[SCM] libav/experimental: added completely new mpeg audio decoder (integer only, free format support, lsf/mpeg25 support, high/low precision support, simpler code)

siretart at users.alioth.debian.org siretart at users.alioth.debian.org
Sun Jun 30 15:30:01 UTC 2013


The following commit has been merged in the experimental branch:
commit 239c2f4cd0a488617d2a49e0c317748dd3f8fddc
Author: Fabrice Bellard <fabrice at bellard.org>
Date:   Sat Sep 15 22:40:28 2001 +0000

    added completely new mpeg audio decoder (integer only, free format support, lsf/mpeg25 support, high/low precision support, simpler code)
    
    
    Originally committed as revision 117 to svn://svn.ffmpeg.org/ffmpeg/trunk

diff --git a/libavcodec/mpegaudiodec.c b/libavcodec/mpegaudiodec.c
index f3fa90a..ca610d6 100644
--- a/libavcodec/mpegaudiodec.c
+++ b/libavcodec/mpegaudiodec.c
@@ -16,76 +16,934 @@
  * along with this program; if not, write to the Free Software
  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  */
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
+//#define DEBUG
 #include "avcodec.h"
-#include "mpglib/mpg123.h"
+#include <math.h>
+#include "mpegaudio.h"
 
 /*
- * TODO: 
- *  - add free format
- *  - do not rely anymore on mpglib (first step: implement dct64 and decoding filter)
+ * TODO:
+ *  - in low precision mode, use more 16 bit multiplies in synth filter
+ *  - test lsf / mpeg25 extensively.
  */
 
+/* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
+   audio decoder */
+//#define USE_HIGHPRECISION
+
+#ifdef USE_HIGHPRECISION
+#define FRAC_BITS   23   /* fractional bits for sb_samples and dct */
+#define WFRAC_BITS  16   /* fractional bits for window */
+#else
+#define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
+#define WFRAC_BITS  14   /* fractional bits for window */
+#endif
+
+#define FRAC_ONE    (1 << FRAC_BITS)
+
+#define MULL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS)
+#define MUL64(a,b) ((INT64)(a) * (INT64)(b))
+#define FIX(a)   ((int)((a) * FRAC_ONE))
+/* WARNING: only correct for posititive numbers */
+#define FIXR(a)   ((int)((a) * FRAC_ONE + 0.5))
+#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
+
+#if FRAC_BITS <= 15
+typedef INT16 MPA_INT;
+#else
+typedef INT32 MPA_INT;
+#endif
+
+/****************/
+
 #define HEADER_SIZE 4
 #define BACKSTEP_SIZE 512
 
 typedef struct MPADecodeContext {
-    struct mpstr mpstr;
-    UINT8 inbuf1[2][MAXFRAMESIZE + BACKSTEP_SIZE];	/* input buffer */
+    UINT8 inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE];	/* input buffer */
     int inbuf_index;
     UINT8 *inbuf_ptr, *inbuf;
     int frame_size;
+    int free_format_frame_size; /* frame size in case of free format
+                                   (zero if currently unknown) */
+    /* next header (used in free format parsing) */
+    UINT32 free_format_next_header; 
     int error_protection;
     int layer;
     int sample_rate;
+    int sample_rate_index; /* between 0 and 8 */
     int bit_rate;
     int old_frame_size;
     GetBitContext gb;
+    int nb_channels;
+    int mode;
+    int mode_ext;
+    int lsf;
+    MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2];
+    int synth_buf_offset[MPA_MAX_CHANNELS];
+    INT32 sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT];
+    INT32 mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
+#ifdef DEBUG
+    int frame_count;
+#endif
 } MPADecodeContext;
 
-/* XXX: suppress that mess */
-struct mpstr *gmp;
-GetBitContext *gmp_gb;
-static MPADecodeContext *gmp_s;
+/* layer 3 "granule" */
+typedef struct GranuleDef {
+    UINT8 scfsi;
+    int part2_3_length;
+    int big_values;
+    int global_gain;
+    int scalefac_compress;
+    UINT8 block_type;
+    UINT8 switch_point;
+    int table_select[3];
+    int subblock_gain[3];
+    UINT8 scalefac_scale;
+    UINT8 count1table_select;
+    int region_size[3]; /* number of huffman codes in each region */
+    int preflag;
+    int short_start, long_end; /* long/short band indexes */
+    UINT8 scale_factors[40];
+    INT32 sb_hybrid[SBLIMIT * 18]; /* 576 samples */
+} GranuleDef;
 
