        {
+            for (unsigned int n = 0; n < neon_iters / ROTATOR_RELOAD; n++)
+                {
+                    for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
+                        {
+                            /* load 4 complex numbers (int 16 bits each component) */
+                            tmp16 = vld2_s16((int16_t*)_in);
+                            __builtin_prefetch(_in + 8);
+                            _in += 4;
+
+                            /* promote them to int 32 bits */
+                            tmp32i.val[0] = vmovl_s16(tmp16.val[0]);
+                            tmp32i.val[1] = vmovl_s16(tmp16.val[1]);
+
+                            /* promote them to float 32 bits */
+                            tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
+                            tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
+
+                            /* complex multiplication of four complex samples (float 32 bits each component) */
+                            tmp_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
+                            tmp_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
+                            tmp_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
+                            tmp_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
+
+                            tmp32f.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
+                            tmp32f.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
+
+                            /* downcast results to int32 */
+                            /* in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); */
+                            sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
+                            PlusHalf = vaddq_f32(tmp32f.val[0], half);
+                            Round = vsubq_f32(PlusHalf, sign);
+                            tmp32i.val[0] = vcvtq_s32_f32(Round);
+
+                            sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
+                            PlusHalf = vaddq_f32(tmp32f.val[1], half);
+                            Round = vsubq_f32(PlusHalf, sign);
+                            tmp32i.val[1] = vcvtq_s32_f32(Round);
+
+                            /* downcast results to int16 */
+                            tmp16.val[0] = vqmovn_s32(tmp32i.val[0]);
+                            tmp16.val[1] = vqmovn_s32(tmp32i.val[1]);
+
+                            /* compute next four phases */
+                            tmp_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
+                            tmp_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
+                            tmp_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
+                            tmp_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
+
+                            _phase_real = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
+                            _phase_imag = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
+
+                            /* store the four complex results */
+                            vst2_s16((int16_t*)_out, tmp16);
+                            _out += 4;
+                        }
+                    // Regenerate phase
+                    //printf("Computed phase:  %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0]))));
+                    phase_est = arg_phase0 + (n + 1) * ROTATOR_RELOAD * 4 * arg_phase_inc;
+                    //printf("Estimated phase: %f\n\n", cos(phase_est));
+                    *phase = lv_cmake(cos(phase_est), sin(phase_est));
+                    phase2 = (lv_32fc_t)(*phase) * phase_inc;
+                    phase3 = phase2 * phase_inc;
+                    phase4 = phase3 * phase_inc;
+
+                    __VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
+                    __VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
+
+                    _phase_real = vld1q_f32(____phase_real);
+                    _phase_imag = vld1q_f32(____phase_imag);
+                }
+
+            for (unsigned int j = 0; j < neon_iters % ROTATOR_RELOAD; j++)
+                {
+                    /* load 4 complex numbers (int 16 bits each component) */
+                    tmp16 = vld2_s16((int16_t*)_in);
+                    __builtin_prefetch(_in + 8);
+                    _in += 4;
+
+                    /* promote them to int 32 bits */
+                    tmp32i.val[0] = vmovl_s16(tmp16.val[0]);
+                    tmp32i.val[1] = vmovl_s16(tmp16.val[1]);
+
+                    /* promote them to float 32 bits */
+                    tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
+                    tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
+
+                    /* complex multiplication of four complex samples (float 32 bits each component) */
+                    tmp_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
+                    tmp_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
+                    tmp_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
+                    tmp_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
+
+                    tmp32f.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
+                    tmp32f.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
+
+                    /* downcast results to int32 */
+                    /* in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); */
+                    sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
+                    PlusHalf = vaddq_f32(tmp32f.val[0], half);
+                    Round = vsubq_f32(PlusHalf, sign);
+                    tmp32i.val[0] = vcvtq_s32_f32(Round);
+
+                    sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
+                    PlusHalf = vaddq_f32(tmp32f.val[1], half);
+                    Round = vsubq_f32(PlusHalf, sign);
+                    tmp32i.val[1] = vcvtq_s32_f32(Round);
+
+                    /* downcast results to int16 */
+                    tmp16.val[0] = vqmovn_s32(tmp32i.val[0]);
+                    tmp16.val[1] = vqmovn_s32(tmp32i.val[1]);
+
+                    /* compute next four phases */
+                    tmp_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
+                    tmp_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
+                    tmp_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
+                    tmp_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
+
+                    _phase_real = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
+                    _phase_imag = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
+
+                    /* store the four complex results */
+                    vst2_s16((int16_t*)_out, tmp16);
+                    _out += 4;
                 }
+
             vst1q_f32((float32_t*)__phase_real, _phase_real);
             vst1q_f32((float32_t*)__phase_imag, _phase_imag);
 
