[SCM] FFmpeg packaging branch, master, updated. debian/0.5+svn20090706-6-22-gef11c38

siretart at users.alioth.debian.org siretart at users.alioth.debian.org
Wed Mar 3 21:34:01 UTC 2010


The following commit has been merged in the master branch:
commit ba23c23d7a381a9560bb3f6d6433ea696a73f3b7
Author: Reinhard Tartler <siretart at tauware.de>
Date:   Wed Mar 3 22:04:16 2010 +0100

    drop wmapro backport again
    
    as discussed with upstream, this patch does many other changes to the
    existing wma decoders. As nobody is really willing to review these
    changes, let's better work on getting an updated snapshot into experimental

diff --git a/debian/patches/series b/debian/patches/series
index a251239..104c330 100644
--- a/debian/patches/series
+++ b/debian/patches/series
@@ -3,7 +3,6 @@ fix-dv-seeking.patch
 fix-constant-quant-encoding.patch
 increase-VOFW-on-x86.patch
 use-normal-check_func-test-for-math-functions.patch
-wmapro-backport.patch
 900_doxyfile
 901-fix-misc-typos.patch
 # fpic-ftbfs-fix.patch
diff --git a/debian/patches/wmapro-backport.patch b/debian/patches/wmapro-backport.patch
deleted file mode 100644
index 61ae4ee..0000000
--- a/debian/patches/wmapro-backport.patch
+++ /dev/null
@@ -1,3301 +0,0 @@
-From: Christopher Martin <chrsmrtn at debian.org>
-Bug: http://bugs.debian.org/559712
-
---- a/libavcodec/allcodecs.c
-+++ b/libavcodec/allcodecs.c
-@@ -214,6 +214,7 @@
-     REGISTER_DECODER (VMDAUDIO, vmdaudio);
-     REGISTER_ENCDEC  (VORBIS, vorbis);
-     REGISTER_DECODER (WAVPACK, wavpack);
-+    REGISTER_DECODER (WMAPRO, wmapro);
-     REGISTER_ENCDEC  (WMAV1, wmav1);
-     REGISTER_ENCDEC  (WMAV2, wmav2);
-     REGISTER_DECODER (WS_SND1, ws_snd1);
---- a/libavcodec/dsputil.c
-+++ b/libavcodec/dsputil.c
-@@ -4043,6 +4043,12 @@
-         dst[i*step] = src0[i] * src1[i] + src2[i] + src3;
- }
- 
-+static void vector_fmul_add_c(float *dst, const float *src0, const float *src1, const float *src2, int len){
-+    int i;
-+    for(i=0; i<len; i++)
-+        dst[i] = src0[i] * src1[i] + src2[i];
-+}
-+
- void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len){
-     int i,j;
-     dst += len;
-@@ -4058,6 +4064,25 @@
-     }
- }
- 
-+static void vector_fmul_scalar_c(float *dst, const float *src, float mul,
-+                                 int len)
-+{
-+    int i;
-+    for (i = 0; i < len; i++)
-+        dst[i] = src[i] * mul;
-+}
-+
-+static void butterflies_float_c(float *restrict v1, float *restrict v2,
-+                                int len)
-+{
-+    int i;
-+    for (i = 0; i < len; i++) {
-+        float t = v1[i] - v2[i];
-+        v1[i] += v2[i];
-+        v2[i] = t;
-+    }
-+}
-+
- static void int32_to_float_fmul_scalar_c(float *dst, const int *src, float mul, int len){
-     int i;
-     for(i=0; i<len; i++)
-@@ -4633,6 +4658,7 @@
-     c->vector_fmul = vector_fmul_c;
-     c->vector_fmul_reverse = vector_fmul_reverse_c;
-     c->vector_fmul_add_add = ff_vector_fmul_add_add_c;
-+    c->vector_fmul_add = vector_fmul_add_c;
-     c->vector_fmul_window = ff_vector_fmul_window_c;
-     c->int32_to_float_fmul_scalar = int32_to_float_fmul_scalar_c;
-     c->float_to_int16 = ff_float_to_int16_c;
-@@ -4640,6 +4666,8 @@
-     c->add_int16 = add_int16_c;
-     c->sub_int16 = sub_int16_c;
-     c->scalarproduct_int16 = scalarproduct_int16_c;
-+    c->butterflies_float = butterflies_float_c;
-+    c->vector_fmul_scalar = vector_fmul_scalar_c;
- 
-     c->shrink[0]= ff_img_copy_plane;
-     c->shrink[1]= ff_shrink22;
---- a/libavcodec/dsputil.h
-+++ b/libavcodec/dsputil.h
-@@ -391,10 +391,13 @@
-     void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
-     /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
-     void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step);
-+    void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
-     /* assume len is a multiple of 4, and arrays are 16-byte aligned */
-     void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
-     /* assume len is a multiple of 8, and arrays are 16-byte aligned */
-     void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
-+    void (*vector_fmul_scalar)(float *dst, const float *src, float mul, int len);
-+    void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
- 
-     /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
-      * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
-@@ -758,6 +761,7 @@
- extern float *ff_sine_windows[6];
- 
- int ff_mdct_init(MDCTContext *s, int nbits, int inverse);
-+int ff_mdct_init_backport(MDCTContext *s, int nbits, int inverse, double scale);
- void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
- void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
- void ff_imdct_calc_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
---- a/libavcodec/Makefile
-+++ b/libavcodec/Makefile
-@@ -236,6 +236,7 @@
- OBJS-$(CONFIG_VP6F_DECODER)            += vp6.o vp56.o vp56data.o vp3dsp.o vp6dsp.o huffman.o
- OBJS-$(CONFIG_VQA_DECODER)             += vqavideo.o
- OBJS-$(CONFIG_WAVPACK_DECODER)         += wavpack.o
-+OBJS-$(CONFIG_WMAPRO_DECODER)          += wmaprodec.o wma.o
- OBJS-$(CONFIG_WMAV1_DECODER)           += wmadec.o wma.o
- OBJS-$(CONFIG_WMAV1_ENCODER)           += wmaenc.o wma.o
- OBJS-$(CONFIG_WMAV2_DECODER)           += wmadec.o wma.o
---- a/libavcodec/mdct.c
-+++ b/libavcodec/mdct.c
-@@ -99,6 +99,39 @@
-     return -1;
- }
- 
-+av_cold int ff_mdct_init_backport(MDCTContext *s, int nbits, int inverse, double scale)
-+{
-+    int n, n4, i;
-+    double alpha, theta;
-+
-+    memset(s, 0, sizeof(*s));
-+    n = 1 << nbits;
-+    s->nbits = nbits;
-+    s->n = n;
-+    n4 = n >> 2;
-+    s->tcos = av_malloc(n4 * sizeof(FFTSample));
-+    if (!s->tcos)
-+        goto fail;
-+    s->tsin = av_malloc(n4 * sizeof(FFTSample));
-+    if (!s->tsin)
-+        goto fail;
-+
-+    theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
-+    scale = sqrt(fabs(scale));
-+    for(i=0;i<n4;i++) {
-+        alpha = 2 * M_PI * (i + theta) / n;
-+        s->tcos[i] = -cos(alpha) * scale;
-+        s->tsin[i] = -sin(alpha) * scale;
-+    }
-+    if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
-+        goto fail;
-+    return 0;
-+ fail:
-+    av_freep(&s->tcos);
-+    av_freep(&s->tsin);
-+    return -1;
-+}
-+
- /* complex multiplication: p = a * b */
- #define CMUL(pre, pim, are, aim, bre, bim) \
- {\
---- a/libavcodec/wma.c
-+++ b/libavcodec/wma.c
-@@ -28,41 +28,81 @@
- 
- /* XXX: use same run/length optimization as mpeg decoders */
- //FIXME maybe split decode / encode or pass flag
--static void init_coef_vlc(VLC *vlc,
--                          uint16_t **prun_table, uint16_t **plevel_table, uint16_t **pint_table,
-+static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
-+                          uint16_t **plevel_table, uint16_t **pint_table,
-                           const CoefVLCTable *vlc_table)
- {
-     int n = vlc_table->n;
--    const uint8_t *table_bits = vlc_table->huffbits;
--    const uint32_t *table_codes = vlc_table->huffcodes;
-+    const uint8_t  *table_bits   = vlc_table->huffbits;
-+    const uint32_t *table_codes  = vlc_table->huffcodes;
-     const uint16_t *levels_table = vlc_table->levels;
-     uint16_t *run_table, *level_table, *int_table;
-     int i, l, j, k, level;
- 
-     init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
- 
--    run_table = av_malloc(n * sizeof(uint16_t));
-+    run_table   = av_malloc(n * sizeof(uint16_t));
-     level_table = av_malloc(n * sizeof(uint16_t));
--    int_table = av_malloc(n * sizeof(uint16_t));
-+    int_table   = av_malloc(n * sizeof(uint16_t));
-     i = 2;
-     level = 1;
-     k = 0;
-     while (i < n) {
--        int_table[k]= i;
-+        int_table[k] = i;
-         l = levels_table[k++];
--        for(j=0;j<l;j++) {
--            run_table[i] = j;
-+        for (j = 0; j < l; j++) {
-+            run_table[i]   = j;
-             level_table[i] = level;
-             i++;
-         }
-         level++;
-     }
--    *prun_table = run_table;
-+    *prun_table   = run_table;
-     *plevel_table = level_table;
--    *pint_table= int_table;
-+    *pint_table   = int_table;
- }
- 
--int ff_wma_init(AVCodecContext * avctx, int flags2)
-+/**
-+ *@brief Get the samples per frame for this stream.
-+ *@param sample_rate output sample_rate
-+ *@param version wma version
-+ *@param decode_flags codec compression features
-+ *@return log2 of the number of output samples per frame
-+ */
-+int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version,
-+                                      unsigned int decode_flags)
-+{
-+
-+    int frame_len_bits;
-+
-+    if (sample_rate <= 16000) {
-+        frame_len_bits = 9;
-+    } else if (sample_rate <= 22050 ||
-+             (sample_rate <= 32000 && version == 1)) {
-+        frame_len_bits = 10;
-+    } else if (sample_rate <= 48000) {
-+        frame_len_bits = 11;
-+    } else if (sample_rate <= 96000) {
-+        frame_len_bits = 12;
-+    } else {
-+        frame_len_bits = 13;
-+    }
-+
-+    if (version == 3) {
-+        int tmp = decode_flags & 0x6;
-+        if (tmp == 0x2) {
-+            ++frame_len_bits;
-+        } else if (tmp == 0x4) {
-+            --frame_len_bits;
-+        } else if (tmp == 0x6) {
-+            frame_len_bits -= 2;
-+        }
-+    }
-+
-+    return frame_len_bits;
-+}
-+
-+int ff_wma_init(AVCodecContext *avctx, int flags2)
- {
-     WMACodecContext *s = avctx->priv_data;
-     int i;
-@@ -71,14 +111,14 @@
-     int sample_rate1;
-     int coef_vlc_table;
- 
--    if(   avctx->sample_rate<=0 || avctx->sample_rate>50000
--       || avctx->channels<=0 || avctx->channels>8
--       || avctx->bit_rate<=0)
-+    if (   avctx->sample_rate <= 0 || avctx->sample_rate > 50000
-+        || avctx->channels    <= 0 || avctx->channels    > 8
-+        || avctx->bit_rate    <= 0)
-         return -1;
- 
-     s->sample_rate = avctx->sample_rate;
-     s->nb_channels = avctx->channels;
--    s->bit_rate = avctx->bit_rate;
-+    s->bit_rate    = avctx->bit_rate;
-     s->block_align = avctx->block_align;
- 
-     dsputil_init(&s->dsp, avctx);
-@@ -90,14 +130,8 @@
-     }
- 
-     /* compute MDCT block size */
--    if (s->sample_rate <= 16000) {
--        s->frame_len_bits = 9;
--    } else if (s->sample_rate <= 22050 ||
--               (s->sample_rate <= 32000 && s->version == 1)) {
--        s->frame_len_bits = 10;
--    } else {
--        s->frame_len_bits = 11;
--    }
-+    s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0);
-+
-     s->frame_len = 1 << s->frame_len_bits;
-     if (s->use_variable_block_len) {
-         int nb_max, nb;
-@@ -119,16 +153,17 @@
-     /* if version 2, then the rates are normalized */
-     sample_rate1 = s->sample_rate;
-     if (s->version == 2) {
--        if (sample_rate1 >= 44100)
-+        if (sample_rate1 >= 44100) {
-             sample_rate1 = 44100;
--        else if (sample_rate1 >= 22050)
-+        } else if (sample_rate1 >= 22050) {
-             sample_rate1 = 22050;
--        else if (sample_rate1 >= 16000)
-+        } else if (sample_rate1 >= 16000) {
-             sample_rate1 = 16000;
--        else if (sample_rate1 >= 11025)
-+        } else if (sample_rate1 >= 11025) {
-             sample_rate1 = 11025;
--        else if (sample_rate1 >= 8000)
-+        } else if (sample_rate1 >= 8000) {
-             sample_rate1 = 8000;
-+        }
-     }
- 
-     bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
-@@ -140,22 +175,25 @@
-     if (s->nb_channels == 2)
-         bps1 = bps * 1.6;
-     if (sample_rate1 == 44100) {
--        if (bps1 >= 0.61)
-+        if (bps1 >= 0.61) {
-             s->use_noise_coding = 0;
--        else
-+        } else {
-             high_freq = high_freq * 0.4;
-+        }
-     } else if (sample_rate1 == 22050) {
--        if (bps1 >= 1.16)
-+        if (bps1 >= 1.16) {
-             s->use_noise_coding = 0;
--        else if (bps1 >= 0.72)
-+        } else if (bps1 >= 0.72) {
-             high_freq = high_freq * 0.7;
--        else
-+        } else {
-             high_freq = high_freq * 0.6;
-+        }
-     } else if (sample_rate1 == 16000) {
--        if (bps > 0.5)
-+        if (bps > 0.5) {
-             high_freq = high_freq * 0.5;
--        else
-+        } else {
-             high_freq = high_freq * 0.3;
-+        }
-     } else if (sample_rate1 == 11025) {
-         high_freq = high_freq * 0.7;
-     } else if (sample_rate1 == 8000) {
-@@ -177,12 +215,12 @@
-     }
-     dprintf(s->avctx, "flags2=0x%x\n", flags2);
-     dprintf(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
--           s->version, s->nb_channels, s->sample_rate, s->bit_rate,
--           s->block_align);
-+            s->version, s->nb_channels, s->sample_rate, s->bit_rate,
-+            s->block_align);
-     dprintf(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
--           bps, bps1, high_freq, s->byte_offset_bits);
-+            bps, bps1, high_freq, s->byte_offset_bits);
-     dprintf(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
--           s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
-+            s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
- 
-     /* compute the scale factor band sizes for each MDCT block size */
-     {
-@@ -194,15 +232,15 @@
-         } else {
-             s->coefs_start = 0;
-         }
--        for(k = 0; k < s->nb_block_sizes; k++) {
-+        for (k = 0; k < s->nb_block_sizes; k++) {
-             block_len = s->frame_len >> k;
- 
-             if (s->version == 1) {
-                 lpos = 0;
--                for(i=0;i<25;i++) {
-+                for (i = 0; i < 25; i++) {
-                     a = wma_critical_freqs[i];
-                     b = s->sample_rate;
--                    pos = ((block_len * 2 * a)  + (b >> 1)) / b;
-+                    pos = ((block_len * 2 * a) + (b >> 1)) / b;
-                     if (pos > block_len)
-                         pos = block_len;
-                     s->exponent_bands[0][i] = pos - lpos;
-@@ -218,25 +256,26 @@
-                 table = NULL;
-                 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
-                 if (a < 3) {
--                    if (s->sample_rate >= 44100)
-+                    if (s->sample_rate >= 44100) {
-                         table = exponent_band_44100[a];
--                    else if (s->sample_rate >= 32000)
-+                    } else if (s->sample_rate >= 32000) {
-                         table = exponent_band_32000[a];
--                    else if (s->sample_rate >= 22050)
-+                    } else if (s->sample_rate >= 22050) {
-                         table = exponent_band_22050[a];
-+                    }
-                 }
-                 if (table) {
-                     n = *table++;
--                    for(i=0;i<n;i++)
-+                    for (i = 0; i < n; i++)
-                         s->exponent_bands[k][i] = table[i];
-                     s->exponent_sizes[k] = n;
-                 } else {
-                     j = 0;
-                     lpos = 0;
--                    for(i=0;i<25;i++) {
-+                    for (i = 0; i < 25; i++) {
-                         a = wma_critical_freqs[i];
-                         b = s->sample_rate;
--                        pos = ((block_len * 2 * a)  + (b << 1)) / (4 * b);
-+                        pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
-                         pos <<= 2;
-                         if (pos > block_len)
-                             pos = block_len;
-@@ -258,7 +297,7 @@
-             n = s->exponent_sizes[k];
-             j = 0;
-             pos = 0;
--            for(i=0;i<n;i++) {
-+            for (i = 0; i < n; i++) {
-                 int start, end;
-                 start = pos;
-                 pos += s->exponent_bands[k][i];
-@@ -273,11 +312,11 @@
-             s->exponent_high_sizes[k] = j;
- #if 0
-             tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
--                  s->frame_len >> k,
--                  s->coefs_end[k],
--                  s->high_band_start[k],
--                  s->exponent_high_sizes[k]);
--            for(j=0;j<s->exponent_high_sizes[k];j++)
-+                    s->frame_len >> k,
-+                    s->coefs_end[k],
-+                    s->high_band_start[k],
-+                    s->exponent_high_sizes[k]);
-+            for (j = 0; j < s->exponent_high_sizes[k]; j++)
-                 tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
-             tprintf(s->avctx, "\n");
- #endif
-@@ -287,11 +326,11 @@
- #ifdef TRACE
-     {
-         int i, j;
--        for(i = 0; i < s->nb_block_sizes; i++) {
-+        for (i = 0; i < s->nb_block_sizes; i++) {
-             tprintf(s->avctx, "%5d: n=%2d:",
--                   s->frame_len >> i,
--                   s->exponent_sizes[i]);
--            for(j=0;j<s->exponent_sizes[i];j++)
-+                    s->frame_len >> i,
-+                    s->exponent_sizes[i]);
-+            for (j = 0; j < s->exponent_sizes[i]; j++)
-                 tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
-             tprintf(s->avctx, "\n");
-         }
-@@ -299,7 +338,7 @@
- #endif
- 
-     /* init MDCT windows : simple sinus window */
--    for(i = 0; i < s->nb_block_sizes; i++) {
-+    for (i = 0; i < s->nb_block_sizes; i++) {
-         int n;
-         n = 1 << (s->frame_len_bits - i);
-         ff_sine_window_init(ff_sine_windows[s->frame_len_bits - i - 7], n);
-@@ -311,13 +350,14 @@
-     if (s->use_noise_coding) {
- 
-         /* init the noise generator */
--        if (s->use_exp_vlc)
-+        if (s->use_exp_vlc) {
-             s->noise_mult = 0.02;
--        else
-+        } else {
-             s->noise_mult = 0.04;
-+        }
- 
- #ifdef TRACE
--        for(i=0;i<NOISE_TAB_SIZE;i++)
-+        for (i = 0; i < NOISE_TAB_SIZE; i++)
-             s->noise_table[i] = 1.0 * s->noise_mult;
- #else
-         {
-@@ -325,7 +365,7 @@
-             float norm;
-             seed = 1;
-             norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
--            for(i=0;i<NOISE_TAB_SIZE;i++) {
-+            for (i = 0; i < NOISE_TAB_SIZE; i++) {
-                 seed = seed * 314159 + 1;
-                 s->noise_table[i] = (float)((int)seed) * norm;
-             }
-@@ -336,10 +376,11 @@
-     /* choose the VLC tables for the coefficients */
-     coef_vlc_table = 2;
-     if (s->sample_rate >= 32000) {
--        if (bps1 < 0.72)
-+        if (bps1 < 0.72) {
-             coef_vlc_table = 0;
--        else if (bps1 < 1.16)
-+        } else if (bps1 < 1.16) {
-             coef_vlc_table = 1;
-+        }
-     }
-     s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2    ];
-     s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
-@@ -351,7 +392,8 @@
-     return 0;
- }
- 
--int ff_wma_total_gain_to_bits(int total_gain){
-+int ff_wma_total_gain_to_bits(int total_gain)
-+{
-          if (total_gain < 15) return 13;
-     else if (total_gain < 32) return 12;
-     else if (total_gain < 40) return 11;
-@@ -364,7 +406,7 @@
-     WMACodecContext *s = avctx->priv_data;
-     int i;
- 
--    for(i = 0; i < s->nb_block_sizes; i++)
-+    for (i = 0; i < s->nb_block_sizes; i++)
-         ff_mdct_end(&s->mdct_ctx[i]);
- 
-     if (s->use_exp_vlc) {
-@@ -373,7 +415,7 @@
-     if (s->use_noise_coding) {
-         free_vlc(&s->hgain_vlc);
-     }
--    for(i = 0;i < 2; i++) {
-+    for (i = 0; i < 2; i++) {
-         free_vlc(&s->coef_vlc[i]);
-         av_free(s->run_table[i]);
-         av_free(s->level_table[i]);
-@@ -382,3 +424,95 @@
- 
-     return 0;
- }
-+
-+/**
-+ * Decode an uncompressed coefficient.
