[hamradio-commits] [gnss-sdr] 182/236: minor cleaning
Carles Fernandez
carles_fernandez-guest at moszumanska.debian.org
Tue Apr 26 16:02:50 UTC 2016
This is an automated email from the git hooks/post-receive script.
carles_fernandez-guest pushed a commit to branch next
in repository gnss-sdr.
commit 4d072833c578de7d67cc3f561ebe9245e7285bd0
Author: Carles Fernandez <carles.fernandez at gmail.com>
Date: Sun Apr 10 10:29:25 2016 +0200
minor cleaning
---
.../gnuradio_blocks/pcps_acquisition_cc.cc | 127 +++++++++---------
.../gnuradio_blocks/pcps_acquisition_sc.cc | 145 +++++++++++----------
2 files changed, 139 insertions(+), 133 deletions(-)
diff --git a/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_cc.cc b/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_cc.cc
index 5304177..3992290 100644
--- a/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_cc.cc
+++ b/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_cc.cc
@@ -87,7 +87,7 @@ pcps_acquisition_cc::pcps_acquisition_cc(
d_input_power = 0.0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
- d_use_CFAR_algorithm_flag=use_CFAR_algorithm_flag;
+ d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
d_threshold = 0.0;
d_doppler_step = 250;
d_code_phase = 0;
@@ -108,10 +108,10 @@ pcps_acquisition_cc::pcps_acquisition_cc(
// We can avoid this by doing linear correlation, effectively doubling the
// size of the input buffer and padding the code with zeros.
if( d_bit_transition_flag )
- {
- d_fft_size *= 2;
- d_max_dwells = 1;
- }
+ {
+ d_fft_size *= 2;
+ d_max_dwells = 1;
+ }
d_fft_codes = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
d_magnitude = static_cast<float*>(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment()));
@@ -131,6 +131,7 @@ pcps_acquisition_cc::pcps_acquisition_cc(
d_grid_doppler_wipeoffs = 0;
}
+
pcps_acquisition_cc::~pcps_acquisition_cc()
{
if (d_num_doppler_bins > 0)
@@ -154,6 +155,7 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
}
}
+
void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
{
// COD
@@ -162,15 +164,16 @@ void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
// where c_i is the local code and there are L zeros and L chips
int offset = 0;
if( d_bit_transition_flag )
- {
- std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
- offset = d_samples_per_code;
- }
+ {
+ std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
+ offset = d_samples_per_code;
+ }
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_samples_per_code);
d_fft_if->execute(); // We need the FFT of local code
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
+
void pcps_acquisition_cc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
{
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
@@ -179,6 +182,7 @@ void pcps_acquisition_cc::update_local_carrier(gr_complex* carrier_vector, int c
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
}
+
void pcps_acquisition_cc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
@@ -207,27 +211,27 @@ void pcps_acquisition_cc::init()
}
-
void pcps_acquisition_cc::set_state(int state)
- {
- d_state = state;
- if (d_state == 1)
- {
- d_gnss_synchro->Acq_delay_samples = 0.0;
- d_gnss_synchro->Acq_doppler_hz = 0.0;
- d_gnss_synchro->Acq_samplestamp_samples = 0;
- d_well_count = 0;
- d_mag = 0.0;
- d_input_power = 0.0;
- d_test_statistics = 0.0;
- }
- else if (d_state == 0)
- {}
- else
- {
- LOG(ERROR) << "State can only be set to 0 or 1";
- }
- }
+{
+ d_state = state;
+ if (d_state == 1)
+ {
+ d_gnss_synchro->Acq_delay_samples = 0.0;
+ d_gnss_synchro->Acq_doppler_hz = 0.0;
+ d_gnss_synchro->Acq_samplestamp_samples = 0;
+ d_well_count = 0;
+ d_mag = 0.0;
+ d_input_power = 0.0;
+ d_test_statistics = 0.0;
+ }
+ else if (d_state == 0)
+ {}
+ else
+ {
+ LOG(ERROR) << "State can only be set to 0 or 1";
+ }
+}
+
int pcps_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
@@ -292,27 +296,26 @@ int pcps_acquisition_cc::general_work(int noutput_items,
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
- << " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
+ << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
- if (d_use_CFAR_algorithm_flag==true)
- {
- // 1- (optional) Compute the input signal power estimation
- volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
- volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
- d_input_power /= static_cast<float>(d_fft_size);
- }
+ if (d_use_CFAR_algorithm_flag == true)
+ {
+ // 1- (optional) Compute the input signal power estimation
+ volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
+ volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
+ d_input_power /= static_cast<float>(d_fft_size);
+ }
// 2- Doppler frequency search loop
- for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++)
+ for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
-
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
- d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
+ d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
@@ -321,7 +324,7 @@ int pcps_acquisition_cc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