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic.h
index c16a75b..5f760c2 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic.h
@@ -94,7 +94,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
 
     if (sse_iters > 0)
         {
-            __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, realcacc, imagcacc, result;
+            __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, realcacc, imagcacc;
             __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
 
             realcacc = _mm_setzero_si128();
@@ -105,8 +105,6 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
 
             for(unsigned int number = 0; number < sse_iters; number++)
                 {
-                    //std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
-                    //imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
                     // a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
                     a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
                     __builtin_prefetch(_in_a + 8);
@@ -115,7 +113,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
                     c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
 
                     c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
-                    real = _mm_subs_epi16(c,c_sr);
+                    real = _mm_subs_epi16(c, c_sr);
 
                     b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
                     a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
@@ -123,7 +121,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
                     imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
                     imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
 
-                    imag = _mm_adds_epi16(imag1, imag2); //with saturation aritmetic!
+                    imag = _mm_adds_epi16(imag1, imag2); //with saturation arithmetic!
 
                     realcacc = _mm_adds_epi16(realcacc, real);
                     imagcacc = _mm_adds_epi16(imagcacc, imag);
@@ -135,9 +133,9 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
             realcacc = _mm_and_si128(realcacc, mask_real);
             imagcacc = _mm_and_si128(imagcacc, mask_imag);
 
-            result = _mm_or_si128(realcacc, imagcacc);
+            a = _mm_or_si128(realcacc, imagcacc);
 
-            _mm_store_si128((__m128i*)dotProductVector,result); // Store the results back into the dot product vector
+            _mm_store_si128((__m128i*)dotProductVector, a); // Store the results back into the dot product vector
 
             for (int i = 0; i < 4; ++i)
                 {
@@ -202,7 +200,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_u_sse2(lv_16sc_t* out, con
                     imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
                     imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
 
-                    imag = _mm_adds_epi16(imag1, imag2); //with saturation aritmetic!
+                    imag = _mm_adds_epi16(imag1, imag2); //with saturation arithmetic!
 
                     realcacc = _mm_adds_epi16(realcacc, real);
                     imagcacc = _mm_adds_epi16(imagcacc, imag);
@@ -245,46 +243,57 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_neon(lv_16sc_t* out, const
 
     lv_16sc_t* a_ptr = (lv_16sc_t*) in_a;
     lv_16sc_t* b_ptr = (lv_16sc_t*) in_b;
-    // for 2-lane vectors, 1st lane holds the real part,
-    // 2nd lane holds the imaginary part
-    int16x4x2_t a_val, b_val, c_val, accumulator;
-    int16x4x2_t tmp_real, tmp_imag;
-    __VOLK_ATTR_ALIGNED(16) lv_16sc_t accum_result[4];
-    accumulator.val[0] = vdup_n_s16(0);
-    accumulator.val[1] = vdup_n_s16(0);
+    *out = lv_cmake((int16_t)0, (int16_t)0);
 