-+ * @param s codec context
-+ * @return the decoded coefficient
-+ */
-+unsigned int ff_wma_get_large_val(GetBitContext* gb)
-+{
-+    /** consumes up to 34 bits */
-+    int n_bits = 8;
-+    /** decode length */
-+    if (get_bits1(gb)) {
-+        n_bits += 8;
-+        if (get_bits1(gb)) {
-+            n_bits += 8;
-+            if (get_bits1(gb)) {
-+                n_bits += 7;
-+            }
-+        }
-+    }
-+    return get_bits_long(gb, n_bits);
-+}
-+
-+/**
-+ * Decode run level compressed coefficients.
-+ * @param avctx codec context
-+ * @param gb bitstream reader context
-+ * @param vlc vlc table for get_vlc2
-+ * @param level_table level codes
-+ * @param run_table run codes
-+ * @param version 0 for wma1,2 1 for wmapro
-+ * @param ptr output buffer
-+ * @param offset offset in the output buffer
-+ * @param num_coefs number of input coefficents
-+ * @param block_len input buffer length (2^n)
-+ * @param frame_len_bits number of bits for escaped run codes
-+ * @param coef_nb_bits number of bits for escaped level codes
-+ * @return 0 on success, -1 otherwise
-+ */
-+int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
-+                            VLC *vlc,
-+                            const uint16_t *level_table, const uint16_t *run_table,
-+                            int version, WMACoef *ptr, int offset,
-+                            int num_coefs, int block_len, int frame_len_bits,
-+                            int coef_nb_bits)
-+{
-+    int code, level, sign;
-+    const unsigned int coef_mask = block_len - 1;
-+    for (; offset < num_coefs; offset++) {
-+        code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
-+        if (code > 1) {
-+            /** normal code */
-+            offset += run_table[code];
-+            level = level_table[code];
-+        } else if (code == 1) {
-+            /** EOB */
-+            break;
-+        } else {
-+            /** escape */
-+            if (!version) {
-+                level = get_bits(gb, coef_nb_bits);
-+                /** NOTE: this is rather suboptimal. reading
-+                    block_len_bits would be better */
-+                offset += get_bits(gb, frame_len_bits);
-+            } else {
-+                level = ff_wma_get_large_val(gb);
-+                /** escape decode */
-+                if (get_bits1(gb)) {
-+                    if (get_bits1(gb)) {
-+                        if (get_bits1(gb)) {
-+                            av_log(avctx,AV_LOG_ERROR,
-+                                "broken escape sequence\n");
-+                            return -1;
-+                        } else
-+                            offset += get_bits(gb, frame_len_bits) + 4;
-+                    } else
-+                        offset += get_bits(gb, 2) + 1;
-+                }
-+            }
-+        }
-+        sign = get_bits1(gb) - 1;
-+        ptr[offset & coef_mask] = (level^sign) - sign;
-+    }
-+    /** NOTE: EOB can be omitted */
-+    if (offset > num_coefs) {
-+        av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
-+        return -1;
-+    }
-+
-+    return 0;
-+}
-+
---- a/libavcodec/wmadec.c
-+++ b/libavcodec/wmadec.c
-@@ -82,20 +82,17 @@
- static int wma_decode_init(AVCodecContext * avctx)
- {
-     WMACodecContext *s = avctx->priv_data;
--    int i, flags1, flags2;
-+    int i, flags2;
-     uint8_t *extradata;
- 
-     s->avctx = avctx;
- 
-     /* extract flag infos */
--    flags1 = 0;
-     flags2 = 0;
-     extradata = avctx->extradata;
-     if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
--        flags1 = AV_RL16(extradata);
-         flags2 = AV_RL16(extradata+2);
-     } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
--        flags1 = AV_RL32(extradata);
-         flags2 = AV_RL16(extradata+4);
-     }
- // for(i=0; i<avctx->extradata_size; i++)
-@@ -243,46 +240,143 @@
-                      s->block_len, lsp_coefs);
- }
- 
-+/** pow(10, i / 16.0) for i in -60..95 */
-+static const float pow_tab[] = {
-+    1.7782794100389e-04, 2.0535250264571e-04,
-+    2.3713737056617e-04, 2.7384196342644e-04,
-+    3.1622776601684e-04, 3.6517412725484e-04,
-+    4.2169650342858e-04, 4.8696752516586e-04,
-+    5.6234132519035e-04, 6.4938163157621e-04,
-+    7.4989420933246e-04, 8.6596432336006e-04,
-+    1.0000000000000e-03, 1.1547819846895e-03,
-+    1.3335214321633e-03, 1.5399265260595e-03,
-+    1.7782794100389e-03, 2.0535250264571e-03,
-+    2.3713737056617e-03, 2.7384196342644e-03,
-+    3.1622776601684e-03, 3.6517412725484e-03,
-+    4.2169650342858e-03, 4.8696752516586e-03,
-+    5.6234132519035e-03, 6.4938163157621e-03,
-+    7.4989420933246e-03, 8.6596432336006e-03,
-+    1.0000000000000e-02, 1.1547819846895e-02,
-+    1.3335214321633e-02, 1.5399265260595e-02,
-+    1.7782794100389e-02, 2.0535250264571e-02,
-+    2.3713737056617e-02, 2.7384196342644e-02,
-+    3.1622776601684e-02, 3.6517412725484e-02,
-+    4.2169650342858e-02, 4.8696752516586e-02,
-+    5.6234132519035e-02, 6.4938163157621e-02,
-+    7.4989420933246e-02, 8.6596432336007e-02,
-+    1.0000000000000e-01, 1.1547819846895e-01,
-+    1.3335214321633e-01, 1.5399265260595e-01,
-+    1.7782794100389e-01, 2.0535250264571e-01,
-+    2.3713737056617e-01, 2.7384196342644e-01,
-+    3.1622776601684e-01, 3.6517412725484e-01,
-+    4.2169650342858e-01, 4.8696752516586e-01,
-+    5.6234132519035e-01, 6.4938163157621e-01,
-+    7.4989420933246e-01, 8.6596432336007e-01,
-+    1.0000000000000e+00, 1.1547819846895e+00,
-+    1.3335214321633e+00, 1.5399265260595e+00,
-+    1.7782794100389e+00, 2.0535250264571e+00,
-+    2.3713737056617e+00, 2.7384196342644e+00,
-+    3.1622776601684e+00, 3.6517412725484e+00,
-+    4.2169650342858e+00, 4.8696752516586e+00,
-+    5.6234132519035e+00, 6.4938163157621e+00,
-+    7.4989420933246e+00, 8.6596432336007e+00,
-+    1.0000000000000e+01, 1.1547819846895e+01,
-+    1.3335214321633e+01, 1.5399265260595e+01,
-+    1.7782794100389e+01, 2.0535250264571e+01,
-+    2.3713737056617e+01, 2.7384196342644e+01,
-+    3.1622776601684e+01, 3.6517412725484e+01,
-+    4.2169650342858e+01, 4.8696752516586e+01,
-+    5.6234132519035e+01, 6.4938163157621e+01,
-+    7.4989420933246e+01, 8.6596432336007e+01,
-+    1.0000000000000e+02, 1.1547819846895e+02,
-+    1.3335214321633e+02, 1.5399265260595e+02,
-+    1.7782794100389e+02, 2.0535250264571e+02,
-+    2.3713737056617e+02, 2.7384196342644e+02,
-+    3.1622776601684e+02, 3.6517412725484e+02,
-+    4.2169650342858e+02, 4.8696752516586e+02,
-+    5.6234132519035e+02, 6.4938163157621e+02,
-+    7.4989420933246e+02, 8.6596432336007e+02,
-+    1.0000000000000e+03, 1.1547819846895e+03,
-+    1.3335214321633e+03, 1.5399265260595e+03,
-+    1.7782794100389e+03, 2.0535250264571e+03,
-+    2.3713737056617e+03, 2.7384196342644e+03,
-+    3.1622776601684e+03, 3.6517412725484e+03,
-+    4.2169650342858e+03, 4.8696752516586e+03,
-+    5.6234132519035e+03, 6.4938163157621e+03,
-+    7.4989420933246e+03, 8.6596432336007e+03,
-+    1.0000000000000e+04, 1.1547819846895e+04,
-+    1.3335214321633e+04, 1.5399265260595e+04,
-+    1.7782794100389e+04, 2.0535250264571e+04,
-+    2.3713737056617e+04, 2.7384196342644e+04,
-+    3.1622776601684e+04, 3.6517412725484e+04,
-+    4.2169650342858e+04, 4.8696752516586e+04,
-+    5.6234132519035e+04, 6.4938163157621e+04,
-+    7.4989420933246e+04, 8.6596432336007e+04,
-+    1.0000000000000e+05, 1.1547819846895e+05,
-+    1.3335214321633e+05, 1.5399265260595e+05,
-+    1.7782794100389e+05, 2.0535250264571e+05,
-+    2.3713737056617e+05, 2.7384196342644e+05,
-+    3.1622776601684e+05, 3.6517412725484e+05,
-+    4.2169650342858e+05, 4.8696752516586e+05,
-+    5.6234132519035e+05, 6.4938163157621e+05,
-+    7.4989420933246e+05, 8.6596432336007e+05,
-+};
-+
- /**
-  * decode exponents coded with VLC codes
-  */
- static int decode_exp_vlc(WMACodecContext *s, int ch)
- {
-     int last_exp, n, code;
--    const uint16_t *ptr, *band_ptr;
--    float v, *q, max_scale, *q_end;
-+    const uint16_t *ptr;
-+    float v, max_scale;
-+    uint32_t *q, *q_end, iv;
-+    const float *ptab = pow_tab + 60;
-+    const uint32_t *iptab = (const uint32_t*)ptab;
- 
--    band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
--    ptr = band_ptr;
--    q = s->exponents[ch];
-+    ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
-+    q = (uint32_t *)s->exponents[ch];
-     q_end = q + s->block_len;
-     max_scale = 0;
-     if (s->version == 1) {
-         last_exp = get_bits(&s->gb, 5) + 10;
--        /* XXX: use a table */
--        v = pow(10, last_exp * (1.0 / 16.0));
-+        v = ptab[last_exp];
-+        iv = iptab[last_exp];
-         max_scale = v;
-         n = *ptr++;
--        do {
--            *q++ = v;
--        } while (--n);
-+        switch (n & 3) do {
-+        case 0: *q++ = iv;
-+        case 3: *q++ = iv;
-+        case 2: *q++ = iv;
-+        case 1: *q++ = iv;
-+        } while ((n -= 4) > 0);
-     }else
-         last_exp = 36;
- 
-     while (q < q_end) {
-         code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
--        if (code < 0)
-+        if (code < 0){
-+            av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
-             return -1;
-+        }
-         /* NOTE: this offset is the same as MPEG4 AAC ! */
-         last_exp += code - 60;
--        /* XXX: use a table */
--        v = pow(10, last_exp * (1.0 / 16.0));
-+        if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab)) {
-+            av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
-+                   last_exp);
-+            return -1;
-+        }
-+        v = ptab[last_exp];
-+        iv = iptab[last_exp];
-         if (v > max_scale)
-             max_scale = v;
-         n = *ptr++;
--        do {
--            *q++ = v;
--        } while (--n);
-+        switch (n & 3) do {
-+        case 0: *q++ = iv;
-+        case 3: *q++ = iv;
-+        case 2: *q++ = iv;
-+        case 1: *q++ = iv;
-+        } while ((n -= 4) > 0);
-     }
-     s->max_exponent[ch] = max_scale;
-     return 0;
-@@ -305,16 +399,16 @@
-         block_len = s->block_len;
-         bsize = s->frame_len_bits - s->block_len_bits;
- 
--        s->dsp.vector_fmul_add_add(out, in, s->windows[bsize],
--                                   out, 0, block_len, 1);
-+        s->dsp.vector_fmul_add(out, in, s->windows[bsize],
-+                               out, block_len);
- 
-     } else {
-         block_len = 1 << s->prev_block_len_bits;
-         n = (s->block_len - block_len) / 2;
-         bsize = s->frame_len_bits - s->prev_block_len_bits;
- 
--        s->dsp.vector_fmul_add_add(out+n, in+n, s->windows[bsize],
--                                   out+n, 0, block_len, 1);
-+        s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
-+                               out+n, block_len);
- 
-         memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
-     }
-@@ -349,7 +443,7 @@
-  */
- static int wma_decode_block(WMACodecContext *s)
- {
--    int n, v, a, ch, code, bsize;
-+    int n, v, a, ch, bsize;
-     int coef_nb_bits, total_gain;
-     int nb_coefs[MAX_CHANNELS];
-     float mdct_norm;
-@@ -365,12 +459,16 @@
-         if (s->reset_block_lengths) {
-             s->reset_block_lengths = 0;
-             v = get_bits(&s->gb, n);
--            if (v >= s->nb_block_sizes)
-+            if (v >= s->nb_block_sizes){
-+                av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
-                 return -1;
-+            }
-             s->prev_block_len_bits = s->frame_len_bits - v;
-             v = get_bits(&s->gb, n);
--            if (v >= s->nb_block_sizes)
-+            if (v >= s->nb_block_sizes){
-+                av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
-                 return -1;
-+            }
-             s->block_len_bits = s->frame_len_bits - v;
-         } else {
-             /* update block lengths */
-@@ -378,8 +476,10 @@
-             s->block_len_bits = s->next_block_len_bits;
-         }
-         v = get_bits(&s->gb, n);
--        if (v >= s->nb_block_sizes)
-+        if (v >= s->nb_block_sizes){
-+            av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
-             return -1;
-+        }
-         s->next_block_len_bits = s->frame_len_bits - v;
-     } else {
-         /* fixed block len */
-@@ -390,8 +490,10 @@
- 
-     /* now check if the block length is coherent with the frame length */
-     s->block_len = 1 << s->block_len_bits;
--    if ((s->block_pos + s->block_len) > s->frame_len)
-+    if ((s->block_pos + s->block_len) > s->frame_len){
-+        av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
-         return -1;
-+    }
- 
-     if (s->nb_channels == 2) {
-         s->ms_stereo = get_bits1(&s->gb);
-@@ -455,8 +557,10 @@
-                             val = get_bits(&s->gb, 7) - 19;
-                         } else {
-                             code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
--                            if (code < 0)
-+                            if (code < 0){
-+                                av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
-                                 return -1;
-+                            }
-                             val += code - 18;
-                         }
-                         s->high_band_values[ch][i] = val;
-@@ -485,53 +589,17 @@
-     /* parse spectral coefficients : just RLE encoding */
-     for(ch = 0; ch < s->nb_channels; ch++) {
-         if (s->channel_coded[ch]) {
--            VLC *coef_vlc;
--            int level, run, sign, tindex;
--            int16_t *ptr, *eptr;
--            const uint16_t *level_table, *run_table;