- d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
+ d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
@@ -330,24 +333,24 @@ int pcps_acquisition_cc::general_work(int noutput_items,
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_32f_index_max_16u(&indext, d_magnitude, effective_fft_size);
- magt = d_magnitude[indext];
+ magt = d_magnitude[indext];
- if (d_use_CFAR_algorithm_flag==true)
- {
- // Normalize the maximum value to correct the scale factor introduced by FFTW
- magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
- }
+ if (d_use_CFAR_algorithm_flag == true)
+ {
+ // Normalize the maximum value to correct the scale factor introduced by FFTW
+ magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
+ }
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
- if (d_use_CFAR_algorithm_flag==false)
- {
- // Search grid noise floor approximation for this doppler line
- volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
- d_input_power=(d_input_power-d_mag)/(effective_fft_size-1);
- }
+ if (d_use_CFAR_algorithm_flag == false)
+ {
+ // Search grid noise floor approximation for this doppler line
+ volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
+ d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
+ }
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
@@ -358,15 +361,15 @@ int pcps_acquisition_cc::general_work(int noutput_items,
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
- {
- d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
- d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
- d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
-
- // 5- Compute the test statistics and compare to the threshold
- //d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
- d_test_statistics = d_mag / d_input_power;
- }
+ {
+ d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
+ d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
+ d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
+
+ // 5- Compute the test statistics and compare to the threshold
+ //d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
+ d_test_statistics = d_mag / d_input_power;
+ }
}
// Record results to file if required
diff --git a/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_sc.cc b/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_sc.cc
index 413049a..1b6bc9e 100644
--- a/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_sc.cc
+++ b/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_sc.cc
@@ -86,7 +86,7 @@ pcps_acquisition_sc::pcps_acquisition_sc(
d_input_power = 0.0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
- d_use_CFAR_algorithm_flag=use_CFAR_algorithm_flag;
+ d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
d_threshold = 0.0;
d_doppler_step = 250;
d_code_phase = 0;
@@ -107,10 +107,10 @@ pcps_acquisition_sc::pcps_acquisition_sc(
// We can avoid this by doing linear correlation, effectively doubling the
// size of the input buffer and padding the code with zeros.
if( d_bit_transition_flag )
- {
- d_fft_size *= 2;
- d_max_dwells = 1;
- }
+ {
+ d_fft_size *= 2;
+ d_max_dwells = 1;
+ }
d_fft_codes = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
d_magnitude = static_cast<float*>(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment()));
@@ -132,6 +132,7 @@ pcps_acquisition_sc::pcps_acquisition_sc(
d_grid_doppler_wipeoffs = 0;
}
+
pcps_acquisition_sc::~pcps_acquisition_sc()
{
if (d_num_doppler_bins > 0)
@@ -156,6 +157,7 @@ pcps_acquisition_sc::~pcps_acquisition_sc()
}
}
+
void pcps_acquisition_sc::set_local_code(std::complex<float> * code)
{
// COD
@@ -164,15 +166,16 @@ void pcps_acquisition_sc::set_local_code(std::complex<float> * code)
// where c_i is the local code and there are L zeros and L chips
int offset = 0;
if( d_bit_transition_flag )
- {
- std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
- offset = d_samples_per_code;
- }
+ {
+ std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
+ offset = d_samples_per_code;
+ }
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_samples_per_code);
d_fft_if->execute(); // We need the FFT of local code
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
+
void pcps_acquisition_sc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
{
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
@@ -181,6 +184,7 @@ void pcps_acquisition_sc::update_local_carrier(gr_complex* carrier_vector, int c
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
}
+
void pcps_acquisition_sc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
@@ -211,25 +215,25 @@ void pcps_acquisition_sc::init()
void pcps_acquisition_sc::set_state(int state)
- {
- d_state = state;
- if (d_state == 1)
- {
- d_gnss_synchro->Acq_delay_samples = 0.0;
- d_gnss_synchro->Acq_doppler_hz = 0.0;
- d_gnss_synchro->Acq_samplestamp_samples = 0;
- d_well_count = 0;
- d_mag = 0.0;
- d_input_power = 0.0;
- d_test_statistics = 0.0;
- }
- else if (d_state == 0)
- {}
- else
- {
- LOG(ERROR) << "State can only be set to 0 or 1";
- }
- }
+{
+ d_state = state;
+ if (d_state == 1)
+ {
+ d_gnss_synchro->Acq_delay_samples = 0.0;