-    for(number = 0; number < quarter_points; ++number)
+    if (quarter_points > 0)
         {
-            a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
-            b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
-            __builtin_prefetch(a_ptr + 8);
-            __builtin_prefetch(b_ptr + 8);
-
-            // multiply the real*real and imag*imag to get real result
-            // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
-            tmp_real.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
-            // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
-            tmp_real.val[1] = vmul_s16(a_val.val[1], b_val.val[1]);
-
-            // Multiply cross terms to get the imaginary result
-            // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
-            tmp_imag.val[0] = vmul_s16(a_val.val[0], b_val.val[1]);
-            // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
-            tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
-
-            c_val.val[0] = vsub_s16(tmp_real.val[0], tmp_real.val[1]);
-            c_val.val[1] = vadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
+            // for 2-lane vectors, 1st lane holds the real part,
+            // 2nd lane holds the imaginary part
+            int16x4x2_t a_val, b_val, c_val, accumulator;
+            int16x4x2_t tmp_real, tmp_imag;
+            __VOLK_ATTR_ALIGNED(16) lv_16sc_t accum_result[4];
+            accumulator.val[0] = vdup_n_s16(0);
+            accumulator.val[1] = vdup_n_s16(0);
+            lv_16sc_t dotProduct = lv_cmake((int16_t)0, (int16_t)0);
+
+            for(number = 0; number < quarter_points; ++number)
+                {
+                    a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+                    b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+                    __builtin_prefetch(a_ptr + 8);
+                    __builtin_prefetch(b_ptr + 8);
+
+                    // multiply the real*real and imag*imag to get real result
+                    // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
+                    tmp_real.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
+                    // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
+                    tmp_real.val[1] = vmul_s16(a_val.val[1], b_val.val[1]);
+
+                    // Multiply cross terms to get the imaginary result
+                    // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
+                    tmp_imag.val[0] = vmul_s16(a_val.val[0], b_val.val[1]);
+                    // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
+                    tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
+
+                    c_val.val[0] = vqsub_s16(tmp_real.val[0], tmp_real.val[1]);
+                    c_val.val[1] = vqadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
+
+                    accumulator.val[0] = vqadd_s16(accumulator.val[0], c_val.val[0]);
+                    accumulator.val[1] = vqadd_s16(accumulator.val[1], c_val.val[1]);
+
+                    a_ptr += 4;
+                    b_ptr += 4;
+                }
 
-            accumulator.val[0] = vadd_s16(accumulator.val[0], c_val.val[0]);
-            accumulator.val[1] = vadd_s16(accumulator.val[1], c_val.val[1]);
+            vst2_s16((int16_t*)accum_result, accumulator);
+            for (unsigned int i = 0; i < 4; ++i)
+                {
+                    dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(accum_result[i])), sat_adds16i(lv_cimag(dotProduct), lv_cimag(accum_result[i])));
+                }
 
-            a_ptr += 4;
-            b_ptr += 4;
+            *out = dotProduct;
         }
 
-    vst2_s16((int16_t*)accum_result, accumulator);
-    *out = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
-
     // tail case
     for(number = quarter_points * 4; number < num_points; ++number)
         {
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h
index ec69034..6d27bf9 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h
@@ -84,6 +84,25 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_generic(lv_16sc_t* resu
 #endif /*LV_HAVE_GENERIC*/
 
 
+#ifdef LV_HAVE_GENERIC
+
+static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_generic_sat(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
+{
+    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            result[n_vec] = lv_cmake(0,0);
+            for (unsigned int n = 0; n < num_points; n++)
+                {
+                    lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(in_common[n]), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(in_common[n]), lv_cimag(in_a[n_vec][n]))),
+                                             sat_adds16i(sat_muls16i(lv_creal(in_common[n]), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(in_common[n]), lv_creal(in_a[n_vec][n]))));
+                    result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp)));
+                }
+        }
+}
+
+#endif /*LV_HAVE_GENERIC*/
+
+
 #ifdef LV_HAVE_SSE2
 #include <emmintrin.h>
 
@@ -318,11 +337,11 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_neon(lv_16sc_t* result,
                             // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
                             tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
 
-                            c_val.val[0] = vsub_s16(tmp_real.val[0], tmp_real.val[1]);
-                            c_val.val[1] = vadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
+                            c_val.val[0] = vqsub_s16(tmp_real.val[0], tmp_real.val[1]);
+                            c_val.val[1] = vqadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
 
-                            accumulator[n_vec].val[0] = vadd_s16(accumulator[n_vec].val[0], c_val.val[0]);
-                            accumulator[n_vec].val[1] = vadd_s16(accumulator[n_vec].val[1], c_val.val[1]);
+                            accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], c_val.val[0]);
+                            accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], c_val.val[1]);
                         }
                     _in_common += 4;
                 }
@@ -398,8 +417,8 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_neon_vma(lv_16sc_t* res
                             tmp.val[0] = vmls_s16(tmp.val[0], a_val.val[1], b_val.val[1]);
                             tmp.val[1] = vmla_s16(tmp.val[1], a_val.val[0], b_val.val[1]);
 
-                            accumulator[n_vec].val[0] = vadd_s16(accumulator[n_vec].val[0], tmp.val[0]);
-                            accumulator[n_vec].val[1] = vadd_s16(accumulator[n_vec].val[1], tmp.val[1]);
+                            accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], tmp.val[0]);
+                            accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], tmp.val[1]);
                         }
                     _in_common += 4;
                 }
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic.h
index 48e9d34..83c2075 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic.h
@@ -63,6 +63,30 @@ static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_generic(lv_16sc_t*
 