-+            int tindex;
-+            WMACoef* ptr = &s->coefs1[ch][0];
- 
-             /* special VLC tables are used for ms stereo because
-                there is potentially less energy there */
-             tindex = (ch == 1 && s->ms_stereo);
--            coef_vlc = &s->coef_vlc[tindex];
--            run_table = s->run_table[tindex];
--            level_table = s->level_table[tindex];
--            /* XXX: optimize */
--            ptr = &s->coefs1[ch][0];
--            eptr = ptr + nb_coefs[ch];
--            memset(ptr, 0, s->block_len * sizeof(int16_t));
--            for(;;) {
--                code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
--                if (code < 0)
--                    return -1;
--                if (code == 1) {
--                    /* EOB */
--                    break;
--                } else if (code == 0) {
--                    /* escape */
--                    level = get_bits(&s->gb, coef_nb_bits);
--                    /* NOTE: this is rather suboptimal. reading
--                       block_len_bits would be better */
--                    run = get_bits(&s->gb, s->frame_len_bits);
--                } else {
--                    /* normal code */
--                    run = run_table[code];
--                    level = level_table[code];
--                }
--                sign = get_bits1(&s->gb);
--                if (!sign)
--                    level = -level;
--                ptr += run;
--                if (ptr >= eptr)
--                {
--                    av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
--                    break;
--                }
--                *ptr++ = level;
--                /* NOTE: EOB can be omitted */
--                if (ptr >= eptr)
--                    break;
--            }
-+            memset(ptr, 0, s->block_len * sizeof(WMACoef));
-+            ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
-+                  s->level_table[tindex], s->run_table[tindex],
-+                  0, ptr, 0, nb_coefs[ch],
-+                  s->block_len, s->frame_len_bits, coef_nb_bits);
-         }
-         if (s->version == 1 && s->nb_channels >= 2) {
-             align_get_bits(&s->gb);
-@@ -550,7 +618,7 @@
-     /* finally compute the MDCT coefficients */
-     for(ch = 0; ch < s->nb_channels; ch++) {
-         if (s->channel_coded[ch]) {
--            int16_t *coefs1;
-+            WMACoef *coefs1;
-             float *coefs, *exponents, mult, mult1, noise;
-             int i, j, n, n1, last_high_band, esize;
-             float exp_power[HIGH_BAND_MAX_SIZE];
-@@ -574,7 +642,7 @@
- 
-                 /* compute power of high bands */
-                 exponents = s->exponents[ch] +
--                    (s->high_band_start[bsize]<<bsize);
-+                    (s->high_band_start[bsize]<<bsize>>esize);
-                 last_high_band = 0; /* avoid warning */
-                 for(j=0;j<n1;j++) {
-                     n = s->exponent_high_bands[s->frame_len_bits -
-@@ -590,11 +658,11 @@
-                         last_high_band = j;
-                         tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
-                     }
--                    exponents += n<<bsize;
-+                    exponents += n<<bsize>>esize;
-                 }
- 
-                 /* main freqs and high freqs */
--                exponents = s->exponents[ch] + (s->coefs_start<<bsize);
-+                exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
-                 for(j=-1;j<n1;j++) {
-                     if (j < 0) {
-                         n = s->high_band_start[bsize] -
-@@ -616,7 +684,7 @@
-                             *coefs++ =  noise *
-                                 exponents[i<<bsize>>esize] * mult1;
-                         }
--                        exponents += n<<bsize;
-+                        exponents += n<<bsize>>esize;
-                     } else {
-                         /* coded values + small noise */
-                         for(i = 0;i < n; i++) {
-@@ -625,7 +693,7 @@
-                             *coefs++ = ((*coefs1++) + noise) *
-                                 exponents[i<<bsize>>esize] * mult;
-                         }
--                        exponents += n<<bsize;
-+                        exponents += n<<bsize>>esize;
-                     }
-                 }
- 
-@@ -661,9 +729,6 @@
- #endif
- 
-     if (s->ms_stereo && s->channel_coded[1]) {
--        float a, b;
--        int i;
--
-         /* nominal case for ms stereo: we do it before mdct */
-         /* no need to optimize this case because it should almost
-            never happen */
-@@ -673,19 +738,13 @@
-             s->channel_coded[0] = 1;
-         }
- 
--        for(i = 0; i < s->block_len; i++) {
--            a = s->coefs[0][i];
--            b = s->coefs[1][i];
--            s->coefs[0][i] = a + b;
--            s->coefs[1][i] = a - b;
--        }
-+        s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
-     }
- 
- next:
-     for(ch = 0; ch < s->nb_channels; ch++) {
--        int n4, index, n;
-+        int n4, index;
- 
--        n = s->block_len;
-         n4 = s->block_len / 2;
-         if(s->channel_coded[ch]){
-             ff_imdct_calc(&s->mdct_ctx[bsize], s->output, s->coefs[ch]);
-@@ -833,6 +892,7 @@
-         pos >>= 3;
-         len = buf_size - pos;
-         if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
-+            av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
-             goto fail;
-         }
-         s->last_superframe_len = len;
---- a/libavcodec/wmaenc.c
-+++ b/libavcodec/wmaenc.c
-@@ -186,7 +186,7 @@
- 
-     for(ch = 0; ch < s->nb_channels; ch++) {
-         if (s->channel_coded[ch]) {
--            int16_t *coefs1;
-+            WMACoef *coefs1;
-             float *coefs, *exponents, mult;
-             int i, n;
- 
-@@ -264,7 +264,7 @@
-     for(ch = 0; ch < s->nb_channels; ch++) {
-         if (s->channel_coded[ch]) {
-             int run, tindex;
--            int16_t *ptr, *eptr;
-+            WMACoef *ptr, *eptr;
-             tindex = (ch == 1 && s->ms_stereo);
-             ptr = &s->coefs1[ch][0];
-             eptr = ptr + nb_coefs[ch];
-@@ -392,7 +392,7 @@
-     encode_init,
-     encode_superframe,
-     ff_wma_end,
--    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
-+    .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
-     .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
- };
- 
-@@ -405,6 +405,6 @@
-     encode_init,
-     encode_superframe,
-     ff_wma_end,
--    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
-+    .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
-     .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
- };
---- a/libavcodec/wma.h
-+++ b/libavcodec/wma.h
-@@ -50,6 +50,8 @@
- #define VLCBITS 9
- #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
- 
-+typedef float WMACoef;          ///< type for decoded coefficients, int16_t would be enough for wma 1/2
-+
- typedef struct CoefVLCTable {
-     int n;                      ///< total number of codes
-     int max_level;
-@@ -110,7 +112,7 @@
-     int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
-     DECLARE_ALIGNED_16(float, exponents[MAX_CHANNELS][BLOCK_MAX_SIZE]);
-     float max_exponent[MAX_CHANNELS];
--    int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
-+    WMACoef coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
-     DECLARE_ALIGNED_16(float, coefs[MAX_CHANNELS][BLOCK_MAX_SIZE]);
-     DECLARE_ALIGNED_16(FFTSample, output[BLOCK_MAX_SIZE * 2]);
-     MDCTContext mdct_ctx[BLOCK_NB_SIZES];
-@@ -142,8 +144,17 @@
- extern const uint32_t ff_wma_scale_huffcodes[121];
- extern const uint8_t ff_wma_scale_huffbits[121];
- 
-+int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version,
-+                                      unsigned int decode_flags);
- int ff_wma_init(AVCodecContext * avctx, int flags2);
- int ff_wma_total_gain_to_bits(int total_gain);
- int ff_wma_end(AVCodecContext *avctx);
-+unsigned int ff_wma_get_large_val(GetBitContext* gb);
-+int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
-+                            VLC *vlc,
-+                            const uint16_t *level_table, const uint16_t *run_table,
-+                            int version, WMACoef *ptr, int offset,
-+                            int num_coefs, int block_len, int frame_len_bits,
-+                            int coef_nb_bits);
- 
- #endif /* AVCODEC_WMA_H */
---- a/libavcodec/wmaprodata.h
-+++ b/libavcodec/wmaprodata.h
-@@ -0,0 +1,604 @@
-+/*
-+ * WMA 9/3/PRO compatible decoder
-+ * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
-+ * Copyright (c) 2008 - 2009 Sascha Sommer
-+ *
-+ * This file is part of FFmpeg.
-+ *
-+ * FFmpeg is free software; you can redistribute it and/or
-+ * modify it under the terms of the GNU Lesser General Public
-+ * License as published by the Free Software Foundation; either
-+ * version 2.1 of the License, or (at your option) any later version.
-+ *
-+ * FFmpeg is distributed in the hope that it will be useful,
-+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
-+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-+ * Lesser General Public License for more details.
-+ *
-+ * You should have received a copy of the GNU Lesser General Public
-+ * License along with FFmpeg; if not, write to the Free Software
-+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
-+ */
-+
-+/**
-+ * @file  libavcodec/wmaprodata.h
-+ * @brief tables for wmapro decoding
-+ */
-+
-+#ifndef AVCODEC_WMAPRODATA_H
-+#define AVCODEC_WMAPRODATA_H
-+
-+#include <stddef.h>
-+#include <stdint.h>
-+
-+/**
-+ * @brief frequencies to divide the frequency spectrum into scale factor bands
-+ */
-+static const uint16_t critical_freq[] = {
-+     100,   200,    300,    400,    510,    630,    770,
-+     920,  1080,   1270,   1480,   1720,   2000,   2320,
-+    2700,  3150,   3700,   4400,   5300,   6400,   7700,
-+    9500, 12000,  15500,  20675,  28575,  41375,  63875,
-+};
-+
-+
-+/**
-+ * @name Huffman tables for DPCM-coded scale factors
-+ * @{
-+ */
-+#define HUFF_SCALE_SIZE    121
-+#define HUFF_SCALE_MAXBITS  19
-+static const uint16_t scale_huffcodes[HUFF_SCALE_SIZE] = {
-+    0xE639, 0xE6C2, 0xE6C1, 0xE6C0, 0xE63F, 0xE63E, 0xE63D, 0xE63C,
-+    0xE63B, 0xE63A, 0xE638, 0xE637, 0xE636, 0xE635, 0xE634, 0xE632,
-+    0xE633, 0xE620, 0x737B, 0xE610, 0xE611, 0xE612, 0xE613, 0xE614,
-+    0xE615, 0xE616, 0xE617, 0xE618, 0xE619, 0xE61A, 0xE61B, 0xE61C,
-+    0xE61D, 0xE61E, 0xE61F, 0xE6C3, 0xE621, 0xE622, 0xE623, 0xE624,
-+    0xE625, 0xE626, 0xE627, 0xE628, 0xE629, 0xE62A, 0xE62B, 0xE62C,
-+    0xE62D, 0xE62E, 0xE62F, 0xE630, 0xE631, 0x1CDF, 0x0E60, 0x0399,
-+    0x00E7, 0x001D, 0x0000, 0x0001, 0x0001, 0x0001, 0x0002, 0x0006,
-+    0x0002, 0x0007, 0x0006, 0x000F, 0x0038, 0x0072, 0x039A, 0xE6C4,
-+    0xE6C5, 0xE6C6, 0xE6C7, 0xE6C8, 0xE6C9, 0xE6CA, 0xE6CB, 0xE6CC,
-+    0xE6CD, 0xE6CE, 0xE6CF, 0xE6D0, 0xE6D1, 0xE6D2, 0xE6D3, 0xE6D4,
-+    0xE6D5, 0xE6D6, 0xE6D7, 0xE6D8, 0xE6D9, 0xE6DA, 0xE6DB, 0xE6DC,
-+    0xE6DD, 0xE6DE, 0xE6DF, 0xE6E0, 0xE6E1, 0xE6E2, 0xE6E3, 0xE6E4,
-+    0xE6E5, 0xE6E6, 0xE6E7, 0xE6E8, 0xE6E9, 0xE6EA, 0xE6EB, 0xE6EC,
-+    0xE6ED, 0xE6EE, 0xE6EF, 0xE6F0, 0xE6F1, 0xE6F2, 0xE6F3, 0xE6F4,
-+    0xE6F5,
-+};
-+
-+static const uint8_t scale_huffbits[HUFF_SCALE_SIZE] = {
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 18, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 16, 15, 13,
-+    11,  8,  5,  2,  1,  3,  5,  6,
-+     6,  7,  7,  7,  9, 10, 13, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19, 19, 19, 19, 19, 19, 19, 19,
-+    19,
-+};
-+/** @} */
-+
-+
-+/**
-+ * @name Huffman, run and level tables for runlevel-coded scale factors
-+ * @{
-+ */
-+#define HUFF_SCALE_RL_SIZE    120
-+#define HUFF_SCALE_RL_MAXBITS  21
-+static const uint32_t scale_rl_huffcodes[HUFF_SCALE_RL_SIZE] = {
-+    0x00010C, 0x000001, 0x10FE2A, 0x000003, 0x000003, 0x000001, 0x000013,
-+    0x000020, 0x000029, 0x000014, 0x000016, 0x000045, 0x000049, 0x00002F,
-+    0x000042, 0x00008E, 0x00008F, 0x000129, 0x000009, 0x00000D, 0x0004AC,
-+    0x00002C, 0x000561, 0x0002E6, 0x00087C, 0x0002E2, 0x00095C, 0x000018,
-+    0x000001, 0x000016, 0x000044, 0x00002A, 0x000007, 0x000159, 0x000143,
-+    0x000128, 0x00015A, 0x00012D, 0x00002B, 0x0000A0, 0x000142, 0x00012A,
-+    0x0002EF, 0x0004AF, 0x00087D, 0x004AE9, 0x0043F9, 0x000067, 0x000199,
-+    0x002B05, 0x001583, 0x0021FE, 0x10FE2C, 0x000004, 0x00002E, 0x00010D,
-+    0x00000A, 0x000244, 0x000017, 0x000245, 0x000011, 0x00010E, 0x00012C,
-+    0x00002A, 0x00002F, 0x000121, 0x000046, 0x00087E, 0x0000BA, 0x000032,
-+    0x0087F0, 0x0056DC, 0x0002EC, 0x0043FA, 0x002B6F, 0x004AE8, 0x0002B7,
-+    0x10FE2B, 0x000001, 0x000051, 0x000010, 0x0002EE, 0x000B9C, 0x002576,
-+    0x000198, 0x0056DD, 0x0000CD, 0x000AC0, 0x000170, 0x004AEF, 0x00002D,
-+    0x0004AD, 0x0021FF, 0x0005CF, 0x002B04, 0x10FE29, 0x10FE28, 0x0002ED,
-+    0x002E74, 0x021FC4, 0x004AEE, 0x010FE3, 0x087F17, 0x000000, 0x000097,
-+    0x0002E3, 0x000ADA, 0x002575, 0x00173B, 0x0043FB, 0x002E75, 0x10FE2D,
-+    0x0015B6, 0x00056C, 0x000057, 0x000123, 0x000120, 0x00021E, 0x000172,
-+    0x0002B1,
-+};
-+
-+static const uint8_t scale_rl_huffbits[HUFF_SCALE_RL_SIZE] = {
-+     9,  2, 21,  2,  4,  5,  5,
-+     6,  6,  7,  7,  7,  7,  6,
-+     7,  8,  8,  9, 10, 10, 11,
-+    12, 11, 12, 12, 12, 12, 11,
-+     4,  5,  7,  8,  9,  9,  9,
-+     9,  9,  9,  8,  8,  9,  9,
-+    12, 11, 12, 15, 15, 13, 15,
-+    14, 13, 14, 21,  5,  6,  9,
-+    10, 10, 11, 10, 11,  9,  9,
-+     6,  8,  9,  7, 12, 10, 12,
-+    16, 15, 12, 15, 14, 15, 10,