+ d_gnss_synchro->Acq_doppler_hz = 0.0;
+ d_gnss_synchro->Acq_samplestamp_samples = 0;
+ d_well_count = 0;
+ d_mag = 0.0;
+ d_input_power = 0.0;
+ d_test_statistics = 0.0;
+ }
+ else if (d_state == 0)
+ {}
+ else
+ {
+ LOG(ERROR) << "State can only be set to 0 or 1";
+ }
+}
int pcps_acquisition_sc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
@@ -294,27 +298,27 @@ int pcps_acquisition_sc::general_work(int noutput_items,
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
- << " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
- << " ,sample stamp: " << d_sample_counter << ", threshold: "
- << d_threshold << ", doppler_max: " << d_doppler_max
- << ", doppler_step: " << d_doppler_step;
-
- if (d_use_CFAR_algorithm_flag==true)
- {
- // 1- (optional) Compute the input signal power estimation
- volk_32fc_magnitude_squared_32f(d_magnitude, d_in_32fc, d_fft_size);
- volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
- d_input_power /= static_cast<float>(d_fft_size);
- }
+ << " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
+ << " ,sample stamp: " << d_sample_counter << ", threshold: "
+ << d_threshold << ", doppler_max: " << d_doppler_max
+ << ", doppler_step: " << d_doppler_step;
+
+ if (d_use_CFAR_algorithm_flag == true)
+ {
+ // 1- (optional) Compute the input signal power estimation
+ volk_32fc_magnitude_squared_32f(d_magnitude, d_in_32fc, d_fft_size);
+ volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
+ d_input_power /= static_cast<float>(d_fft_size);
+ }
// 2- Doppler frequency search loop
- for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++)
+ for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_in_32fc,
- d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
+ d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
@@ -323,7 +327,7 @@ int pcps_acquisition_sc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
- d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
+ d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
@@ -332,26 +336,25 @@ int pcps_acquisition_sc::general_work(int noutput_items,
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_32f_index_max_16u(&indext, d_magnitude, effective_fft_size);
- magt = d_magnitude[indext];
-
- if (d_use_CFAR_algorithm_flag==true)
- {
- // Normalize the maximum value to correct the scale factor introduced by FFTW
- magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
- }
+ magt = d_magnitude[indext];
+ if (d_use_CFAR_algorithm_flag == true)
+ {
+ // Normalize the maximum value to correct the scale factor introduced by FFTW
+ magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
+ }
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
- if (d_use_CFAR_algorithm_flag==false)
- {
- // Search grid noise floor approximation for this doppler line
- volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
- d_input_power=(d_input_power-d_mag)/(effective_fft_size-1);
- }
+ if (d_use_CFAR_algorithm_flag == false)
+ {
+ // Search grid noise floor approximation for this doppler line
+ volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
+ d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
+ }
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
@@ -362,16 +365,16 @@ int pcps_acquisition_sc::general_work(int noutput_items,
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
- {
- d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
- d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
- d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
+ {
+ d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
+ d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
+ d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
- // 5- Compute the test statistics and compare to the threshold
- d_test_statistics = d_mag / d_input_power;
- //std::cout<<"d_input_power="<<d_input_power<<" d_test_statistics="<<d_test_statistics<<" d_gnss_synchro->Acq_doppler_hz ="<<d_gnss_synchro->Acq_doppler_hz <<std::endl;
+ // 5- Compute the test statistics and compare to the threshold
+ d_test_statistics = d_mag / d_input_power;
+ //std::cout<<"d_input_power="<<d_input_power<<" d_test_statistics="<<d_test_statistics<<" d_gnss_synchro->Acq_doppler_hz ="<<d_gnss_synchro->Acq_doppler_hz <<std::endl;
- }
+ }
}
// Record results to file if required
@@ -383,13 +386,13 @@ int pcps_acquisition_sc::general_work(int noutput_items,
boost::filesystem::path p = d_dump_filename;
filename << p.parent_path().string()
- << boost::filesystem::path::preferred_separator
- << p.stem().string()
- << "_" << d_gnss_synchro->System
- <<"_" << d_gnss_synchro->Signal << "_sat_"
- << d_gnss_synchro->PRN << "_doppler_"
- << doppler
- << p.extension().string();
+ << boost::filesystem::path::preferred_separator
+ << p.stem().string()
+ << "_" << d_gnss_synchro->System
+ <<"_" << d_gnss_synchro->Signal << "_sat_"
+ << d_gnss_synchro->PRN << "_doppler_"
+ << doppler
+ << p.extension().string();
DLOG(INFO) << "Writing ACQ out to " << filename.str();
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-hamradio/gnss-sdr.git
More information about the pkg-hamradio-commits
mailing list