 #endif  /* Generic */
 
+
+#ifdef LV_HAVE_GENERIC
+static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_generic_sat(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
+{
+    int num_a_vectors = 3;
+    lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
+    for(unsigned int n = 0; n < num_a_vectors; n++)
+    {
+       in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
+       memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
+    }
+
+    volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_generic_sat(result, local_code, (const lv_16sc_t**) in_a, num_a_vectors, num_points);
+
+    for(unsigned int n = 0; n < num_a_vectors; n++)
+    {
+        volk_gnsssdr_free(in_a[n]);
+    }
+    volk_gnsssdr_free(in_a);
+}
+
+#endif  /* Generic */
+
+
 #ifdef LV_HAVE_SSE2
 static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_a_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
 {
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h
index adcad02..8f9c5ad 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h
@@ -43,6 +43,7 @@
  *
  * Rotates and multiplies the reference complex vector with an arbitrary number of other complex vectors,
  * accumulates the results and stores them in the output vector.
+ * The rotation is done at a fixed rate per sample, from an initial \p phase offset.
  * This function can be used for Doppler wipe-off and multiple correlator.
  *
  * <b>Dispatcher Prototype</b>
@@ -71,7 +72,7 @@
 #include <volk_gnsssdr/volk_gnsssdr_complex.h>
 #include <volk_gnsssdr/saturation_arithmetic.h>
 #include <math.h>
-//#include <stdio.h>
+#include <stdio.h>
 
 #ifdef LV_HAVE_GENERIC
 
@@ -88,6 +89,19 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic(lv_16sc
             tmp16 = *in_common++; //if(n<10 || n >= 8108) printf("generic phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
             tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
             tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+
+            // Regenerate phase
+            if (n % 256 == 0)
+                {
+                    //printf("Phase before regeneration %i: %f,%f  Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
+#ifdef __cplusplus
+                    (*phase) /= std::abs((*phase));
+#else
+                    (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+#endif
+                    //printf("Phase after regeneration %i: %f,%f  Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
+                }
+
             (*phase) *= phase_inc;
             for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
                 {
@@ -101,6 +115,60 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic(lv_16sc
 #endif /*LV_HAVE_GENERIC*/
 
 
+#ifdef LV_HAVE_GENERIC
+
+static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic_reload(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
+{
+    lv_16sc_t tmp16;
+    lv_32fc_t tmp32;
+    const unsigned int ROTATOR_RELOAD = 256;
+    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            result[n_vec] = lv_cmake(0,0);
+        }
+
+    for (unsigned int n = 0; n < num_points / ROTATOR_RELOAD; n++)
+        {
+            for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
+                {
+                    tmp16 = *in_common++; //if(n<10 || n >= 8108) printf("generic phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
+                    tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+                    tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+                    (*phase) *= phase_inc;
+                    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+                        {
+                            lv_16sc_t tmp = tmp16 * in_a[n_vec][n * ROTATOR_RELOAD + j];
+                            //lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(tmp16), lv_cimag(in_a[n_vec][n]))) , sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(tmp16), lv_creal(in_a[n_vec][n]))));
+                            result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp)));
+                        }
+                }
+            /* Regenerate phase */
+#ifdef __cplusplus
+            (*phase) /= std::abs((*phase));
+#else
+            //(*phase) /= cabsf((*phase));
+            (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+#endif
+        }
+
+    for (unsigned int j = 0; j < num_points % ROTATOR_RELOAD; j++)
+        {
+            tmp16 = *in_common++; //if(n<10 || n >= 8108) printf("generic phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
+            tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+            tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+            (*phase) *= phase_inc;
+            for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+                {
+                    lv_16sc_t tmp = tmp16 * in_a[n_vec][ (num_points / ROTATOR_RELOAD) * ROTATOR_RELOAD + j ];
+                    //lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(tmp16), lv_cimag(in_a[n_vec][n]))) , sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(tmp16), lv_creal(in_a[n_vec][n]))));
+                    result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp)));
+                }
+        }
+}
+
+#endif /*LV_HAVE_GENERIC*/
+
+
 #ifdef LV_HAVE_SSE3
 #include <pmmintrin.h>
 