-+    21,  6,  7, 11, 12, 14, 14,
-+    15, 15, 14, 12, 11, 15, 12,
-+    11, 14, 13, 14, 21, 21, 12,
-+    16, 18, 15, 17, 20,  7,  8,
-+    12, 12, 14, 15, 15, 16, 21,
-+    13, 11,  7,  9,  9, 10, 11,
-+    10,
-+};
-+
-+
-+static const uint8_t scale_rl_run[HUFF_SCALE_RL_SIZE] = {
-+     0,  0,  0,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
-+    16, 17, 18, 19, 20, 21, 22, 23, 24,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9,
-+    10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,  0,  1,  2,  3,
-+     4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
-+    23, 24,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
-+    17, 18, 19, 20, 21, 22, 23, 24,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10,
-+     0,  1,  0,  1,  0,  1,
-+};
-+
-+static const uint8_t scale_rl_level[HUFF_SCALE_RL_SIZE] = {
-+     0,  0,  1,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
-+     2,  2,  2,  2,  2,  2,  2,  2,  2,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,
-+     3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  4,  4,  4,  4,
-+     4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,
-+     4,  4,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
-+     5,  5,  5,  5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,
-+     7,  7,  8,  8,  9,  9,
-+};
-+/** @} */
-+
-+
-+/**
-+ * @name Huffman, run and level codes for runlevel-coded coefficients
-+ * @{
-+ */
-+#define HUFF_COEF0_SIZE    272
-+#define HUFF_COEF0_MAXBITS  21
-+static const uint32_t coef0_huffcodes[HUFF_COEF0_SIZE] = {
-+    0x00004A, 0x00002B, 0x000000, 0x000003, 0x000006, 0x000009, 0x00000F,
-+    0x000010, 0x000016, 0x000011, 0x000016, 0x000028, 0x00002F, 0x000026,
-+    0x000029, 0x000045, 0x000055, 0x00005D, 0x000042, 0x00004E, 0x000051,
-+    0x00005E, 0x00008D, 0x0000A8, 0x0000AD, 0x000080, 0x000096, 0x00009F,
-+    0x0000AA, 0x0000BE, 0x00011C, 0x000153, 0x000158, 0x000170, 0x000104,
-+    0x00010D, 0x000105, 0x000103, 0x00012F, 0x000177, 0x000175, 0x000157,
-+    0x000174, 0x000225, 0x00023B, 0x00020D, 0x00021F, 0x000281, 0x00027B,
-+    0x000282, 0x0002AC, 0x0002FD, 0x00044F, 0x000478, 0x00044D, 0x0002EC,
-+    0x00044E, 0x000564, 0x000409, 0x00040B, 0x000501, 0x000545, 0x0004F3,
-+    0x000541, 0x00043B, 0x0004F1, 0x0004F4, 0x0008FD, 0x000A94, 0x000811,
-+    0x000B88, 0x000B91, 0x000B93, 0x0008EA, 0x000899, 0x000B8A, 0x000972,
-+    0x0009E5, 0x000A8F, 0x000A84, 0x000A8E, 0x000A00, 0x000830, 0x0008E8,
-+    0x000B95, 0x000871, 0x00083A, 0x000814, 0x000873, 0x000BFE, 0x001728,
-+    0x001595, 0x001712, 0x00102A, 0x001021, 0x001729, 0x00152E, 0x0013C3,
-+    0x001721, 0x001597, 0x00151B, 0x0010F2, 0x001403, 0x001703, 0x001503,
-+    0x001708, 0x0013C1, 0x00170E, 0x00170C, 0x0010E1, 0x0011EA, 0x001020,
-+    0x001500, 0x0017FA, 0x001704, 0x001705, 0x0017F0, 0x0017FB, 0x0021E6,
-+    0x002B2D, 0x0020C6, 0x002B29, 0x002E4A, 0x0023AC, 0x001519, 0x0023F3,
-+    0x002B2C, 0x0021C0, 0x0017FE, 0x0023D7, 0x0017F9, 0x0012E7, 0x0013C0,
-+    0x002261, 0x0023D3, 0x002057, 0x002056, 0x0021D2, 0x0020C7, 0x0023D2,
-+    0x0020EC, 0x0044C0, 0x002FE2, 0x00475B, 0x002A03, 0x002FE3, 0x0021E2,
-+    0x0021D0, 0x002A31, 0x002E13, 0x002E05, 0x0047E5, 0x00000E, 0x000024,
-+    0x000088, 0x0000B9, 0x00010C, 0x000224, 0x0002B3, 0x000283, 0x0002ED,
-+    0x00047B, 0x00041E, 0x00043D, 0x0004F5, 0x0005FD, 0x000A92, 0x000B96,
-+    0x000838, 0x000971, 0x000B83, 0x000B80, 0x000BF9, 0x0011D3, 0x0011E8,
-+    0x0011D7, 0x001527, 0x0011F8, 0x001073, 0x0010F0, 0x0010E4, 0x0017F8,
-+    0x001062, 0x001402, 0x0017E3, 0x00151A, 0x001077, 0x00152B, 0x00170D,
-+    0x0021D3, 0x002E41, 0x0013C2, 0x000029, 0x0000A9, 0x00025D, 0x000419,
-+    0x000544, 0x000B8B, 0x0009E4, 0x0011D2, 0x001526, 0x001724, 0x0012E6,
-+    0x00150B, 0x0017FF, 0x002E26, 0x002E4B, 0x002B28, 0x0021E3, 0x002A14,
-+    0x00475A, 0x002E12, 0x000057, 0x00023E, 0x000A90, 0x000BF0, 0x001072,
-+    0x001502, 0x0023D6, 0x0020ED, 0x002A30, 0x0044C7, 0x00008C, 0x00047F,
-+    0x00152A, 0x002262, 0x002E04, 0x0000A1, 0x0005F9, 0x000173, 0x000875,
-+    0x000171, 0x00152D, 0x0002E3, 0x0017E2, 0x0002AD, 0x0021C1, 0x000479,
-+    0x0021E7, 0x00041F, 0x005C4E, 0x000543, 0x005C4F, 0x000A91, 0x00898D,
-+    0x000B97, 0x008746, 0x000970, 0x008745, 0x000B85, 0x00A856, 0x00152F,
-+    0x010E8E, 0x0010E5, 0x00A857, 0x00170F, 0x021D11, 0x002A58, 0x010E8F,
-+    0x002E40, 0x021D13, 0x002A59, 0x043A25, 0x002A02, 0x043A21, 0x0044C1,
-+    0x087448, 0x0047E4, 0x043A20, 0x00542A, 0x087449, 0x00898C,
-+};
-+
-+static const uint8_t coef0_huffbits[HUFF_COEF0_SIZE] = {
-+     8,  7,  2,  3,  3,  4,  4,
-+     5,  5,  6,  6,  6,  6,  7,
-+     7,  7,  7,  7,  8,  8,  8,
-+     8,  8,  8,  8,  9,  9,  9,
-+     9,  9,  9,  9,  9,  9, 10,
-+    10, 10, 10, 10, 10, 10, 10,
-+    10, 10, 10, 11, 11, 11, 11,
-+    11, 11, 11, 11, 11, 11, 11,
-+    11, 11, 12, 12, 12, 12, 12,
-+    12, 12, 12, 12, 12, 12, 13,
-+    12, 12, 12, 12, 12, 12, 13,
-+    13, 13, 13, 13, 13, 13, 12,
-+    12, 13, 13, 13, 13, 13, 13,
-+    13, 13, 14, 14, 13, 13, 14,
-+    13, 13, 14, 14, 14, 14, 14,
-+    14, 14, 14, 14, 14, 13, 14,
-+    14, 14, 14, 14, 14, 14, 15,
-+    14, 15, 14, 14, 14, 14, 14,
-+    14, 15, 14, 14, 14, 14, 14,
-+    14, 14, 15, 15, 15, 15, 14,
-+    15, 15, 15, 15, 15, 15, 15,
-+    15, 15, 15, 15, 15,  4,  7,
-+     8,  9, 10, 10, 10, 11, 11,
-+    11, 12, 12, 12, 12, 12, 12,
-+    13, 13, 13, 13, 13, 13, 13,
-+    13, 13, 13, 14, 14, 14, 14,
-+    14, 14, 14, 14, 14, 13, 14,
-+    15, 14, 14,  6,  9, 11, 12,
-+    12, 12, 13, 13, 13, 13, 14,
-+    14, 14, 14, 14, 14, 15, 15,
-+    15, 15,  7, 10, 12, 13, 14,
-+    14, 14, 15, 15, 15,  8, 11,
-+    13, 14, 15,  9, 12,  9, 13,
-+    10, 13, 10, 14, 11, 15, 11,
-+    15, 12, 15, 12, 15, 12, 16,
-+    12, 17, 13, 17, 13, 17, 13,
-+    18, 14, 17, 14, 19, 14, 18,
-+    14, 19, 14, 20, 15, 20, 15,
-+    21, 15, 20, 16, 21, 16,
-+};
-+
-+
-+#define HUFF_COEF1_SIZE    244
-+#define HUFF_COEF1_MAXBITS  22
-+static const uint32_t coef1_huffcodes[HUFF_COEF1_SIZE] = {
-+    0x0001E2, 0x00007F, 0x000000, 0x000002, 0x000008, 0x00000E, 0x000019,
-+    0x00002F, 0x000037, 0x000060, 0x00006C, 0x000095, 0x0000C6, 0x0000F0,
-+    0x00012E, 0x000189, 0x0001A5, 0x0001F8, 0x000253, 0x00030A, 0x000344,
-+    0x00034D, 0x0003F2, 0x0004BD, 0x0005D7, 0x00062A, 0x00068B, 0x000693,
-+    0x000797, 0x00097D, 0x000BAB, 0x000C52, 0x000C5E, 0x000D21, 0x000D20,
-+    0x000F1A, 0x000FCE, 0x000FD1, 0x0012F1, 0x001759, 0x0018AC, 0x0018A7,
-+    0x0018BF, 0x001A2B, 0x001E52, 0x001E50, 0x001E31, 0x001FB8, 0x0025E6,
-+    0x0025E7, 0x002EB4, 0x002EB7, 0x003169, 0x00315B, 0x00317C, 0x00316C,
-+    0x0034CA, 0x00348D, 0x003F40, 0x003CA2, 0x003F76, 0x004BC3, 0x004BE5,
-+    0x003F73, 0x004BF8, 0x004BF9, 0x006131, 0x00628B, 0x006289, 0x0062DA,
-+    0x00628A, 0x0062D4, 0x006997, 0x0062B4, 0x006918, 0x00794D, 0x007E7B,
-+    0x007E87, 0x007EEA, 0x00794E, 0x00699D, 0x007967, 0x00699F, 0x0062DB,
-+    0x007E7A, 0x007EEB, 0x00BAC0, 0x0097C9, 0x00C537, 0x00C5AB, 0x00D233,
-+    0x00D338, 0x00BAC1, 0x00D23D, 0x012F91, 0x00D339, 0x00FDC8, 0x00D23C,
-+    0x00FDDC, 0x00FDC9, 0x00FDDD, 0x00D33C, 0x000003, 0x000016, 0x00003E,
-+    0x0000C3, 0x0001A1, 0x000347, 0x00062E, 0x000BAA, 0x000F2D, 0x001A2A,
-+    0x001E58, 0x00309B, 0x003CA3, 0x005D6A, 0x00629A, 0x006996, 0x00794F,
-+    0x007EE5, 0x00BAD7, 0x00C5AA, 0x00C5F4, 0x00FDDF, 0x00FDDE, 0x018A20,
-+    0x018A6D, 0x01A67B, 0x01A464, 0x025F21, 0x01F9E2, 0x01F9E3, 0x00000A,
-+    0x00003D, 0x000128, 0x0003C7, 0x000C24, 0x0018A3, 0x002EB1, 0x003CB2,
-+    0x00691F, 0x007E79, 0x000013, 0x0000BB, 0x00034E, 0x000D14, 0x0025FD,
-+    0x004BE7, 0x000024, 0x000188, 0x0007EF, 0x000035, 0x000308, 0x0012F2,
-+    0x00005C, 0x0003F6, 0x0025E0, 0x00006D, 0x000698, 0x000096, 0x000C25,
-+    0x0000C7, 0x000F1B, 0x0000F3, 0x0012FF, 0x000174, 0x001A66, 0x0001A0,
-+    0x003099, 0x0001E4, 0x00316B, 0x000252, 0x003F31, 0x00030B, 0x004BE6,
-+    0x000346, 0x0062FB, 0x00034F, 0x007966, 0x0003F5, 0x007E86, 0x0005D4,
-+    0x00C511, 0x00062C, 0x00C5F5, 0x000692, 0x00F299, 0x000795, 0x00F298,
-+    0x0007E9, 0x018A21, 0x00097E, 0x0175AD, 0x000C27, 0x01A67A, 0x000C57,
-+    0x02EB59, 0x000D22, 0x0314D9, 0x000F19, 0x03F3C2, 0x000FCD, 0x0348CB,
-+    0x0012F8, 0x04BE41, 0x0018A0, 0x03F3C1, 0x0018A1, 0x04BE40, 0x0018B7,
-+    0x0629B0, 0x001A64, 0x0D2329, 0x001E30, 0x03F3C3, 0x001F9F, 0x0BAD62,
-+    0x001F99, 0x0FCF00, 0x00309A, 0x0629B1, 0x002EB6, 0x175AC3, 0x00314C,
-+    0x069195, 0x003168, 0x0BAD63, 0x00348E, 0x175AC1, 0x003F30, 0x07E781,
-+    0x003F41, 0x0D2328, 0x003F42, 0x1F9E03, 0x004BC2, 0x175AC2, 0x003F74,
-+    0x175AC0, 0x005D61, 0x3F3C05, 0x006130, 0x3F3C04, 0x0062B5,
-+};
-+
-+static const uint8_t coef1_huffbits[HUFF_COEF1_SIZE] = {
-+     9,  7,  2,  3,  4,  4,  5,
-+     6,  6,  7,  7,  8,  8,  8,
-+     9,  9,  9,  9, 10, 10, 10,
-+    10, 10, 11, 11, 11, 11, 11,
-+    11, 12, 12, 12, 12, 12, 12,
-+    12, 12, 12, 13, 13, 13, 13,
-+    13, 13, 13, 13, 13, 13, 14,
-+    14, 14, 14, 14, 14, 14, 14,
-+    14, 14, 14, 14, 14, 15, 15,
-+    14, 15, 15, 15, 15, 15, 15,
-+    15, 15, 15, 15, 15, 15, 15,
-+    15, 15, 15, 15, 15, 15, 15,
-+    15, 15, 16, 16, 16, 16, 16,
-+    16, 16, 16, 17, 16, 16, 16,
-+    16, 16, 16, 16,  3,  5,  6,
-+     8,  9, 10, 11, 12, 12, 13,
-+    13, 14, 14, 15, 15, 15, 15,
-+    15, 16, 16, 16, 16, 16, 17,
-+    17, 17, 17, 18, 17, 17,  4,
-+     6,  9, 10, 12, 13, 14, 14,
-+    15, 15,  5,  8, 10, 12, 14,
-+    15,  6,  9, 11,  6, 10, 13,
-+     7, 10, 14,  7, 11,  8, 12,
-+     8, 12,  8, 13,  9, 13,  9,
-+    14,  9, 14, 10, 14, 10, 15,
-+    10, 15, 10, 15, 10, 15, 11,
-+    16, 11, 16, 11, 16, 11, 16,
-+    11, 17, 12, 17, 12, 17, 12,
-+    18, 12, 18, 12, 18, 12, 18,
-+    13, 19, 13, 18, 13, 19, 13,
-+    19, 13, 20, 13, 18, 13, 20,
-+    13, 20, 14, 19, 14, 21, 14,
-+    19, 14, 20, 14, 21, 14, 19,
-+    14, 20, 14, 21, 15, 21, 14,
-+    21, 15, 22, 15, 22, 15,
-+};
-+
-+
-+static const uint16_t coef0_run[HUFF_COEF0_SIZE] = {
-+      0,   0,   0,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,
-+     12,  13,  14,  15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,
-+     26,  27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,
-+     40,  41,  42,  43,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,
-+     54,  55,  56,  57,  58,  59,  60,  61,  62,  63,  64,  65,  66,  67,
-+     68,  69,  70,  71,  72,  73,  74,  75,  76,  77,  78,  79,  80,  81,
-+     82,  83,  84,  85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,
-+     96,  97,  98,  99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
-+    110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
-+    124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
-+    138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,   0,   1,
-+      2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,
-+     16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,
-+     30,  31,  32,  33,  34,  35,  36,  37,  38,  39,   0,   1,   2,   3,
-+      4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,  16,  17,
-+     18,  19,   0,   1,   2,   3,   4,   5,   6,   7,   8,   9,   0,   1,
-+      2,   3,   4,   0,   1,   0,   1,   0,   1,   0,   1,   0,   1,   0,
-+      1,   0,   1,   0,   1,   0,   1,   0,   1,   0,   1,   0,   1,   0,
-+      1,   0,   1,   0,   1,   0,   1,   0,   1,   0,   1,   0,   1,   0,
-+      1,   0,   1,   0,   1,   0,
-+};
-+
-+static const uint16_t coef0_level[HUFF_COEF0_SIZE] = {
-+      0,   0,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,
-+      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   2,   2,
-+      2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,
-+      2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,
-+      2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   3,   3,   3,   3,
-+      3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,
-+      3,   3,   4,   4,   4,   4,   4,   4,   4,   4,   4,   4,   5,   5,
-+      5,   5,   5,   6,   6,   7,   7,   8,   8,   9,   9,  10,  10,  11,
-+     11,  12,  12,  13,  13,  14,  14,  15,  15,  16,  16,  17,  17,  18,
-+     18,  19,  19,  20,  20,  21,  21,  22,  22,  23,  23,  24,  24,  25,
-+     25,  26,  26,  27,  27,  28,
-+};
-+
-+
-+static const uint16_t coef1_run[HUFF_COEF1_SIZE] = {
-+     0,  0,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
-+    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
-+    34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
-+    52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
-+    70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
-+    88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,  0,  1,  2,  3,  4,  5,
-+     6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
-+    24, 25, 26, 27, 28, 29,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  0,  1,
-+     2,  3,  4,  5,  0,  1,  2,  0,  1,  2,  0,  1,  2,  0,  1,  0,  1,  0,
-+     1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,
-+     1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,
-+     1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,
-+     1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,
-+     1,  0,  1,  0,  1,  0,  1,  0,  0,  0,
-+};
-+
-+static const uint16_t coef1_level[HUFF_COEF1_SIZE] = {
-+     0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
-+     1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
-+     1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
-+     1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
-+     1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
-+     1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  2,  2,  2,  2,  2,  2,