-/* XXX: merge constants with encoder */
-static const unsigned short mp_bitrate_tab[2][3][15] = {
-    { {0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448 },
-      {0, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384 },
-      {0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320 } },
-    { {0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256},
-      {0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160},
-      {0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160}
-    }
+#define MODE_EXT_MS_STEREO 2
+#define MODE_EXT_I_STEREO  1
+
+/* layer 3 huffman tables */
+typedef struct HuffTable {
+    int xsize;
+    const UINT8 *bits;
+    const UINT16 *codes;
+} HuffTable;
+
+#include "mpegaudiodectab.h"
+
+/* vlc structure for decoding layer 3 huffman tables */
+static VLC huff_vlc[16]; 
+static UINT8 *huff_code_table[16];
+static VLC huff_quad_vlc[2];
+/* computed from band_size_long */
+static UINT16 band_index_long[9][23];
+/* XXX: free when all decoders are closed */
+#define TABLE_4_3_SIZE (8191 + 16)
+static UINT8  *table_4_3_exp;
+#if FRAC_BITS <= 15
+static UINT16 *table_4_3_value;
+#else
+static UINT32 *table_4_3_value;
+#endif
+/* intensity stereo coef table */
+static INT32 is_table[2][16];
+static INT32 is_table_lsf[2][2][16];
+static INT32 csa_table[8][2];
+static INT32 mdct_win[8][36];
+
+/* lower 2 bits: modulo 3, higher bits: shift */
+static UINT16 scale_factor_modshift[64];
+/* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
+static INT32 scale_factor_mult[15][3];
+/* mult table for layer 2 group quantization */
+
+#define SCALE_GEN(v) \
+{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
+
+static INT32 scale_factor_mult2[3][3] = {
+    SCALE_GEN(1.0 / 3.0), /* 3 steps */
+    SCALE_GEN(1.0 / 5.0), /* 5 steps */
+    SCALE_GEN(1.0 / 9.0), /* 9 steps */
+};
+
+/* 2^(n/4) */
+static UINT32 scale_factor_mult3[4] = {
+    FIXR(1.0),
+    FIXR(1.18920711500272106671),
+    FIXR(1.41421356237309504880),
+    FIXR(1.68179283050742908605),
 };
 
-static unsigned short mp_freq_tab[3] = { 44100, 48000, 32000 };
+static MPA_INT window[512];
+    
+/* layer 1 unscaling */
+/* n = number of bits of the mantissa minus 1 */
+static inline int l1_unscale(int n, int mant, int scale_factor)
+{
+    int shift, mod;
+    INT64 val;
+
+    shift = scale_factor_modshift[scale_factor];
+    mod = shift & 3;
+    shift >>= 2;
+    val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
+    shift += n;
+    return (int)((val + (1 << (shift - 1))) >> shift);
+}
+
+static inline int l2_unscale_group(int steps, int mant, int scale_factor)
+{
+    int shift, mod, val;
+
+    shift = scale_factor_modshift[scale_factor];
+    mod = shift & 3;
+    shift >>= 2;
+    /* XXX: store the result directly */
+    val = (2 * (mant - (steps >> 1))) * scale_factor_mult2[steps >> 2][mod];
+    return (val + (1 << (shift - 1))) >> shift;
+}
+
+/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
+static inline int l3_unscale(int value, int exponent)
+{
+#if FRAC_BITS <= 15    
+    unsigned int m;
+#else
+    UINT64 m;
+#endif
+    int e;
+
+    e = table_4_3_exp[value];
+    e += (exponent >> 2);
+    e = FRAC_BITS - e;
+#if FRAC_BITS <= 15    
+    if (e > 31)
+        e = 31;
+#endif
+    m = table_4_3_value[value];
+#if FRAC_BITS <= 15    
+    m = (m * scale_factor_mult3[exponent & 3]);
+    m = (m + (1 << (e-1))) >> e;
+    return m;
+#else
+    m = MUL64(m, scale_factor_mult3[exponent & 3]);
+    m = (m + (UINT64_C(1) << (e-1))) >> e;
+    return m;
+#endif
+}
+
 
 static int decode_init(AVCodecContext * avctx)
 {
     MPADecodeContext *s = avctx->priv_data;
-    struct mpstr *mp = &s->mpstr;
     static int init;
-
-    mp->fr.single = -1;
-    mp->synth_bo = 1;
+    int i, j, k;
 