@@ -169,6 +237,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_
             //next two samples
             _in_common += 2;
             pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            __builtin_prefetch(_in_common + 8);
             //complex 32fc multiplication b=a*two_phase_acc_reg
             yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
             yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
@@ -212,6 +281,256 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_
                     realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
                     imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
                 }
+            // Regenerate phase
+            if ((number % 128) == 0)
+                {
+                    tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
+                    tmp2 = _mm_hadd_ps(tmp1, tmp1);
+                    tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
+                    tmp2 = _mm_sqrt_ps(tmp1);
+                    two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
+                }
+        }
+
+    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+        {
+            realcacc[n_vec] = _mm_and_si128(realcacc[n_vec], mask_real);
+            imagcacc[n_vec] = _mm_and_si128(imagcacc[n_vec], mask_imag);
+
+            a = _mm_or_si128(realcacc[n_vec], imagcacc[n_vec]);
+
+            _mm_store_si128((__m128i*)dotProductVector, a); // Store the results back into the dot product vector
+            dotProduct = lv_cmake(0,0);
+            for (int i = 0; i < 4; ++i)
+                {
+                    dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
+                            sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
+                }
+            _out[n_vec] = dotProduct;
+        }
+    free(realcacc);
+    free(imagcacc);
+
+    tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
+    tmp2 = _mm_hadd_ps(tmp1, tmp1);
+    tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
+    tmp2 = _mm_sqrt_ps(tmp1);
+    two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
+
+    _mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
+    //(*phase) = lv_cmake((float*)two_phase_acc[0], (float*)two_phase_acc[1]);
+    (*phase) = two_phase_acc[0];
+
+    for(unsigned int n  = sse_iters * 4; n < num_points; n++)
+        {
+            tmp16 = in_common[n];  //printf("a_sse phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
+            tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
+            tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
+            (*phase) *= phase_inc;
+
+            for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+                {
+                    lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
+                    //lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(tmp16), lv_cimag(in_a[n_vec][n]))) , sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(tmp16), lv_creal(in_a[n_vec][n]))));
+                    _out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
+                            sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
+                }
+        }
+}
+#endif /* LV_HAVE_SSE3 */
+
+
+#ifdef LV_HAVE_SSE3
+#include <pmmintrin.h>
+
+static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3_reload(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a,  int num_a_vectors, unsigned int num_points)
+{
+    lv_16sc_t dotProduct = lv_cmake(0,0);
+
+    const unsigned int sse_iters = num_points / 4;
+    const unsigned int ROTATOR_RELOAD = 128;
+
+    const lv_16sc_t** _in_a = in_a;
+    const lv_16sc_t* _in_common = in_common;
+    lv_16sc_t* _out = result;
+
+    __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
+
+    //todo dyn mem reg
+
+    __m128i* realcacc;
+    __m128i* imagcacc;
+
+    realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
+    imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
+
+    __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl;
+
+    mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
+    mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
+
+    // phase rotation registers
+    __m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg;
+    __m128i pc1, pc2;
+    __attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
+    two_phase_inc[0] = phase_inc * phase_inc;
+    two_phase_inc[1] = phase_inc * phase_inc;
+    two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
+    __attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
+    two_phase_acc[0] = (*phase);
+    two_phase_acc[1] = (*phase) * phase_inc;
+    two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
+    __m128 yl, yh, tmp1, tmp2, tmp3;
+    lv_16sc_t tmp16;
+    lv_32fc_t tmp32;
+
+    for (unsigned int number = 0; number <  sse_iters / ROTATOR_RELOAD; ++number)
+        {
+            for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
+                {
+                    // Phase rotation on operand in_common starts here:
+                    //printf("generic phase %i: %f,%f\n", n*4,lv_creal(*phase),lv_cimag(*phase));
+                    pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+                    //complex 32fc multiplication b=a*two_phase_acc_reg
+                    yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                    yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                    tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                    pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                    tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                    pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+                    pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
+
+                    //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+                    yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                    yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                    tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                    tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                    tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                    two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+                    //next two samples
+                    _in_common += 2;
+                    pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+                    __builtin_prefetch(_in_common + 8);
+                    //complex 32fc multiplication b=a*two_phase_acc_reg
+                    yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                    yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                    tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                    pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                    tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                    pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+                    pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
+
+                    //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+                    yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+                    yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+                    tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+                    tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+                    tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+                    two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+                    // store four rotated in_common samples in the register b
+                    b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
+
+                    //next two samples
+                    _in_common += 2;
+
+                    for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+                        {
+                            a = _mm_load_si128((__m128i*)&(_in_a[n_vec][(number * ROTATOR_RELOAD + j) * 4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+
+                            c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
+
+                            c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+                            real = _mm_subs_epi16(c, c_sr);
+
+                            b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
+                            a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
+
+                            imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+                            imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+
+                            imag = _mm_adds_epi16(imag1, imag2);
+
+                            realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
+                            imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
+                        }
+                }
+            // regenerate phase
+            tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
+            tmp2 = _mm_hadd_ps(tmp1, tmp1);
+            tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
+            tmp2 = _mm_sqrt_ps(tmp1);
+            two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
+        }
+
+    for (unsigned int j = 0; j < sse_iters % ROTATOR_RELOAD; j++)
+        {
+            pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            //complex 32fc multiplication b=a*two_phase_acc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+            pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
+
+            //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+            //next two samples
+            _in_common += 2;
+            pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            __builtin_prefetch(_in_common + 8);
+            //complex 32fc multiplication b=a*two_phase_acc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+            pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
+
+            //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
+            yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
+            yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
+            tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+            tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
+            tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+            two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+
+            // store four rotated in_common samples in the register b
+            b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
+
+            //next two samples
+            _in_common += 2;
+
+            for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
+                {
+                    a = _mm_load_si128((__m128i*)&(_in_a[n_vec][((sse_iters / ROTATOR_RELOAD)  * ROTATOR_RELOAD + j) * 4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+
+                    c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
+
+                    c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+                    real = _mm_subs_epi16(c, c_sr);
+
+                    b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
+                    a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
+
+                    imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+                    imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+
+                    imag = _mm_adds_epi16(imag1, imag2);
+
+                    realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
+                    imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
+                }
         }
 