-+     2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
-+     2,  2,  2,  2,  2,  2,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  4,  4,
-+     4,  4,  4,  4,  5,  5,  5,  6,  6,  6,  7,  7,  7,  8,  8,  9,  9, 10,
-+    10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
-+    19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28,
-+    28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37,
-+    37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46,
-+    46, 47, 47, 48, 48, 49, 49, 50, 51, 52,
-+};
-+/** @} */
-+
-+
-+/**
-+ * @name Huffman and vector lookup tables for vector-coded coefficients
-+ * @{
-+ */
-+#define HUFF_VEC4_SIZE    127
-+#define HUFF_VEC4_MAXBITS  14
-+static const uint16_t vec4_huffcodes[HUFF_VEC4_SIZE] = {
-+    0x0019, 0x0027, 0x00F2, 0x03BA, 0x0930, 0x1267, 0x0031, 0x0030,
-+    0x0097, 0x0221, 0x058B, 0x0124, 0x00EB, 0x01D4, 0x03D8, 0x0584,
-+    0x0364, 0x045F, 0x0F66, 0x0931, 0x24CD, 0x002F, 0x0039, 0x00E8,
-+    0x02C3, 0x078A, 0x0037, 0x0029, 0x0084, 0x01B1, 0x00ED, 0x0086,
-+    0x00F9, 0x03AB, 0x01EB, 0x08BC, 0x011E, 0x00F3, 0x0220, 0x058A,
-+    0x00EC, 0x008E, 0x012B, 0x01EA, 0x0119, 0x04B0, 0x04B1, 0x03B8,
-+    0x0691, 0x0365, 0x01ED, 0x049A, 0x0EA9, 0x0EA8, 0x08BD, 0x24CC,
-+    0x0026, 0x0035, 0x00DB, 0x02C4, 0x07B2, 0x0038, 0x002B, 0x007F,
-+    0x01B3, 0x00F4, 0x0091, 0x0116, 0x03BB, 0x0215, 0x0932, 0x002D,
-+    0x002A, 0x008A, 0x01DE, 0x0028, 0x0020, 0x005C, 0x0090, 0x0068,
-+    0x01EE, 0x00E9, 0x008D, 0x012A, 0x0087, 0x005D, 0x0118, 0x0349,
-+    0x01EF, 0x01E3, 0x08B9, 0x00F0, 0x00D3, 0x0214, 0x049B, 0x00DA,
-+    0x0089, 0x0125, 0x0217, 0x012D, 0x0690, 0x0094, 0x007D, 0x011F,
-+    0x007E, 0x0059, 0x0127, 0x01A5, 0x0111, 0x00F8, 0x045D, 0x03B9,
-+    0x0259, 0x0580, 0x02C1, 0x01DF, 0x0585, 0x0216, 0x0163, 0x01B0,
-+    0x03C4, 0x08B8, 0x078B, 0x0755, 0x0581, 0x0F67, 0x0000,
-+};
-+
-+static const uint8_t vec4_huffbits[HUFF_VEC4_SIZE] = {
-+     5,  6,  8, 10, 12, 13,  6,  6,
-+     8, 10, 11,  9,  8,  9, 10, 11,
-+    10, 11, 12, 12, 14,  6,  6,  8,
-+    10, 11,  6,  6,  8,  9,  8,  8,
-+     8, 10,  9, 12,  9,  8, 10, 11,
-+     8,  8,  9,  9,  9, 11, 11, 10,
-+    11, 10,  9, 11, 12, 12, 12, 14,
-+     6,  6,  8, 10, 11,  6,  6,  7,
-+     9,  8,  8,  9, 10, 10, 12,  6,
-+     6,  8,  9,  6,  6,  7,  8,  7,
-+     9,  8,  8,  9,  8,  7,  9, 10,
-+     9,  9, 12,  8,  8, 10, 11,  8,
-+     8,  9, 10,  9, 11,  8,  7,  9,
-+     7,  7,  9,  9,  9,  8, 11, 10,
-+    10, 11, 10,  9, 11, 10,  9,  9,
-+    10, 12, 11, 11, 11, 12,  1,
-+};
-+
-+
-+#define HUFF_VEC2_SIZE    137
-+#define HUFF_VEC2_MAXBITS  12
-+static const uint16_t vec2_huffcodes[HUFF_VEC2_SIZE] = {
-+    0x055, 0x01C, 0x01A, 0x02B, 0x028, 0x067, 0x08B, 0x039,
-+    0x170, 0x10D, 0x2A5, 0x047, 0x464, 0x697, 0x523, 0x8CB,
-+    0x01B, 0x00E, 0x000, 0x010, 0x012, 0x036, 0x048, 0x04C,
-+    0x0C2, 0x09B, 0x171, 0x03B, 0x224, 0x34A, 0x2D6, 0x019,
-+    0x00F, 0x002, 0x014, 0x017, 0x006, 0x05D, 0x054, 0x0C7,
-+    0x0B4, 0x192, 0x10E, 0x233, 0x043, 0x02C, 0x00F, 0x013,
-+    0x006, 0x02F, 0x02C, 0x068, 0x077, 0x0DF, 0x111, 0x1A4,
-+    0x16A, 0x2A4, 0x027, 0x011, 0x018, 0x02D, 0x00F, 0x04A,
-+    0x040, 0x097, 0x01F, 0x11B, 0x022, 0x16D, 0x066, 0x035,
-+    0x005, 0x02B, 0x049, 0x009, 0x075, 0x0CB, 0x0AA, 0x187,
-+    0x106, 0x08A, 0x047, 0x060, 0x06E, 0x01D, 0x074, 0x0C4,
-+    0x01E, 0x118, 0x1A7, 0x038, 0x042, 0x053, 0x076, 0x0A8,
-+    0x0CA, 0x082, 0x110, 0x18D, 0x12D, 0x0B9, 0x0C8, 0x0DE,
-+    0x01C, 0x0AB, 0x113, 0x18C, 0x10F, 0x09A, 0x0A5, 0x0B7,
-+    0x11A, 0x186, 0x1A6, 0x259, 0x153, 0x18A, 0x193, 0x020,
-+    0x10C, 0x046, 0x03A, 0x107, 0x149, 0x16C, 0x2D7, 0x225,
-+    0x258, 0x316, 0x696, 0x317, 0x042, 0x522, 0x290, 0x8CA,
-+    0x001,
-+};
-+
-+static const uint8_t vec2_huffbits[HUFF_VEC2_SIZE] = {
-+     7,  6,  6,  6,  7,  7,  8,  9,
-+     9, 10, 10, 11, 11, 11, 12, 12,
-+     6,  4,  5,  5,  6,  6,  7,  8,
-+     8,  9,  9, 10, 10, 10, 11,  6,
-+     4,  5,  5,  6,  7,  7,  8,  8,
-+     9,  9, 10, 10, 11,  6,  5,  5,
-+     6,  6,  7,  7,  8,  8,  9,  9,
-+    10, 10,  7,  6,  6,  6,  7,  7,
-+     8,  8,  9,  9, 10, 10,  7,  6,
-+     7,  7,  7,  8,  8,  8,  9,  9,
-+    10,  8,  7,  7,  7,  8,  8,  8,
-+     9,  9,  9,  9,  8,  8,  8,  8,
-+     8,  9,  9,  9,  9,  8,  8,  8,
-+     9,  9,  9,  9, 10,  9,  9,  9,
-+     9,  9,  9, 10,  9,  9,  9, 10,
-+    10, 11, 10, 10, 10, 10, 11, 10,
-+    10, 10, 11, 10, 11, 12, 11, 12,
-+     3,
-+};
-+
-+
-+#define HUFF_VEC1_SIZE    101
-+#define HUFF_VEC1_MAXBITS  11
-+static const uint16_t vec1_huffcodes[HUFF_VEC1_SIZE] = {
-+    0x01A, 0x003, 0x017, 0x010, 0x00C, 0x009, 0x005, 0x000,
-+    0x00D, 0x00A, 0x009, 0x00C, 0x00F, 0x002, 0x004, 0x007,
-+    0x00B, 0x00F, 0x01C, 0x006, 0x010, 0x015, 0x01C, 0x022,
-+    0x03B, 0x00E, 0x019, 0x023, 0x034, 0x036, 0x03A, 0x047,
-+    0x008, 0x00A, 0x01E, 0x031, 0x037, 0x050, 0x053, 0x06B,
-+    0x06F, 0x08C, 0x0E8, 0x0EA, 0x0EB, 0x016, 0x03E, 0x03F,
-+    0x06C, 0x089, 0x08A, 0x0A3, 0x0A4, 0x0D4, 0x0DD, 0x0EC,
-+    0x0EE, 0x11A, 0x1D2, 0x024, 0x025, 0x02E, 0x027, 0x0C2,
-+    0x0C0, 0x0DA, 0x0DB, 0x111, 0x144, 0x116, 0x14A, 0x145,
-+    0x1B8, 0x1AB, 0x1DA, 0x1DE, 0x1DB, 0x1DF, 0x236, 0x237,
-+    0x3A6, 0x3A7, 0x04D, 0x04C, 0x05E, 0x05F, 0x183, 0x182,
-+    0x186, 0x221, 0x187, 0x220, 0x22E, 0x22F, 0x296, 0x354,
-+    0x297, 0x355, 0x372, 0x373, 0x016,
-+};
-+
-+static const uint8_t vec1_huffbits[HUFF_VEC1_SIZE] = {
-+     7,  6,  5,  5,  5,  5,  5,  5,
-+     4,  4,  4,  4,  4,  5,  5,  5,
-+     5,  5,  5,  6,  6,  6,  6,  6,
-+     6,  7,  7,  7,  7,  7,  7,  7,
-+     8,  8,  8,  8,  8,  8,  8,  8,
-+     8,  8,  8,  8,  8,  9,  9,  9,
-+     9,  9,  9,  9,  9,  9,  9,  9,
-+     9,  9,  9, 10, 10, 10, 10, 10,
-+    10, 10, 10, 10, 10, 10, 10, 10,
-+    10, 10, 10, 10, 10, 10, 10, 10,
-+    10, 10, 11, 11, 11, 11, 11, 11,
-+    11, 11, 11, 11, 11, 11, 11, 11,
-+    11, 11, 11, 11,  5,
-+};
-+
-+
-+static const uint16_t symbol_to_vec4[HUFF_VEC4_SIZE] = {
-+        0,    1,      2,     3,     4,     5,    16,    17,    18,    19,
-+       20,   32,     33,    34,    35,    48,    49,    50,    64,    65,
-+       80,   256,   257,   258,   259,   260,   272,   273,   274,   275,
-+      288,   289,   290,   304,   305,   320,   512,   513,   514,   515,
-+      528,   529,   530,   544,   545,   560,   768,   769,   770,   784,
-+      785,   800,  1024,  1025,  1040,  1280,  4096,  4097,  4098,  4099,
-+     4100,  4112,  4113,  4114,  4115,  4128,  4129,  4130,  4144,  4145,
-+     4160,  4352,  4353,  4354,  4355,  4368,  4369,  4370,  4384,  4385,
-+     4400,  4608,  4609,  4610,  4624,  4625,  4640,  4864,  4865,  4880,
-+     5120,  8192,  8193,  8194,  8195,  8208,  8209,  8210,  8224,  8225,
-+     8240,  8448,  8449,  8450,  8464,  8465,  8480,  8704,  8705,  8720,
-+     8960, 12288, 12289, 12290, 12304, 12305, 12320, 12544, 12545, 12560,
-+    12800, 16384, 16385, 16400, 16640, 20480,     0,
-+};
-+
-+
-+static const uint8_t symbol_to_vec2[HUFF_VEC2_SIZE] = {
-+      0,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,
-+     15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,
-+     30,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,  43,  44,  45,
-+     48,  49,  50,  51,  52,  53,  54,  55,  56,  57,  58,  59,  60,  64,  65,
-+     66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  80,  81,  82,  83,  84,
-+     85,  86,  87,  88,  89,  90,  96,  97,  98,  99, 100, 101, 102, 103, 104,
-+    105, 112, 113, 114, 115, 116, 117, 118, 119, 120, 128, 129, 130, 131, 132,
-+    133, 134, 135, 144, 145, 146, 147, 148, 149, 150, 160, 161, 162, 163, 164,
-+    165, 176, 177, 178, 179, 180, 192, 193, 194, 195, 208, 209, 210, 224, 225,
-+    240,   0,
-+};
-+/** @} */
-+
-+
-+/**
-+ * @brief decorrelation matrix for multichannel streams
-+ **/
-+static const float default_decorrelation_matrices[] = {
-+    1.000000,  0.707031, -0.707031,  0.707031,  0.707031,  0.578125,  0.707031,
-+    0.410156,  0.578125, -0.707031,  0.410156,  0.578125,  0.000000, -0.816406,
-+    0.500000,  0.652344,  0.500000,  0.269531,  0.500000,  0.269531, -0.500000,
-+   -0.652344,  0.500000, -0.269531, -0.500000,  0.652344,  0.500000, -0.652344,
-+    0.500000, -0.269531,  0.445312,  0.601562,  0.511719,  0.371094,  0.195312,
-+    0.445312,  0.371094, -0.195312, -0.601562, -0.511719,  0.445312,  0.000000,
-+   -0.632812,  0.000000,  0.632812,  0.445312, -0.371094, -0.195312,  0.601562,
-+   -0.511719,  0.445312, -0.601562,  0.511719, -0.371094,  0.195312,  0.410156,
-+    0.558594,  0.500000,  0.410156,  0.289062,  0.148438,  0.410156,  0.410156,
-+    0.000000, -0.410156, -0.578125, -0.410156,  0.410156,  0.148438, -0.500000,
-+   -0.410156,  0.289062,  0.558594,  0.410156, -0.148438, -0.500000,  0.410156,
-+    0.289062, -0.558594,  0.410156, -0.410156,  0.000000,  0.410156, -0.578125,
-+    0.410156,  0.410156, -0.558594,  0.500000, -0.410156,  0.289062, -0.148438,
-+};
-+
-+/**
-+ * @brief default decorrelation matrix offsets
-+ */
-+static const float * const default_decorrelation[] = {
-+    NULL,
-+    &default_decorrelation_matrices[0],
-+    &default_decorrelation_matrices[1],
-+    &default_decorrelation_matrices[5],
-+    &default_decorrelation_matrices[14],
-+    &default_decorrelation_matrices[30],
-+    &default_decorrelation_matrices[55]
-+};
-+
-+#endif /* AVCODEC_WMAPRODATA_H */
---- a/libavcodec/wmaprodec.c
-+++ b/libavcodec/wmaprodec.c
-@@ -0,0 +1,1576 @@
-+/*
-+ * Wmapro compatible decoder
-+ * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
-+ * Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson
-+ *
-+ * This file is part of FFmpeg.
-+ *
-+ * FFmpeg is free software; you can redistribute it and/or
-+ * modify it under the terms of the GNU Lesser General Public
-+ * License as published by the Free Software Foundation; either
-+ * version 2.1 of the License, or (at your option) any later version.
-+ *
-+ * FFmpeg is distributed in the hope that it will be useful,
-+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
-+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-+ * Lesser General Public License for more details.
-+ *
-+ * You should have received a copy of the GNU Lesser General Public
-+ * License along with FFmpeg; if not, write to the Free Software
-+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
-+ */
-+
-+/**
-+ * @file  libavcodec/wmaprodec.c
-+ * @brief wmapro decoder implementation
-+ * Wmapro is an MDCT based codec comparable to wma standard or AAC.
-+ * The decoding therefore consists of the following steps:
-+ * - bitstream decoding
-+ * - reconstruction of per-channel data
-+ * - rescaling and inverse quantization
-+ * - IMDCT
-+ * - windowing and overlapp-add
-+ *
-+ * The compressed wmapro bitstream is split into individual packets.
-+ * Every such packet contains one or more wma frames.
-+ * The compressed frames may have a variable length and frames may
-+ * cross packet boundaries.
-+ * Common to all wmapro frames is the number of samples that are stored in
-+ * a frame.
-+ * The number of samples and a few other decode flags are stored
-+ * as extradata that has to be passed to the decoder.
-+ *
-+ * The wmapro frames themselves are again split into a variable number of
-+ * subframes. Every subframe contains the data for 2^N time domain samples
-+ * where N varies between 7 and 12.
-+ *
-+ * Example wmapro bitstream (in samples):
-+ *
-+ * ||   packet 0           || packet 1 || packet 2      packets
-+ * ---------------------------------------------------
-+ * || frame 0      || frame 1       || frame 2    ||    frames
-+ * ---------------------------------------------------
-+ * ||   |      |   ||   |   |   |   ||            ||    subframes of channel 0
-+ * ---------------------------------------------------
-+ * ||      |   |   ||   |   |   |   ||            ||    subframes of channel 1
-+ * ---------------------------------------------------
-+ *
-+ * The frame layouts for the individual channels of a wma frame does not need
-+ * to be the same.
-+ *
-+ * However, if the offsets and lengths of several subframes of a frame are the
-+ * same, the subframes of the channels can be grouped.
-+ * Every group may then use special coding techniques like M/S stereo coding
-+ * to improve the compression ratio. These channel transformations do not
-+ * need to be applied to a whole subframe. Instead, they can also work on
-+ * individual scale factor bands (see below).
-+ * The coefficients that carry the audio signal in the frequency domain
-+ * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
-+ * In addition to that, the encoder can switch to a runlevel coding scheme
-+ * by transmitting subframe_length / 128 zero coefficients.
-+ *
-+ * Before the audio signal can be converted to the time domain, the
-+ * coefficients have to be rescaled and inverse quantized.
-+ * A subframe is therefore split into several scale factor bands that get
-+ * scaled individually.
-+ * Scale factors are submitted for every frame but they might be shared
-+ * between the subframes of a channel. Scale factors are initially DPCM-coded.
-+ * Once scale factors are shared, the differences are transmitted as runlevel
-+ * codes.
-+ * Every subframe length and offset combination in the frame layout shares a
-+ * common quantization factor that can be adjusted for every channel by a
-+ * modifier.
-+ * After the inverse quantization, the coefficients get processed by an IMDCT.
-+ * The resulting values are then windowed with a sine window and the first half
-+ * of the values are added to the second half of the output from the previous
-+ * subframe in order to reconstruct the output samples.
