[hamradio-commits] [gnss-sdr] 158/236: fix kernel
Carles Fernandez
carles_fernandez-guest at moszumanska.debian.org
Tue Apr 26 16:02:47 UTC 2016
This is an automated email from the git hooks/post-receive script.
carles_fernandez-guest pushed a commit to branch next
in repository gnss-sdr.
commit 9ebbb3b4600464399cd69be56368f878b916672f
Author: Carles Fernandez <carles.fernandez at gmail.com>
Date: Sun Apr 3 09:07:10 2016 +0200
fix kernel
This fixes a runtime error, since VOLK functions are static and a
segmentation fault was caused when aligned and unaligned versions were
called concurrently.
---
.../volk_gnsssdr_32fc_xn_resampler_32fc_xn.h | 186 ++++++++++++++++++++-
1 file changed, 180 insertions(+), 6 deletions(-)
diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_xn_resampler_32fc_xn.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_xn_resampler_32fc_xn.h
index 2609696..664f39c 100644
--- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_xn_resampler_32fc_xn.h
+++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_xn_resampler_32fc_xn.h
@@ -163,7 +163,65 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** res
#include <pmmintrin.h>
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_sse3(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
- volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(result, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
+ lv_32fc_t** _result = result;
+ const unsigned int quarterPoints = num_points / 4;
+
+ const __m128 ones = _mm_set1_ps(1.0f);
+ const __m128 fours = _mm_set1_ps(4.0f);
+ const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
+ const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
+
+ __VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
+ int local_code_chip_index_;
+
+ const __m128i zeros = _mm_setzero_si128();
+ const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
+ const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
+ __m128i local_code_chip_index_reg, aux_i, negatives, i;
+ __m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
+
+ for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
+ {
+ shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
+ aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
+ __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
+ for(unsigned int n = 0; n < quarterPoints; n++)
+ {
+ aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
+ aux = _mm_add_ps(aux, aux2);
+ // floor
+ i = _mm_cvttps_epi32(aux);
+ fi = _mm_cvtepi32_ps(i);
+ igx = _mm_cmpgt_ps(fi, aux);
+ j = _mm_and_ps(igx, ones);
+ aux = _mm_sub_ps(fi, j);
+ // fmod
+ c = _mm_div_ps(aux, code_length_chips_reg_f);
+ i = _mm_cvttps_epi32(c);
+ cTrunc = _mm_cvtepi32_ps(i);
+ base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
+ local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
+
+ negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
+ aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
+ local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
+ _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
+ for(unsigned int k = 0; k < 4; ++k)
+ {
+ _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
+ }
+ indexn = _mm_add_ps(indexn, fours);
+ }
+ for(unsigned int n = quarterPoints * 4; n < num_points; n++)
+ {
+ // resample code for current tap
+ local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
+ local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
+ //Take into account that in multitap correlators, the shifts can be negative!
+ if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
+ _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
+ }
+ }
}
#endif
@@ -236,8 +294,63 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** r
#include <smmintrin.h>
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_sse4_1(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
- volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(result, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
+ lv_32fc_t** _result = result;
+ const unsigned int quarterPoints = num_points / 4;
+
+ const __m128 fours = _mm_set1_ps(4.0f);
+ const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
+ const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
+
+ __VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
+ int local_code_chip_index_;
+
+ const __m128i zeros = _mm_setzero_si128();
+ const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
+ const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
+ __m128i local_code_chip_index_reg, aux_i, negatives, i;
+ __m128 aux, aux2, shifts_chips_reg, c, cTrunc, base;
+
+ for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
+ {
+ shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
+ aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
+ __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
+ for(unsigned int n = 0; n < quarterPoints; n++)
+ {
+ aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
+ aux = _mm_add_ps(aux, aux2);
+ // floor
+ aux = _mm_floor_ps(aux);
+
+ // fmod
+ c = _mm_div_ps(aux, code_length_chips_reg_f);
+ i = _mm_cvttps_epi32(c);
+ cTrunc = _mm_cvtepi32_ps(i);
+ base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
+ local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
+
+ negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
+ aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
+ local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
+ _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
+ for(unsigned int k = 0; k < 4; ++k)
+ {
+ _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
+ }
+ indexn = _mm_add_ps(indexn, fours);
+ }
+ for(unsigned int n = quarterPoints * 4; n < num_points; n++)
+ {
+ // resample code for current tap
+ local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
+ local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
+ //Take into account that in multitap correlators, the shifts can be negative!
+ if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
+ _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
+ }
+ }
}
+
#endif
@@ -290,7 +403,10 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu
}
indexn = _mm256_add_ps(indexn, eights);
}
-
+ }
+ _mm256_zeroupper();
+ for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
+ {
for(unsigned int n = avx_iters * 8; n < num_points; n++)
{
// resample code for current tap
@@ -301,7 +417,6 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
}
}
- _mm256_zeroupper();
}
#endif
@@ -311,14 +426,73 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu
#include <immintrin.h>
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_avx(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
- volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(result, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
+ lv_32fc_t** _result = result;
+ const unsigned int avx_iters = num_points / 8;
+
+ const __m256 eights = _mm256_set1_ps(8.0f);
+ const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
+ const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
+
+ __VOLK_ATTR_ALIGNED(32) int local_code_chip_index[8];
+ int local_code_chip_index_;
+
+ const __m256 zeros = _mm256_setzero_ps();
+ const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips);
+
+ __m256i local_code_chip_index_reg, i;
+ __m256 aux, aux2, shifts_chips_reg, c, cTrunc, base, negatives;
+
+ for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
+ {
+ shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]);
+ aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
+ __m256 indexn = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f);
+ for(unsigned int n = 0; n < avx_iters; n++)
+ {
+ aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn);
+ aux = _mm256_add_ps(aux, aux2);
+ // floor
+ aux = _mm256_floor_ps(aux);
+
+ // fmod
+ c = _mm256_div_ps(aux, code_length_chips_reg_f);
+ i = _mm256_cvttps_epi32(c);
+ cTrunc = _mm256_cvtepi32_ps(i);
+ base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f);
+ aux = _mm256_sub_ps(aux, base);
+
+ negatives = _mm256_cmp_ps(aux, zeros, 0x01);
+ aux2 = _mm256_and_ps(code_length_chips_reg_f, negatives);
+ local_code_chip_index_reg = _mm256_cvtps_epi32(_mm256_add_ps(aux, aux2));
+ _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg);
+ for(unsigned int k = 0; k < 8; ++k)
+ {
+ _result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]];
+ }
+ indexn = _mm256_add_ps(indexn, eights);
+ }
+ }
+ _mm256_zeroupper();
+ for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
+ {
+ for(unsigned int n = avx_iters * 8; n < num_points; n++)
+ {
+ // resample code for current tap
+ local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
+ local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
+ //Take into account that in multitap correlators, the shifts can be negative!
+ if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
+ _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
+ }
+ }
}
+
#endif
#ifdef LV_HAVE_NEON
#include <arm_neon.h>
-#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h>
+
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
lv_32fc_t** _result = result;
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-hamradio/gnss-sdr.git
More information about the pkg-hamradio-commits
mailing list