     for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
@@ -230,9 +549,16 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_
                 }
             _out[n_vec] = dotProduct;
         }
+
     free(realcacc);
     free(imagcacc);
 
+    tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
+    tmp2 = _mm_hadd_ps(tmp1, tmp1);
+    tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
+    tmp2 = _mm_sqrt_ps(tmp1);
+    two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
+
     _mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
     //(*phase) = lv_cmake((float*)two_phase_acc[0], (float*)two_phase_acc[1]);
     (*phase) = two_phase_acc[0];
@@ -303,7 +629,6 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
     for(unsigned int number = 0; number < sse_iters; number++)
         {
             // Phase rotation on operand in_common starts here:
-
             pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
             __builtin_prefetch(_in_common + 8);
             //complex 32fc multiplication b=a*two_phase_acc_reg
@@ -326,6 +651,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
             //next two samples
             _in_common += 2;
             pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+            __builtin_prefetch(_in_common + 8);
             //complex 32fc multiplication b=a*two_phase_acc_reg
             yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
             yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
@@ -369,6 +695,15 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
                     realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
                     imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
                 }
+            // Regenerate phase
+            if ((number % 256) == 0)
+                {
+                    tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
+                    tmp2 = _mm_hadd_ps(tmp1, tmp1);
+                    tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
+                    tmp2 = _mm_sqrt_ps(tmp1);
+                    two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
+                }
         }
 
     for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
@@ -393,7 +728,6 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
     _mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
     (*phase) = two_phase_acc[0];
 
-
     for(unsigned int n  = sse_iters * 4; n < num_points; n++)
         {
             tmp16 = in_common[n];
@@ -428,6 +762,9 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t*
     if (neon_iters > 0)
         {
             lv_16sc_t dotProduct = lv_cmake(0,0);
+            float arg_phase0 = cargf(*phase);
+            float arg_phase_inc = cargf(phase_inc);
+            float phase_est;
 
             lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
             __VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
@@ -538,6 +875,22 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t*
                             accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], c_val.val[0]);
                             accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], c_val.val[1]);
                         }
+                    // Regenerate phase
+                    if ((number % 256) == 0)
+                        {
+                            phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc;
+
+                            *phase = lv_cmake(cos(phase_est), sin(phase_est));
+                            phase2 = (lv_32fc_t)(*phase) * phase_inc;
+                            phase3 = phase2 * phase_inc;
+                            phase4 = phase3 * phase_inc;
+
+                            __VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
+                            __VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
+
+                            _phase_real = vld1q_f32(____phase_real);
+                            _phase_imag = vld1q_f32(____phase_imag);
+                        }
                 }
 
             for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
@@ -577,6 +930,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t*
 