-+ */
-+
-+#include "avcodec.h"
-+#include "internal.h"
-+#include "bitstream.h"
-+#include "wmaprodata.h"
-+#include "dsputil.h"
-+#include "wma.h"
-+
-+/** current decoder limitations */
-+#define WMAPRO_MAX_CHANNELS    8                             ///< max number of handled channels
-+#define MAX_SUBFRAMES  32                                    ///< max number of subframes per channel
-+#define MAX_BANDS      29                                    ///< max number of scale factor bands
-+#define MAX_FRAMESIZE  32768                                 ///< maximum compressed frame size
-+
-+#define WMAPRO_BLOCK_MAX_BITS 12                                           ///< log2 of max block size
-+#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS)                 ///< maximum block size
-+#define WMAPRO_BLOCK_SIZES    (WMAPRO_BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) ///< possible block sizes
-+
-+
-+#define VLCBITS            9
-+#define SCALEVLCBITS       8
-+#define VEC4MAXDEPTH    ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
-+#define VEC2MAXDEPTH    ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
-+#define VEC1MAXDEPTH    ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
-+#define SCALEMAXDEPTH   ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
-+#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
-+
-+static VLC              sf_vlc;           ///< scale factor DPCM vlc
-+static VLC              sf_rl_vlc;        ///< scale factor run length vlc
-+static VLC              vec4_vlc;         ///< 4 coefficients per symbol
-+static VLC              vec2_vlc;         ///< 2 coefficients per symbol
-+static VLC              vec1_vlc;         ///< 1 coefficient per symbol
-+static VLC              coef_vlc[2];      ///< coefficient run length vlc codes
-+static float            sin64[33];        ///< sinus table for decorrelation
-+
-+/**
-+ * @brief frame specific decoder context for a single channel
-+ */
-+typedef struct {
-+    int16_t  prev_block_len;                          ///< length of the previous block
-+    uint8_t  transmit_coefs;
-+    uint8_t  num_subframes;
-+    uint16_t subframe_len[MAX_SUBFRAMES];             ///< subframe length in samples
-+    uint16_t subframe_offset[MAX_SUBFRAMES];          ///< subframe positions in the current frame
-+    uint8_t  cur_subframe;                            ///< current subframe number
-+    uint16_t decoded_samples;                         ///< number of already processed samples
-+    uint8_t  grouped;                                 ///< channel is part of a group
-+    int      quant_step;                              ///< quantization step for the current subframe
-+    int8_t   reuse_sf;                                ///< share scale factors between subframes
-+    int8_t   scale_factor_step;                       ///< scaling step for the current subframe
-+    int      max_scale_factor;                        ///< maximum scale factor for the current subframe
-+    int      saved_scale_factors[2][MAX_BANDS];       ///< resampled and (previously) transmitted scale factor values
-+    int8_t   scale_factor_idx;                        ///< index for the transmitted scale factor values (used for resampling)
-+    int*     scale_factors;                           ///< pointer to the scale factor values used for decoding
-+    uint8_t  table_idx;                               ///< index in sf_offsets for the scale factor reference block
-+    float*   coeffs;                                  ///< pointer to the subframe decode buffer
-+    DECLARE_ALIGNED_16(float, out[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]); ///< output buffer
-+} WMAProChannelCtx;
-+
-+/**
-+ * @brief channel group for channel transformations
-+ */
-+typedef struct {
-+    uint8_t num_channels;                                     ///< number of channels in the group
-+    int8_t  transform;                                        ///< transform on / off
-+    int8_t  transform_band[MAX_BANDS];                        ///< controls if the transform is enabled for a certain band
-+    float   decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
-+    float*  channel_data[WMAPRO_MAX_CHANNELS];                ///< transformation coefficients
-+} WMAProChannelGrp;
-+
-+/**
-+ * @brief main decoder context
-+ */
-+typedef struct WMAProDecodeCtx {
-+    /* generic decoder variables */
-+    AVCodecContext*  avctx;                         ///< codec context for av_log
-+    DSPContext       dsp;                           ///< accelerated DSP functions
-+    uint8_t          frame_data[MAX_FRAMESIZE +
-+                      FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
-+    PutBitContext    pb;                            ///< context for filling the frame_data buffer
-+    MDCTContext      mdct_ctx[WMAPRO_BLOCK_SIZES];  ///< MDCT context per block size
-+    DECLARE_ALIGNED_16(float, tmp[WMAPRO_BLOCK_MAX_SIZE]); ///< IMDCT output buffer
-+    float*           windows[WMAPRO_BLOCK_SIZES];   ///< windows for the different block sizes
-+
-+    /* frame size dependent frame information (set during initialization) */
-+    uint32_t         decode_flags;                  ///< used compression features
-+    uint8_t          len_prefix;                    ///< frame is prefixed with its length
-+    uint8_t          dynamic_range_compression;     ///< frame contains DRC data
-+    uint8_t          bits_per_sample;               ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
-+    uint16_t         samples_per_frame;             ///< number of samples to output
-+    uint16_t         log2_frame_size;
-+    int8_t           num_channels;                  ///< number of channels in the stream (same as AVCodecContext.num_channels)
-+    int8_t           lfe_channel;                   ///< lfe channel index
-+    uint8_t          max_num_subframes;
-+    uint8_t          subframe_len_bits;             ///< number of bits used for the subframe length
-+    uint8_t          max_subframe_len_bit;          ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
-+    uint16_t         min_samples_per_subframe;
-+    int8_t           num_sfb[WMAPRO_BLOCK_SIZES];   ///< scale factor bands per block size
-+    int16_t          sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS];                    ///< scale factor band offsets (multiples of 4)
-+    int8_t           sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
-+    int16_t          subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
-+
-+    /* packet decode state */
-+    GetBitContext    pgb;                           ///< bitstream reader context for the packet
-+    uint8_t          packet_offset;                 ///< frame offset in the packet
-+    uint8_t          packet_sequence_number;        ///< current packet number
-+    int              num_saved_bits;                ///< saved number of bits
-+    int              frame_offset;                  ///< frame offset in the bit reservoir
-+    int              subframe_offset;               ///< subframe offset in the bit reservoir
-+    uint8_t          packet_loss;                   ///< set in case of bitstream error
-+    uint8_t          packet_done;                   ///< set when a packet is fully decoded
-+
-+    /* frame decode state */
-+    uint32_t         frame_num;                     ///< current frame number (not used for decoding)
-+    GetBitContext    gb;                            ///< bitstream reader context
-+    int              buf_bit_size;                  ///< buffer size in bits
-+    float*           samples;                       ///< current samplebuffer pointer
-+    float*           samples_end;                   ///< maximum samplebuffer pointer
-+    uint8_t          drc_gain;                      ///< gain for the DRC tool
-+    int8_t           skip_frame;                    ///< skip output step
-+    int8_t           parsed_all_subframes;          ///< all subframes decoded?
-+
-+    /* subframe/block decode state */
-+    int16_t          subframe_len;                  ///< current subframe length
-+    int8_t           channels_for_cur_subframe;     ///< number of channels that contain the subframe
-+    int8_t           channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
-+    int8_t           num_bands;                     ///< number of scale factor bands
-+    int16_t*         cur_sfb_offsets;               ///< sfb offsets for the current block
-+    uint8_t          table_idx;                     ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
-+    int8_t           esc_len;                       ///< length of escaped coefficients
-+
-+    uint8_t          num_chgroups;                  ///< number of channel groups
-+    WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS];  ///< channel group information
-+
-+    WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS];  ///< per channel data
-+} WMAProDecodeCtx;
-+
-+
-+/**
-+ *@brief helper function to print the most important members of the context
-+ *@param s context
-+ */
-+static void av_cold dump_context(WMAProDecodeCtx *s)
-+{
-+#define PRINT(a, b)     av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
-+#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);
-+
-+    PRINT("ed sample bit depth", s->bits_per_sample);
-+    PRINT_HEX("ed decode flags", s->decode_flags);
-+    PRINT("samples per frame",   s->samples_per_frame);
-+    PRINT("log2 frame size",     s->log2_frame_size);
-+    PRINT("max num subframes",   s->max_num_subframes);
-+    PRINT("len prefix",          s->len_prefix);
-+    PRINT("num channels",        s->num_channels);
-+}
-+
-+/**
-+ *@brief Uninitialize the decoder and free all resources.
-+ *@param avctx codec context
-+ *@return 0 on success, < 0 otherwise
-+ */
-+static av_cold int decode_end(AVCodecContext *avctx)
-+{
-+    WMAProDecodeCtx *s = avctx->priv_data;
-+    int i;
-+
-+    for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
-+        ff_mdct_end(&s->mdct_ctx[i]);
-+
-+    return 0;
-+}
-+
-+/**
-+ *@brief Initialize the decoder.
-+ *@param avctx codec context
-+ *@return 0 on success, -1 otherwise
-+ */
-+static av_cold int decode_init(AVCodecContext *avctx)
-+{
-+    WMAProDecodeCtx *s = avctx->priv_data;
-+    uint8_t *edata_ptr = avctx->extradata;
-+    unsigned int channel_mask;
-+    int i;
-+    int log2_max_num_subframes;
-+    int num_possible_block_sizes;
-+
-+    s->avctx = avctx;
-+    dsputil_init(&s->dsp, avctx);
-+    init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
-+
-+    avctx->sample_fmt = SAMPLE_FMT_FLT;
-+
-+    if (avctx->extradata_size >= 18) {
-+        s->decode_flags    = AV_RL16(edata_ptr+14);
-+        channel_mask       = AV_RL32(edata_ptr+2);
-+        s->bits_per_sample = AV_RL16(edata_ptr);
-+        /** dump the extradata */
-+        for (i = 0; i < avctx->extradata_size; i++)
-+            dprintf(avctx, "[%x] ", avctx->extradata[i]);
-+        dprintf(avctx, "\n");
-+
-+    } else {
-+        ff_log_ask_for_sample(avctx, "Unknown extradata size\n");
-+        return AVERROR_INVALIDDATA;
-+    }
-+
-+    /** generic init */
-+    s->log2_frame_size = av_log2(avctx->block_align) + 4;
-+
-+    /** frame info */
-+    s->skip_frame  = 1; /** skip first frame */
-+    s->packet_loss = 1;
-+    s->len_prefix  = (s->decode_flags & 0x40);
-+
-+    if (!s->len_prefix) {
-+        ff_log_ask_for_sample(avctx, "no length prefix\n");
-+        return AVERROR_INVALIDDATA;
-+    }
-+
-+    /** get frame len */
-+    s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate,
-+                                                          3, s->decode_flags);
-+
-+    /** init previous block len */
-+    for (i = 0; i < avctx->channels; i++)
-+        s->channel[i].prev_block_len = s->samples_per_frame;
-+
-+    /** subframe info */
-+    log2_max_num_subframes       = ((s->decode_flags & 0x38) >> 3);
-+    s->max_num_subframes         = 1 << log2_max_num_subframes;
-+    if (s->max_num_subframes == 16)
-+        s->max_subframe_len_bit = 1;
-+    s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
-+
-+    num_possible_block_sizes     = log2_max_num_subframes + 1;
-+    s->min_samples_per_subframe  = s->samples_per_frame / s->max_num_subframes;
-+    s->dynamic_range_compression = (s->decode_flags & 0x80);
-+
-+    if (s->max_num_subframes > MAX_SUBFRAMES) {
-+        av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
-+               s->max_num_subframes);
-+        return AVERROR_INVALIDDATA;
-+    }
-+
-+    s->num_channels = avctx->channels;
-+
-+    /** extract lfe channel position */
-+    s->lfe_channel = -1;
-+
-+    if (channel_mask & 8) {
-+        unsigned int mask;
-+        for (mask = 1; mask < 16; mask <<= 1) {
-+            if (channel_mask & mask)
-+                ++s->lfe_channel;
-+        }
-+    }
-+
-+    if (s->num_channels < 0 || s->num_channels > WMAPRO_MAX_CHANNELS) {
-+        ff_log_ask_for_sample(avctx, "invalid number of channels\n");
-+        return AVERROR_NOTSUPP;
-+    }
-+
-+    INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
-+                    scale_huffbits, 1, 1,
-+                    scale_huffcodes, 2, 2, 616);
-+
-+    INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
-+                    scale_rl_huffbits, 1, 1,
-+                    scale_rl_huffcodes, 4, 4, 1406);
-+
-+    INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
-+                    coef0_huffbits, 1, 1,
-+                    coef0_huffcodes, 4, 4, 2108);
-+
-+    INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
-+                    coef1_huffbits, 1, 1,
-+                    coef1_huffcodes, 4, 4, 3912);
-+
-+    INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
-+                    vec4_huffbits, 1, 1,
-+                    vec4_huffcodes, 2, 2, 604);
-+
-+    INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
-+                    vec2_huffbits, 1, 1,
-+                    vec2_huffcodes, 2, 2, 562);
-+
-+    INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
-+                    vec1_huffbits, 1, 1,
-+                    vec1_huffcodes, 2, 2, 562);
-+
-+    /** calculate number of scale factor bands and their offsets
-+        for every possible block size */
-+    for (i = 0; i < num_possible_block_sizes; i++) {
-+        int subframe_len = s->samples_per_frame >> i;
-+        int x;
-+        int band = 1;
-+
-+        s->sfb_offsets[i][0] = 0;
-+
-+        for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
-+            int offset = (subframe_len * 2 * critical_freq[x])
-+                          / s->avctx->sample_rate + 2;
-+            offset &= ~3;
-+            if (offset > s->sfb_offsets[i][band - 1])
-+                s->sfb_offsets[i][band++] = offset;
-+        }
-+        s->sfb_offsets[i][band - 1] = subframe_len;
-+        s->num_sfb[i]               = band - 1;
-+    }
-+
-+
-+    /** Scale factors can be shared between blocks of different size
-+        as every block has a different scale factor band layout.
-+        The matrix sf_offsets is needed to find the correct scale factor.
-+     */
-+
-+    for (i = 0; i < num_possible_block_sizes; i++) {
-+        int b;
-+        for (b = 0; b < s->num_sfb[i]; b++) {
-+            int x;
-+            int offset = ((s->sfb_offsets[i][b]
-+                           + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
-+            for (x = 0; x < num_possible_block_sizes; x++) {
-+                int v = 0;
-+                while (s->sfb_offsets[x][v + 1] << x < offset)
-+                    ++v;
-+                s->sf_offsets[i][x][b] = v;
-+            }
-+        }
-+    }
-+
-+    /** init MDCT, FIXME: only init needed sizes */
-+    for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
-+        ff_mdct_init_backport(&s->mdct_ctx[i], BLOCK_MIN_BITS+1+i, 1,
-+                     1.0 / (1 << (BLOCK_MIN_BITS + i - 1))
-+                     / (1 << (s->bits_per_sample - 1)));
-+
-+    /** init MDCT windows: simple sinus window */
-+    for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
-+        const int n       = 1 << (WMAPRO_BLOCK_MAX_BITS - i);
-+        const int win_idx = WMAPRO_BLOCK_MAX_BITS - i - 7;
-+        ff_sine_window_init(ff_sine_windows[win_idx], n);
-+        s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
-+    }
-+
-+    /** calculate subwoofer cutoff values */
-+    for (i = 0; i < num_possible_block_sizes; i++) {
-+        int block_size = s->samples_per_frame >> i;
-+        int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1)
-+                     / s->avctx->sample_rate;
-+        s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
-+    }
-+
-+    /** calculate sine values for the decorrelation matrix */
-+    for (i = 0; i < 33; i++)
-+        sin64[i] = sin(i*M_PI / 64.0);
-+
-+    if (avctx->debug & FF_DEBUG_BITSTREAM)
-+        dump_context(s);
-+
-+    avctx->channel_layout = channel_mask;
-+    return 0;
-+}
-+
-+/**
-+ *@brief Decode the subframe length.
-+ *@param s context
-+ *@param offset sample offset in the frame
-+ *@return decoded subframe length on success, < 0 in case of an error
-+ */
-+static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
-+{
-+    int frame_len_shift = 0;
-+    int subframe_len;
-+
-+    /** no need to read from the bitstream when only one length is possible */
-+    if (offset == s->samples_per_frame - s->min_samples_per_subframe)
-+        return s->min_samples_per_subframe;
-+
-+    /** 1 bit indicates if the subframe is of maximum length */
-+    if (s->max_subframe_len_bit) {
-+        if (get_bits1(&s->gb))
-+            frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
-+    } else
-+        frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);
-+
-+    subframe_len = s->samples_per_frame >> frame_len_shift;
-+
-+    /** sanity check the length */
-+    if (subframe_len < s->min_samples_per_subframe ||
-+        subframe_len > s->samples_per_frame) {
-+        av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
-+               subframe_len);
-+        return AVERROR_INVALIDDATA;
-+    }
-+    return subframe_len;
-+}
-+
-+/**
-+ *@brief Decode how the data in the frame is split into subframes.
-+ *       Every WMA frame contains the encoded data for a fixed number of
-+ *       samples per channel. The data for every channel might be split
-+ *       into several subframes. This function will reconstruct the list of
-+ *       subframes for every channel.
-+ *
-+ *       If the subframes are not evenly split, the algorithm estimates the
-+ *       channels with the lowest number of total samples.
-+ *       Afterwards, for each of these channels a bit is read from the
-+ *       bitstream that indicates if the channel contains a subframe with the
-+ *       next subframe size that is going to be read from the bitstream or not.
-+ *       If a channel contains such a subframe, the subframe size gets added to
-+ *       the channel's subframe list.
-+ *       The algorithm repeats these steps until the frame is properly divided
-+ *       between the individual channels.
-+ *
-+ *@param s context
-+ *@return 0 on success, < 0 in case of an error
-+ */
-+static int decode_tilehdr(WMAProDecodeCtx *s)
-+{
-+    uint16_t num_samples[WMAPRO_MAX_CHANNELS];        /** sum of samples for all currently known subframes of a channel */
-+    uint8_t  contains_subframe[WMAPRO_MAX_CHANNELS];  /** flag indicating if a channel contains the current subframe */
-+    int channels_for_cur_subframe = s->num_channels;  /** number of channels that contain the current subframe */
-+    int fixed_channel_layout = 0;                     /** flag indicating that all channels use the same subframe offsets and sizes */
-+    int min_channel_len = 0;                          /** smallest sum of samples (channels with this length will be processed first) */
-+    int c;
-+
-+    /* Should never consume more than 3073 bits (256 iterations for the
-+     * while loop when always the minimum amount of 128 samples is substracted
-+     * from missing samples in the 8 channel case).
-+     * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS  + 4)
-+     */
-+
-+    /** reset tiling information */
-+    for (c = 0; c < s->num_channels; c++)
-+        s->channel[c].num_subframes = 0;
-+
-+    memset(num_samples, 0, sizeof(num_samples));
-+
-+    if (s->max_num_subframes == 1 || get_bits1(&s->gb))
-+        fixed_channel_layout = 1;
-+
-+    /** loop until the frame data is split between the subframes */
-+    do {
-+        int subframe_len;
-+
-+        /** check which channels contain the subframe */
-+        for (c = 0; c < s->num_channels; c++) {
-+            if (num_samples[c] == min_channel_len) {
-+                if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
-+                   (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
-+                    contains_subframe[c] = 1;
-+                else
-+                    contains_subframe[c] = get_bits1(&s->gb);
-+            } else
-+                contains_subframe[c] = 0;
-+        }
-+
-+        /** get subframe length, subframe_len == 0 is not allowed */
-+        if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
-+            return AVERROR_INVALIDDATA;
-+
-+        /** add subframes to the individual channels and find new min_channel_len */
-+        min_channel_len += subframe_len;
-+        for (c = 0; c < s->num_channels; c++) {
-+            WMAProChannelCtx* chan = &s->channel[c];
-+
-+            if (contains_subframe[c]) {
-+                if (chan->num_subframes >= MAX_SUBFRAMES) {
-+                    av_log(s->avctx, AV_LOG_ERROR,
-+                           "broken frame: num subframes > 31\n");
-+                    return AVERROR_INVALIDDATA;
-+                }
-+                chan->subframe_len[chan->num_subframes] = subframe_len;
-+                num_samples[c] += subframe_len;
-+                ++chan->num_subframes;
-+                if (num_samples[c] > s->samples_per_frame) {
-+                    av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
-+                           "channel len > samples_per_frame\n");
-+                    return AVERROR_INVALIDDATA;
-+                }
-+            } else if (num_samples[c] <= min_channel_len) {
-+                if (num_samples[c] < min_channel_len) {
-+                    channels_for_cur_subframe = 0;
-+                    min_channel_len = num_samples[c];
-+                }
-+                ++channels_for_cur_subframe;
-+            }
-+        }
-+    } while (min_channel_len < s->samples_per_frame);
-+
-+    for (c = 0; c < s->num_channels; c++) {
-+        int i;
-+        int offset = 0;
-+        for (i = 0; i < s->channel[c].num_subframes; i++) {
-+            dprintf(s->avctx, "frame[%i] channel[%i] subframe[%i]"
-+                    " len %i\n", s->frame_num, c, i,
-+                    s->channel[c].subframe_len[i]);
-+            s->channel[c].subframe_offset[i] = offset;
-+            offset += s->channel[c].subframe_len[i];
-+        }
-+    }
-+
-+    return 0;
-+}
-+
-+/**
-+ *@brief Calculate a decorrelation matrix from the bitstream parameters.
-+ *@param s codec context
-+ *@param chgroup channel group for which the matrix needs to be calculated
-+ */
-+static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
-+                                        WMAProChannelGrp *chgroup)
-+{
-+    int i;
-+    int offset = 0;
-+    int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
-+    memset(chgroup->decorrelation_matrix, 0, s->num_channels *
-+           s->num_channels * sizeof(*chgroup->decorrelation_matrix));
-+
-+    for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
-+        rotation_offset[i] = get_bits(&s->gb, 6);
-+
-+    for (i = 0; i < chgroup->num_channels; i++)
-+        chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
-+            get_bits1(&s->gb) ? 1.0 : -1.0;
-+
-+    for (i = 1; i < chgroup->num_channels; i++) {
-+        int x;
-+        for (x = 0; x < i; x++) {
-+            int y;
-+            for (y = 0; y < i + 1; y++) {
-+                float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
-+                float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
-+                int n = rotation_offset[offset + x];
-+                float sinv;
-+                float cosv;
-+
-+                if (n < 32) {
-+                    sinv = sin64[n];
-+                    cosv = sin64[32 - n];
-+                } else {
-+                    sinv =  sin64[64 -  n];
-+                    cosv = -sin64[n  - 32];
-+                }
-+
-+                chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
-+                                               (v1 * sinv) - (v2 * cosv);
-+                chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
-+                                               (v1 * cosv) + (v2 * sinv);
-+            }
-+        }
-+        offset += i;
-+    }
-+}
-+
-+/**
-+ *@brief Decode channel transformation parameters
-+ *@param s codec context
-+ *@return 0 in case of success, < 0 in case of bitstream errors
-+ */
-+static int decode_channel_transform(WMAProDecodeCtx* s)
-+{
-+    int i;
-+    /* should never consume more than 1921 bits for the 8 channel case
-+     * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
-+     * + MAX_CHANNELS + MAX_BANDS + 1)
-+     */
-+
-+    /** in the one channel case channel transforms are pointless */
-+    s->num_chgroups = 0;
-+    if (s->num_channels > 1) {
-+        int remaining_channels = s->channels_for_cur_subframe;
-+
-+        if (get_bits1(&s->gb)) {
-+            ff_log_ask_for_sample(s->avctx,
-+                                  "unsupported channel transform bit\n");
-+            return AVERROR_INVALIDDATA;
-+        }
-+
-+        for (s->num_chgroups = 0; remaining_channels &&
-+             s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
-+            WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
-+            float** channel_data = chgroup->channel_data;
-+            chgroup->num_channels = 0;
-+            chgroup->transform = 0;
-+
-+            /** decode channel mask */
-+            if (remaining_channels > 2) {
-+                for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+                    int channel_idx = s->channel_indexes_for_cur_subframe[i];
-+                    if (!s->channel[channel_idx].grouped
-+                        && get_bits1(&s->gb)) {
-+                        ++chgroup->num_channels;
-+                        s->channel[channel_idx].grouped = 1;
-+                        *channel_data++ = s->channel[channel_idx].coeffs;
-+                    }
-+                }
-+            } else {
-+                chgroup->num_channels = remaining_channels;
-+                for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+                    int channel_idx = s->channel_indexes_for_cur_subframe[i];
-+                    if (!s->channel[channel_idx].grouped)
-+                        *channel_data++ = s->channel[channel_idx].coeffs;
-+                    s->channel[channel_idx].grouped = 1;
-+                }
-+            }
-+
-+            /** decode transform type */
-+            if (chgroup->num_channels == 2) {
-+                if (get_bits1(&s->gb)) {
-+                    if (get_bits1(&s->gb)) {
-+                        ff_log_ask_for_sample(s->avctx,
-+                                              "unsupported channel transform type\n");
-+                    }
-+                } else {
-+                    chgroup->transform = 1;
-+                    if (s->num_channels == 2) {
-+                        chgroup->decorrelation_matrix[0] =  1.0;
-+                        chgroup->decorrelation_matrix[1] = -1.0;
-+                        chgroup->decorrelation_matrix[2] =  1.0;
-+                        chgroup->decorrelation_matrix[3] =  1.0;
-+                    } else {
-+                        /** cos(pi/4) */
-+                        chgroup->decorrelation_matrix[0] =  0.70703125;
-+                        chgroup->decorrelation_matrix[1] = -0.70703125;
-+                        chgroup->decorrelation_matrix[2] =  0.70703125;
-+                        chgroup->decorrelation_matrix[3] =  0.70703125;
-+                    }
-+                }
-+            } else if (chgroup->num_channels > 2) {
-+                if (get_bits1(&s->gb)) {
-+                    chgroup->transform = 1;
-+                    if (get_bits1(&s->gb)) {
-+                        decode_decorrelation_matrix(s, chgroup);
-+                    } else {
-+                        /** FIXME: more than 6 coupled channels not supported */
-+                        if (chgroup->num_channels > 6) {
-+                            ff_log_ask_for_sample(s->avctx,
-+                                                  "coupled channels > 6\n");
-+                        } else {
-+                            memcpy(chgroup->decorrelation_matrix,
-+                                   default_decorrelation[chgroup->num_channels],
-+                                   chgroup->num_channels * chgroup->num_channels *
-+                                   sizeof(*chgroup->decorrelation_matrix));
-+                        }
-+                    }
-+                }
-+            }
-+
-+            /** decode transform on / off */
-+            if (chgroup->transform) {
-+                if (!get_bits1(&s->gb)) {
-+                    int i;
-+                    /** transform can be enabled for individual bands */
-+                    for (i = 0; i < s->num_bands; i++) {
-+                        chgroup->transform_band[i] = get_bits1(&s->gb);
-+                    }
-+                } else {
-+                    memset(chgroup->transform_band, 1, s->num_bands);
-+                }
-+            }
-+            remaining_channels -= chgroup->num_channels;
-+        }
-+    }
-+    return 0;
-+}
-+
-+/**
-+ *@brief Extract the coefficients from the bitstream.
-+ *@param s codec context
-+ *@param c current channel number
-+ *@return 0 on success, < 0 in case of bitstream errors
-+ */
-+static int decode_coeffs(WMAProDecodeCtx *s, int c)
-+{
-+    /* Integers 0..15 as single-precision floats.  The table saves a
-+       costly int to float conversion, and storing the values as
-+       integers allows fast sign-flipping. */
-+    static const int fval_tab[16] = {
-+        0x00000000, 0x3f800000, 0x40000000, 0x40400000,
-+        0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
-+        0x41000000, 0x41100000, 0x41200000, 0x41300000,
-+        0x41400000, 0x41500000, 0x41600000, 0x41700000,
-+    };
-+    int vlctable;
-+    VLC* vlc;
-+    WMAProChannelCtx* ci = &s->channel[c];
-+    int rl_mode = 0;
-+    int cur_coeff = 0;
-+    int num_zeros = 0;
-+    const uint16_t* run;
-+    const uint16_t* level;
-+
-+    dprintf(s->avctx, "decode coefficients for channel %i\n", c);
-+
-+    vlctable = get_bits1(&s->gb);
-+    vlc = &coef_vlc[vlctable];
-+
-+    if (vlctable) {
-+        run = coef1_run;
-+        level = coef1_level;
-+    } else {
-+        run = coef0_run;
-+        level = coef0_level;
-+    }
-+
-+    /** decode vector coefficients (consumes up to 167 bits per iteration for
-+      4 vector coded large values) */
-+    while (!rl_mode && cur_coeff + 3 < s->subframe_len) {
-+        int vals[4];
-+        int i;
-+        unsigned int idx;
-+
-+        idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
-+
-+        if (idx == HUFF_VEC4_SIZE - 1) {
-+            for (i = 0; i < 4; i += 2) {
-+                idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
-+                if (idx == HUFF_VEC2_SIZE - 1) {
-+                    int v0, v1;
-+                    v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
-+                    if (v0 == HUFF_VEC1_SIZE - 1)
-+                        v0 += ff_wma_get_large_val(&s->gb);
-+                    v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
-+                    if (v1 == HUFF_VEC1_SIZE - 1)
-+                        v1 += ff_wma_get_large_val(&s->gb);
-+                    ((float*)vals)[i  ] = v0;
-+                    ((float*)vals)[i+1] = v1;
-+                } else {
-+                    vals[i]   = fval_tab[symbol_to_vec2[idx] >> 4 ];
-+                    vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
-+                }
-+            }
-+        } else {
-+            vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12      ];
-+            vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
-+            vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
-+            vals[3] = fval_tab[ symbol_to_vec4[idx]       & 0xF];
-+        }
-+
-+        /** decode sign */
-+        for (i = 0; i < 4; i++) {
-+            if (vals[i]) {
-+                int sign = get_bits1(&s->gb) - 1;
-+                *(uint32_t*)&ci->coeffs[cur_coeff] = vals[i] ^ sign<<31;
-+                num_zeros = 0;
-+            } else {
-+                ci->coeffs[cur_coeff] = 0;
-+                /** switch to run level mode when subframe_len / 128 zeros
-+                    were found in a row */
-+                rl_mode |= (++num_zeros > s->subframe_len >> 8);
-+            }
-+            ++cur_coeff;
-+        }
-+    }
-+
-+    /** decode run level coded coefficients */
-+    if (rl_mode) {
-+        memset(&ci->coeffs[cur_coeff], 0,
-+               sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
-+        if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
-+                                    level, run, 1, ci->coeffs,
-+                                    cur_coeff, s->subframe_len,
-+                                    s->subframe_len, s->esc_len, 0))
-+            return AVERROR_INVALIDDATA;
-+    }
-+
-+    return 0;
-+}
-+
-+/**
-+ *@brief Extract scale factors from the bitstream.
-+ *@param s codec context
-+ *@return 0 on success, < 0 in case of bitstream errors
-+ */
-+static int decode_scale_factors(WMAProDecodeCtx* s)
-+{
-+    int i;
-+
-+    /** should never consume more than 5344 bits
-+     *  MAX_CHANNELS * (1 +  MAX_BANDS * 23)
-+     */
-+
-+    for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+        int c = s->channel_indexes_for_cur_subframe[i];
-+        int* sf;
-+        int* sf_end;
-+        s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
-+        sf_end = s->channel[c].scale_factors + s->num_bands;
-+
-+        /** resample scale factors for the new block size
-+         *  as the scale factors might need to be resampled several times
-+         *  before some  new values are transmitted, a backup of the last
-+         *  transmitted scale factors is kept in saved_scale_factors
-+         */
-+        if (s->channel[c].reuse_sf) {
-+            const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
-+            int b;
-+            for (b = 0; b < s->num_bands; b++)
-+                s->channel[c].scale_factors[b] =
-+                    s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
-+        }
-+
-+        if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
-+
-+            if (!s->channel[c].reuse_sf) {
-+                int val;
-+                /** decode DPCM coded scale factors */
-+                s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
-+                val = 45 / s->channel[c].scale_factor_step;
-+                for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
-+                    val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
-+                    *sf = val;
-+                }
-+            } else {
-+                int i;
-+                /** run level decode differences to the resampled factors */
-+                for (i = 0; i < s->num_bands; i++) {
-+                    int idx;
-+                    int skip;
-+                    int val;
-+                    int sign;
-+
-+                    idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
-+
-+                    if (!idx) {
-+                        uint32_t code = get_bits(&s->gb, 14);
-+                        val  =  code >> 6;
-+                        sign = (code & 1) - 1;
-+                        skip = (code & 0x3f) >> 1;
-+                    } else if (idx == 1) {
-+                        break;
-+                    } else {
-+                        skip = scale_rl_run[idx];
-+                        val  = scale_rl_level[idx];
-+                        sign = get_bits1(&s->gb)-1;
-+                    }
-+
-+                    i += skip;
-+                    if (i >= s->num_bands) {
-+                        av_log(s->avctx, AV_LOG_ERROR,
-+                               "invalid scale factor coding\n");
-+                        return AVERROR_INVALIDDATA;
-+                    }
-+                    s->channel[c].scale_factors[i] += (val ^ sign) - sign;
-+                }
-+            }
-+            /** swap buffers */
-+            s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
-+            s->channel[c].table_idx = s->table_idx;
-+            s->channel[c].reuse_sf  = 1;
-+        }
-+
-+        /** calculate new scale factor maximum */
-+        s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
-+        for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
-+            s->channel[c].max_scale_factor =
-+                FFMAX(s->channel[c].max_scale_factor, *sf);
-+        }
-+
-+    }
-+    return 0;
-+}
-+
-+/**
-+ *@brief Reconstruct the individual channel data.
-+ *@param s codec context
-+ */
-+static void inverse_channel_transform(WMAProDecodeCtx *s)
-+{
-+    int i;
-+
-+    for (i = 0; i < s->num_chgroups; i++) {
-+        if (s->chgroup[i].transform) {
-+            float data[WMAPRO_MAX_CHANNELS];
-+            const int num_channels = s->chgroup[i].num_channels;
-+            float** ch_data = s->chgroup[i].channel_data;
-+            float** ch_end = ch_data + num_channels;
-+            const int8_t* tb = s->chgroup[i].transform_band;
-+            int16_t* sfb;
-+
-+            /** multichannel decorrelation */
-+            for (sfb = s->cur_sfb_offsets;
-+                 sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
-+                int y;
-+                if (*tb++ == 1) {
-+                    /** multiply values with the decorrelation_matrix */
-+                    for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
-+                        const float* mat = s->chgroup[i].decorrelation_matrix;
-+                        const float* data_end = data + num_channels;
-+                        float* data_ptr = data;
-+                        float** ch;
-+
-+                        for (ch = ch_data; ch < ch_end; ch++)
-+                            *data_ptr++ = (*ch)[y];
-+
-+                        for (ch = ch_data; ch < ch_end; ch++) {
-+                            float sum = 0;
-+                            data_ptr = data;
-+                            while (data_ptr < data_end)
-+                                sum += *data_ptr++ * *mat++;
-+
-+                            (*ch)[y] = sum;
-+                        }
-+                    }
-+                } else if (s->num_channels == 2) {
-+                    int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
-+                    s->dsp.vector_fmul_scalar(ch_data[0] + sfb[0],
-+                                              ch_data[0] + sfb[0],
-+                                              181.0 / 128, len);
-+                    s->dsp.vector_fmul_scalar(ch_data[1] + sfb[0],
-+                                              ch_data[1] + sfb[0],
-+                                              181.0 / 128, len);
-+                }
-+            }
-+        }
-+    }
-+}
-+
-+/**
-+ *@brief Apply sine window and reconstruct the output buffer.
-+ *@param s codec context
-+ */
-+static void wmapro_window(WMAProDecodeCtx *s)
-+{
-+    int i;
-+    for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+        int c = s->channel_indexes_for_cur_subframe[i];
-+        float* window;
-+        int winlen = s->channel[c].prev_block_len;
-+        float* start = s->channel[c].coeffs - (winlen >> 1);
-+
-+        if (s->subframe_len < winlen) {
-+            start += (winlen - s->subframe_len) >> 1;
-+            winlen = s->subframe_len;
-+        }
-+
-+        window = s->windows[av_log2(winlen) - BLOCK_MIN_BITS];
-+
-+        winlen >>= 1;
-+
-+        s->dsp.vector_fmul_window(start, start, start + winlen,
-+                                  window, 0, winlen);
-+
-+        s->channel[c].prev_block_len = s->subframe_len;
-+    }
-+}
-+
-+/**
-+ *@brief Decode a single subframe (block).