 #ifdef LV_HAVE_NEON
 #include <arm_neon.h>
+#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h>
 
 static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a,  int num_a_vectors, unsigned int num_points)
 {
@@ -592,7 +946,10 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
     if (neon_iters > 0)
         {
             lv_16sc_t dotProduct = lv_cmake(0,0);
-
+            float arg_phase0 = cargf(*phase);
+            float arg_phase_inc = cargf(phase_inc);
+            float phase_est;
+            //printf("arg phase0: %f", arg_phase0);
             lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
             __VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
             __VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
@@ -677,6 +1034,37 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
                     _phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
                     _phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
 
+                    // Regenerate phase
+                    if ((number % 256) == 0)
+                        {
+                            //printf("computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0]))));
+                            phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc;
+                            //printf("Estimated phase: %f\n\n", cos(phase_est));
+
+                            *phase = lv_cmake(cos(phase_est), sin(phase_est));
+                            phase2 = (lv_32fc_t)(*phase) * phase_inc;
+                            phase3 = phase2 * phase_inc;
+                            phase4 = phase3 * phase_inc;
+
+                            __VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
+                            __VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
+
+                            _phase_real = vld1q_f32(____phase_real);
+                            _phase_imag = vld1q_f32(____phase_imag);
+
+                            // Round = vmulq_f32(_phase_real, _phase_real);
+                            // Round = vmlaq_f32(Round, _phase_imag, _phase_imag);
+                            //               Round = vsqrtq_f32(Round);//printf("sqrt: %f \n", Round[0]);
+                            //Round = vrsqrteq_f32(Round);printf("1/sqtr: %f  \n",Round[0]);  
+                            //Round = vrecpeq_f32((Round);
+                            //              _phase_real = vdivq_f32(_phase_real, Round);
+                            //              _phase_imag = vdivq_f32(_phase_imag, Round);
+                            //_phase_real = vmulq_f32(_phase_real, Round);
+                            //_phase_imag = vmulq_f32(_phase_imag, Round);
+                            //printf("After  %i: %f,%f, %f\n\n", number, _phase_real[0], _phase_imag[0], sqrt(_phase_real[0]*_phase_real[0]+_phase_imag[0]*_phase_imag[0]));
+
+                        }
+
                     vst1q_f32((float32_t*)__phase_real, _phase_real);
                     vst1q_f32((float32_t*)__phase_imag, _phase_imag);
 
@@ -708,6 +1096,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
                     _out[n_vec] = dotProduct;
                 }
             free(accumulator);
+
             vst1q_f32((float32_t*)__phase_real, _phase_real);
             vst1q_f32((float32_t*)__phase_imag, _phase_imag);
 
@@ -731,3 +1120,4 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
 #endif /* LV_HAVE_NEON */
 
 #endif /*INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_H*/
+
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h
index 4fb5eeb..d5e8c1e 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h
@@ -70,6 +70,36 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_generic(lv_
 #endif  // Generic
 
 
+#ifdef LV_HAVE_GENERIC
+static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_generic_reload(lv_16sc_t* result, const lv_16sc_t* local_code,  const lv_16sc_t* in, unsigned int num_points)
+{
+    // phases must be normalized. Phase rotator expects a complex exponential input!
+    float rem_carrier_phase_in_rad = 0.345;
+    float phase_step_rad = 0.1;
+    lv_32fc_t phase[1];
+    phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
+    lv_32fc_t phase_inc[1];
+    phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
+
+    int num_a_vectors = 3;
+    lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
+    for(unsigned int n = 0; n < num_a_vectors; n++)
+        {
+            in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
+            memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
+        }
+    volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic_reload(result, local_code, phase_inc[0], phase,(const lv_16sc_t**) in_a, num_a_vectors, num_points);
+
+    for(unsigned int n = 0; n < num_a_vectors; n++)
+        {
+            volk_gnsssdr_free(in_a[n]);
+        }
+    volk_gnsssdr_free(in_a);
+}
+
+#endif  // Generic
+
+
 #ifdef LV_HAVE_SSE3
 static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_sse3(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
 {
@@ -102,6 +132,37 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_sse3(lv_1
 