-+ *@param s codec context
-+ *@return 0 on success, < 0 when decoding failed
-+ */
-+static int decode_subframe(WMAProDecodeCtx *s)
-+{
-+    int offset = s->samples_per_frame;
-+    int subframe_len = s->samples_per_frame;
-+    int i;
-+    int total_samples   = s->samples_per_frame * s->num_channels;
-+    int transmit_coeffs = 0;
-+    int cur_subwoofer_cutoff;
-+
-+    s->subframe_offset = get_bits_count(&s->gb);
-+
-+    /** reset channel context and find the next block offset and size
-+        == the next block of the channel with the smallest number of
-+        decoded samples
-+    */
-+    for (i = 0; i < s->num_channels; i++) {
-+        s->channel[i].grouped = 0;
-+        if (offset > s->channel[i].decoded_samples) {
-+            offset = s->channel[i].decoded_samples;
-+            subframe_len =
-+                s->channel[i].subframe_len[s->channel[i].cur_subframe];
-+        }
-+    }
-+
-+    dprintf(s->avctx,
-+            "processing subframe with offset %i len %i\n", offset, subframe_len);
-+
-+    /** get a list of all channels that contain the estimated block */
-+    s->channels_for_cur_subframe = 0;
-+    for (i = 0; i < s->num_channels; i++) {
-+        const int cur_subframe = s->channel[i].cur_subframe;
-+        /** substract already processed samples */
-+        total_samples -= s->channel[i].decoded_samples;
-+
-+        /** and count if there are multiple subframes that match our profile */
-+        if (offset == s->channel[i].decoded_samples &&
-+            subframe_len == s->channel[i].subframe_len[cur_subframe]) {
-+            total_samples -= s->channel[i].subframe_len[cur_subframe];
-+            s->channel[i].decoded_samples +=
-+                s->channel[i].subframe_len[cur_subframe];
-+            s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
-+            ++s->channels_for_cur_subframe;
-+        }
-+    }
-+
-+    /** check if the frame will be complete after processing the
-+        estimated block */
-+    if (!total_samples)
-+        s->parsed_all_subframes = 1;
-+
-+
-+    dprintf(s->avctx, "subframe is part of %i channels\n",
-+            s->channels_for_cur_subframe);
-+
-+    /** calculate number of scale factor bands and their offsets */
-+    s->table_idx         = av_log2(s->samples_per_frame/subframe_len);
-+    s->num_bands         = s->num_sfb[s->table_idx];
-+    s->cur_sfb_offsets   = s->sfb_offsets[s->table_idx];
-+    cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
-+
-+    /** configure the decoder for the current subframe */
-+    for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+        int c = s->channel_indexes_for_cur_subframe[i];
-+
-+        s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1)
-+                                                  + offset];
-+    }
-+
-+    s->subframe_len = subframe_len;
-+    s->esc_len = av_log2(s->subframe_len - 1) + 1;
-+
-+    /** skip extended header if any */
-+    if (get_bits1(&s->gb)) {
-+        int num_fill_bits;
-+        if (!(num_fill_bits = get_bits(&s->gb, 2))) {
-+            int len = get_bits(&s->gb, 4);
-+            num_fill_bits = get_bits(&s->gb, len) + 1;
-+        }
-+
-+        if (num_fill_bits >= 0) {
-+            if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
-+                av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
-+                return AVERROR_INVALIDDATA;
-+            }
-+
-+            skip_bits_long(&s->gb, num_fill_bits);
-+        }
-+    }
-+
-+    /** no idea for what the following bit is used */
-+    if (get_bits1(&s->gb)) {
-+        ff_log_ask_for_sample(s->avctx, "reserved bit set\n");
-+        return AVERROR_INVALIDDATA;
-+    }
-+
-+
-+    if (decode_channel_transform(s) < 0)
-+        return AVERROR_INVALIDDATA;
-+
-+
-+    for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+        int c = s->channel_indexes_for_cur_subframe[i];
-+        if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
-+            transmit_coeffs = 1;
-+    }
-+
-+    if (transmit_coeffs) {
-+        int step;
-+        int quant_step = 90 * s->bits_per_sample >> 4;
-+        if ((get_bits1(&s->gb))) {
-+            /** FIXME: might change run level mode decision */
-+            ff_log_ask_for_sample(s->avctx, "unsupported quant step coding\n");
-+            return AVERROR_INVALIDDATA;
-+        }
-+        /** decode quantization step */
-+        step = get_sbits(&s->gb, 6);
-+        quant_step += step;
-+        if (step == -32 || step == 31) {
-+            const int sign = (step == 31) - 1;
-+            int quant = 0;
-+            while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
-+                   (step = get_bits(&s->gb, 5)) == 31) {
-+                quant += 31;
-+            }
-+            quant_step += ((quant + step) ^ sign) - sign;
-+        }
-+        if (quant_step < 0) {
-+            av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
-+        }
-+
-+        /** decode quantization step modifiers for every channel */
-+
-+        if (s->channels_for_cur_subframe == 1) {
-+            s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
-+        } else {
-+            int modifier_len = get_bits(&s->gb, 3);
-+            for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+                int c = s->channel_indexes_for_cur_subframe[i];
-+                s->channel[c].quant_step = quant_step;
-+                if (get_bits1(&s->gb)) {
-+                    if (modifier_len) {
-+                        s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
-+                    } else
-+                        ++s->channel[c].quant_step;
-+                }
-+            }
-+        }
-+
-+        /** decode scale factors */
-+        if (decode_scale_factors(s) < 0)
-+            return AVERROR_INVALIDDATA;
-+    }
-+
-+    dprintf(s->avctx, "BITSTREAM: subframe header length was %i\n",
-+            get_bits_count(&s->gb) - s->subframe_offset);
-+
-+    /** parse coefficients */
-+    for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+        int c = s->channel_indexes_for_cur_subframe[i];
-+        if (s->channel[c].transmit_coefs &&
-+            get_bits_count(&s->gb) < s->num_saved_bits) {
-+            decode_coeffs(s, c);
-+        } else
-+            memset(s->channel[c].coeffs, 0,
-+                   sizeof(*s->channel[c].coeffs) * subframe_len);
-+    }
-+
-+    dprintf(s->avctx, "BITSTREAM: subframe length was %i\n",
-+            get_bits_count(&s->gb) - s->subframe_offset);
-+
-+    if (transmit_coeffs) {
-+        /** reconstruct the per channel data */
-+        inverse_channel_transform(s);
-+        for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+            int c = s->channel_indexes_for_cur_subframe[i];
-+            const int* sf = s->channel[c].scale_factors;
-+            int b;
-+
-+            if (c == s->lfe_channel)
-+                memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
-+                       (subframe_len - cur_subwoofer_cutoff));
-+
-+            /** inverse quantization and rescaling */
-+            for (b = 0; b < s->num_bands; b++) {
-+                const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
-+                const int exp = s->channel[c].quant_step -
-+                            (s->channel[c].max_scale_factor - *sf++) *
-+                            s->channel[c].scale_factor_step;
-+                const float quant = pow(10.0, exp / 20.0);
-+                int start = s->cur_sfb_offsets[b];
-+                s->dsp.vector_fmul_scalar(s->tmp + start,
-+                                          s->channel[c].coeffs + start,
-+                                          quant, end - start);
-+            }
-+
-+            /** apply imdct (ff_imdct_half == DCTIV with reverse) */
-+            ff_imdct_half(&s->mdct_ctx[av_log2(subframe_len) - BLOCK_MIN_BITS],
-+                          s->channel[c].coeffs, s->tmp);
-+        }
-+    }
-+
-+    /** window and overlapp-add */
-+    wmapro_window(s);
-+
-+    /** handled one subframe */
-+    for (i = 0; i < s->channels_for_cur_subframe; i++) {
-+        int c = s->channel_indexes_for_cur_subframe[i];
-+        if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
-+            av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
-+            return AVERROR_INVALIDDATA;
-+        }
-+        ++s->channel[c].cur_subframe;
-+    }
-+
-+    return 0;
-+}
-+
-+/**
-+ *@brief Decode one WMA frame.
-+ *@param s codec context
-+ *@return 0 if the trailer bit indicates that this is the last frame,
-+ *        1 if there are additional frames
-+ */
-+static int decode_frame(WMAProDecodeCtx *s)
-+{
-+    GetBitContext* gb = &s->gb;
-+    int more_frames = 0;
-+    int len = 0;
-+    int i;
-+
-+    /** check for potential output buffer overflow */
-+    if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) {
-+        /** return an error if no frame could be decoded at all */
-+        av_log(s->avctx, AV_LOG_ERROR,
-+               "not enough space for the output samples\n");
-+        s->packet_loss = 1;
-+        return 0;
-+    }
-+
-+    /** get frame length */
-+    if (s->len_prefix)
-+        len = get_bits(gb, s->log2_frame_size);
-+
-+    dprintf(s->avctx, "decoding frame with length %x\n", len);
-+
-+    /** decode tile information */
-+    if (decode_tilehdr(s)) {
-+        s->packet_loss = 1;
-+        return 0;
-+    }
-+
-+    /** read postproc transform */
-+    if (s->num_channels > 1 && get_bits1(gb)) {
-+        ff_log_ask_for_sample(s->avctx, "Unsupported postproc transform found\n");
-+        s->packet_loss = 1;
-+        return 0;
-+    }
-+
-+    /** read drc info */
-+    if (s->dynamic_range_compression) {
-+        s->drc_gain = get_bits(gb, 8);
-+        dprintf(s->avctx, "drc_gain %i\n", s->drc_gain);
-+    }
-+
-+    /** no idea what these are for, might be the number of samples
-+        that need to be skipped at the beginning or end of a stream */
-+    if (get_bits1(gb)) {
-+        int skip;
-+
-+        /** usually true for the first frame */
-+        if (get_bits1(gb)) {
-+            skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
-+            dprintf(s->avctx, "start skip: %i\n", skip);
-+        }
-+
-+        /** sometimes true for the last frame */
-+        if (get_bits1(gb)) {
-+            skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
-+            dprintf(s->avctx, "end skip: %i\n", skip);
-+        }
-+
-+    }
-+
-+    dprintf(s->avctx, "BITSTREAM: frame header length was %i\n",
-+            get_bits_count(gb) - s->frame_offset);
-+
-+    /** reset subframe states */
-+    s->parsed_all_subframes = 0;
-+    for (i = 0; i < s->num_channels; i++) {
-+        s->channel[i].decoded_samples = 0;
-+        s->channel[i].cur_subframe    = 0;
-+        s->channel[i].reuse_sf        = 0;
-+    }
-+
-+    /** decode all subframes */
-+    while (!s->parsed_all_subframes) {
-+        if (decode_subframe(s) < 0) {
-+            s->packet_loss = 1;
-+            return 0;
-+        }
-+    }
-+
-+    /** interleave samples and write them to the output buffer */
-+    for (i = 0; i < s->num_channels; i++) {
-+        float* ptr;
-+        int incr = s->num_channels;
-+        float* iptr = s->channel[i].out;
-+        int x;
-+
-+        ptr = s->samples + i;
-+
-+        for (x = 0; x < s->samples_per_frame; x++) {
-+            *ptr = av_clipf(*iptr++, -1.0, 32767.0 / 32768.0);
-+            ptr += incr;
-+        }
-+
-+        /** reuse second half of the IMDCT output for the next frame */
-+        memcpy(&s->channel[i].out[0],
-+               &s->channel[i].out[s->samples_per_frame],
-+               s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
-+    }
-+
-+    if (s->skip_frame) {
-+        s->skip_frame = 0;
-+    } else
-+        s->samples += s->num_channels * s->samples_per_frame;
-+
-+    if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
-+        /** FIXME: not sure if this is always an error */
-+        av_log(s->avctx, AV_LOG_ERROR, "frame[%i] would have to skip %i bits\n",
-+               s->frame_num, len - (get_bits_count(gb) - s->frame_offset) - 1);
-+        s->packet_loss = 1;
-+        return 0;
-+    }
-+
-+    /** skip the rest of the frame data */
-+    skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
-+
-+    /** decode trailer bit */
-+    more_frames = get_bits1(gb);
-+
-+    ++s->frame_num;
-+    return more_frames;
-+}
-+
-+/**
-+ *@brief Calculate remaining input buffer length.
-+ *@param s codec context
-+ *@param gb bitstream reader context
-+ *@return remaining size in bits
-+ */
-+static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb)
-+{
-+    return s->buf_bit_size - get_bits_count(gb);
-+}
-+
-+/**
-+ *@brief Fill the bit reservoir with a (partial) frame.
-+ *@param s codec context
-+ *@param gb bitstream reader context
-+ *@param len length of the partial frame
-+ *@param append decides wether to reset the buffer or not
-+ */
-+static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
-+                      int append)
-+{
-+    int buflen;
-+
-+    /** when the frame data does not need to be concatenated, the input buffer
-+        is resetted and additional bits from the previous frame are copyed
-+        and skipped later so that a fast byte copy is possible */
-+
-+    if (!append) {
-+        s->frame_offset = get_bits_count(gb) & 7;
-+        s->num_saved_bits = s->frame_offset;
-+        init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
-+    }
-+
-+    buflen = (s->num_saved_bits + len + 8) >> 3;
-+
-+    if (len <= 0 || buflen > MAX_FRAMESIZE) {
-+        ff_log_ask_for_sample(s->avctx, "input buffer too small\n");
-+        s->packet_loss = 1;
-+        return;
-+    }
-+
-+    s->num_saved_bits += len;
-+    if (!append) {
-+        ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
-+                     s->num_saved_bits);
-+    } else {
-+        int align = 8 - (get_bits_count(gb) & 7);
-+        align = FFMIN(align, len);
-+        put_bits(&s->pb, align, get_bits(gb, align));
-+        len -= align;
-+        ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
-+    }
-+    skip_bits_long(gb, len);
-+
-+    {
-+        PutBitContext tmp = s->pb;
-+        flush_put_bits(&tmp);
-+    }
-+
-+    init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
-+    skip_bits(&s->gb, s->frame_offset);
-+}
-+
-+/**
-+ *@brief Decode a single WMA packet.
-+ *@param avctx codec context
-+ *@param data the output buffer
-+ *@param data_size number of bytes that were written to the output buffer
-+ *@param buf input buffer
-+ *@param buf_size input buffer length 
-+ *@return number of bytes that were read from the input buffer
-+ */
-+static int decode_packet(AVCodecContext *avctx,
-+                         void *data, int *data_size,
-+                         const uint8_t *buf, int buf_size)
-+{
-+    WMAProDecodeCtx *s = avctx->priv_data;
-+    GetBitContext* gb  = &s->pgb;
-+    int num_bits_prev_frame;
-+    int packet_sequence_number;
-+
-+    s->samples       = data;
-+    s->samples_end   = (float*)((int8_t*)data + *data_size);
-+    *data_size = 0;
-+
-+    if (s->packet_done || s->packet_loss) {
-+        s->packet_done = 0;
-+        s->buf_bit_size = buf_size << 3;
-+
-+        /** sanity check for the buffer length */
-+        if (buf_size < avctx->block_align)
-+            return 0;
-+
-+        buf_size = avctx->block_align;
-+
-+        /** parse packet header */
-+        init_get_bits(gb, buf, s->buf_bit_size);
-+        packet_sequence_number = get_bits(gb, 4);
-+        skip_bits(gb, 2);
-+
-+        /** get number of bits that need to be added to the previous frame */
-+        num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
-+        dprintf(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
-+                num_bits_prev_frame);
-+
-+        /** check for packet loss */
-+        if (!s->packet_loss &&
-+            ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
-+            s->packet_loss = 1;
-+            av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
-+                   s->packet_sequence_number, packet_sequence_number);
-+        }
-+        s->packet_sequence_number = packet_sequence_number;
-+
-+        if (num_bits_prev_frame > 0) {
-+            /** append the previous frame data to the remaining data from the
-+                previous packet to create a full frame */
-+            save_bits(s, gb, num_bits_prev_frame, 1);
-+            dprintf(avctx, "accumulated %x bits of frame data\n",
-+                    s->num_saved_bits - s->frame_offset);
-+
-+            /** decode the cross packet frame if it is valid */
-+            if (!s->packet_loss)
-+                decode_frame(s);
-+        } else if (s->num_saved_bits - s->frame_offset) {
-+            dprintf(avctx, "ignoring %x previously saved bits\n",
-+                    s->num_saved_bits - s->frame_offset);
-+        }
-+
-+        s->packet_loss = 0;
-+
-+    } else {
-+        int frame_size;
-+        s->buf_bit_size = buf_size << 3;
-+        init_get_bits(gb, buf, s->buf_bit_size);
-+        skip_bits(gb, s->packet_offset);
-+        if (remaining_bits(s, gb) > s->log2_frame_size &&
-+            (frame_size = show_bits(gb, s->log2_frame_size)) &&
-+            frame_size <= remaining_bits(s, gb)) {
-+            save_bits(s, gb, frame_size, 0);
-+            s->packet_done = !decode_frame(s);
-+        } else
-+            s->packet_done = 1;
-+    }
-+
-+    if (s->packet_done && !s->packet_loss &&
-+        remaining_bits(s, gb) > 0) {
-+        /** save the rest of the data so that it can be decoded
-+            with the next packet */
-+        save_bits(s, gb, remaining_bits(s, gb), 0);
-+    }
-+
-+    *data_size = (int8_t *)s->samples - (int8_t *)data;
-+    s->packet_offset = get_bits_count(gb) & 7;
-+
-+    return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3;
-+}
-+
-+/**
-+ *@brief Clear decoder buffers (for seeking).
-+ *@param avctx codec context
-+ */
-+static void flush(AVCodecContext *avctx)
-+{
-+    WMAProDecodeCtx *s = avctx->priv_data;
-+    int i;
-+    /** reset output buffer as a part of it is used during the windowing of a
-+        new frame */
-+    for (i = 0; i < s->num_channels; i++)
-+        memset(s->channel[i].out, 0, s->samples_per_frame *
-+               sizeof(*s->channel[i].out));
-+    s->packet_loss = 1;
-+}
-+
-+
-+/**
-+ *@brief wmapro decoder
-+ */
-+AVCodec wmapro_decoder = {
-+    "wmapro",
-+    CODEC_TYPE_AUDIO,
-+    CODEC_ID_WMAPRO,
-+    sizeof(WMAProDecodeCtx),
-+    decode_init,
-+    NULL,
-+    decode_end,
-+    decode_packet,
-+    .flush= flush,
-+    .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
-+};

-- 
FFmpeg packaging



More information about the pkg-multimedia-commits mailing list