 
 #ifdef LV_HAVE_SSE3
+static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_sse3_reload(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
+{
+    // phases must be normalized. Phase rotator expects a complex exponential input!
+    float rem_carrier_phase_in_rad = 0.345;
+    float phase_step_rad = 0.1;
+    lv_32fc_t phase[1];
+    phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
+    lv_32fc_t phase_inc[1];
+    phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
+
+    int num_a_vectors = 3;
+    lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
+    for(unsigned int n = 0; n < num_a_vectors; n++)
+        {
+            in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
+            memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
+        }
+
+    volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3_reload(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points);
+
+    for(unsigned int n = 0; n < num_a_vectors; n++)
+        {
+            volk_gnsssdr_free(in_a[n]);
+        }
+    volk_gnsssdr_free(in_a);
+}
+
+#endif // SSE3
+
+
+#ifdef LV_HAVE_SSE3
 static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_u_sse3(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
 {
     // phases must be normalized. Phase rotator expects a complex exponential input!
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/kernel_tests.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/kernel_tests.h
index 97bf1ee..57426a3 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/kernel_tests.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/kernel_tests.h
@@ -58,6 +58,9 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
     // some others need more iterations *****  ADDED BY GNSS-SDR
     volk_gnsssdr_test_params_t test_params_more_iters = volk_gnsssdr_test_params_t(test_params.tol(), test_params.scalar(),
                 test_params.vlen(), 100000, test_params.benchmark_mode(), test_params.kernel_regex());
+    // ... or more tolerance *****  ADDED BY GNSS-SDR
+    volk_gnsssdr_test_params_t test_params_int16 = volk_gnsssdr_test_params_t(16, test_params.scalar(),
+                test_params.vlen(), test_params.iter(), test_params.benchmark_mode(), test_params.kernel_regex());
 
     std::vector<volk_gnsssdr_test_case_t> test_cases = boost::assign::list_of
 
@@ -77,11 +80,11 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
         (VOLK_INIT_TEST(volk_gnsssdr_16ic_x2_dot_prod_16ic, test_params))
         (VOLK_INIT_TEST(volk_gnsssdr_16ic_x2_multiply_16ic, test_params_more_iters))
         (VOLK_INIT_TEST(volk_gnsssdr_16ic_convert_32fc, test_params_more_iters))
-        (VOLK_INIT_PUPP(volk_gnsssdr_16ic_rotatorpuppet_16ic, volk_gnsssdr_16ic_s32fc_x2_rotator_16ic, test_params))
+        (VOLK_INIT_PUPP(volk_gnsssdr_16ic_rotatorpuppet_16ic, volk_gnsssdr_16ic_s32fc_x2_rotator_16ic, test_params_int1))
         (VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerpuppet_16ic, volk_gnsssdr_16ic_resampler_16ic, test_params))
         (VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerxnpuppet_16ic, volk_gnsssdr_16ic_xn_resampler_16ic_xn, test_params))
         (VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_dot_prod_16ic_xn, test_params))
-        (VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params))
+        (VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params_int16))
         ;
 
     return test_cases;
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/qa_utils.cc b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/qa_utils.cc
index e849ce1..c5b3f52 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/qa_utils.cc
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/qa_utils.cc
@@ -76,10 +76,10 @@ void load_random_data(void *data, volk_gnsssdr_type_t type, unsigned int n)
                         else ((uint32_t *)data)[i] = (uint32_t) scaled_rand;
                         break;
                     case 2:
-                        // 16 bits dot product saturates very fast even with moderate length vectors
-                    	// we produce here only 4 bits input range
-                        if(type.is_signed) ((int16_t *)data)[i] = (int16_t)((int16_t) scaled_rand % 16);
-                        else ((uint16_t *)data)[i] = (uint16_t) (int16_t)((int16_t) scaled_rand % 16);
+                        // 16 bit multiplication saturates very fast
+                    	// we produce here only 3 bits input range
+                        if(type.is_signed) ((int16_t *)data)[i] = (int16_t)((int16_t) scaled_rand % 8);
+                        else ((uint16_t *)data)[i] = (uint16_t) (int16_t)((int16_t) scaled_rand % 8);
                         break;
                     case 1:
                         if(type.is_signed) ((int8_t *)data)[i] = (int8_t) scaled_rand;

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-hamradio/gnss-sdr.git



More information about the pkg-hamradio-commits mailing list