     if(!init) {
+        /* scale factors table for layer 1/2 */
+        for(i=0;i<64;i++) {
+            int shift, mod;
+            /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
+            shift = (i / 3) - 1;
+            mod = i % 3;
+#if FRAC_BITS <= 15
+            if (shift > 31)
+                shift = 31;
+#endif
+            scale_factor_modshift[i] = mod | (shift << 2);
+        }
+
+        /* scale factor multiply for layer 1 */
+        for(i=0;i<15;i++) {
+            int n, norm;
+            n = i + 2;
+            norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
+            scale_factor_mult[i][0] = MULL(FIXR(1.0), norm);
+            scale_factor_mult[i][1] = MULL(FIXR(0.7937005259), norm);
+            scale_factor_mult[i][2] = MULL(FIXR(0.6299605249), norm);
+            dprintf("%d: norm=%x s=%x %x %x\n",
+                    i, norm, 
+                    scale_factor_mult[i][0],
+                    scale_factor_mult[i][1],
+                    scale_factor_mult[i][2]);
+        }
+        
+        /* window */
+        /* max = 18760, max sum over all 16 coefs : 44736 */
+        for(i=0;i<257;i++) {
+            int v;
+            v = mpa_enwindow[i];
+#if WFRAC_BITS < 16
+            v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
+#endif
+            window[i] = v;
+            if ((i & 63) != 0)
+                v = -v;
+            if (i != 0)
+                window[512 - i] = v;
+        }
+        
+        /* huffman decode tables */
+        huff_code_table[0] = NULL;
+        for(i=1;i<16;i++) {
+            const HuffTable *h = &mpa_huff_tables[i];
+            int xsize, n, x, y;
+            UINT8 *code_table;
+
+            xsize = h->xsize;
+            n = xsize * xsize;
+            /* XXX: fail test */
+            init_vlc(&huff_vlc[i], 8, n, 
+                     h->bits, 1, 1, h->codes, 2, 2);
+            
+            code_table = av_mallocz(n);
+            j = 0;
+            for(x=0;x<xsize;x++) {
+                for(y=0;y<xsize;y++)
+                    code_table[j++] = (x << 4) | y;
+            }
+            huff_code_table[i] = code_table;
+        }
+        for(i=0;i<2;i++) {
+            init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, 
+                     mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
+        }
+
+        for(i=0;i<9;i++) {
+            k = 0;
+            for(j=0;j<22;j++) {
+                band_index_long[i][j] = k;
+                k += band_size_long[i][j];
+            }
+            band_index_long[i][22] = k;
+        }
+
+        /* compute n ^ (4/3) and store it in mantissa/exp format */
+        table_4_3_exp = av_mallocz(TABLE_4_3_SIZE * 
+                                   sizeof(table_4_3_exp[0]));
+        if (!table_4_3_exp)
+            return -1;
+        table_4_3_value = av_mallocz(TABLE_4_3_SIZE * 
+                                     sizeof(table_4_3_value[0]));
+        if (!table_4_3_value) {
+            free(table_4_3_exp);
+            return -1;
+        }
+        
+        for(i=1;i<TABLE_4_3_SIZE;i++) {
+            double f, fm;
+            int e, m;
+            f = pow((double)i, 4.0 / 3.0);
+            fm = frexp(f, &e);
+            m = FIXR(2 * fm);
+#if FRAC_BITS <= 15
+            if ((unsigned short)m != m)
+                m = 65535;
+#endif
+            /* normalized to FRAC_BITS */
+            table_4_3_value[i] = m;
+            table_4_3_exp[i] = e - 1;
+        }
+
+        
+        for(i=0;i<7;i++) {
+            float f;
+            int v;
+            if (i != 6) {
+                f = tan((double)i * M_PI / 12.0);
+                v = FIXR(f / (1.0 + f));
+            } else {
+                v = FIXR(1.0);
+            }
+            is_table[0][i] = v;
+            is_table[1][6 - i] = v;
+        }
+        /* invalid values */
+        for(i=7;i<16;i++)
+            is_table[0][i] = is_table[1][i] = 0.0;
+
+        for(i=0;i<16;i++) {
+            double f;
+            int e, k;
+
+            for(j=0;j<2;j++) {
+                e = -(j + 1) * ((i + 1) >> 1);
+                f = pow(2.0, e / 4.0);
+                k = i & 1;
+                is_table_lsf[j][k ^ 1][i] = FIXR(f);
+                is_table_lsf[j][k][i] = FIXR(1.0);
+                dprintf("is_table_lsf %d %d: %x %x\n", 
+                        i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
+            }
+        }
+
+        for(i=0;i<8;i++) {
+            float ci, cs, ca;
+            ci = ci_table[i];
+            cs = 1.0 / sqrt(1.0 + ci * ci);
+            ca = cs * ci;
+            csa_table[i][0] = FIX(cs);
+            csa_table[i][1] = FIX(ca);
+        }
+
+        /* compute mdct windows */
+        for(i=0;i<36;i++) {
+            int v;
+            v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
+            mdct_win[0][i] = v;
+            mdct_win[1][i] = v;
+            mdct_win[3][i] = v;
+        }
+        for(i=0;i<6;i++) {
+            mdct_win[1][18 + i] = FIXR(1.0);
+            mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
+            mdct_win[1][30 + i] = FIXR(0.0);
+
+            mdct_win[3][i] = FIXR(0.0);
+            mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
+            mdct_win[3][12 + i] = FIXR(1.0);
+        }
+
+        for(i=0;i<12;i++)
+            mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
+        
+        /* NOTE: we do frequency inversion adter the MDCT by changing
+           the sign of the right window coefs */
+        for(j=0;j<4;j++) {
+            for(i=0;i<36;i+=2) {
+                mdct_win[j + 4][i] = mdct_win[j][i];
+                mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
+            }
+        }
+
+#if defined(DEBUG)
+        for(j=0;j<8;j++) {
+            printf("win%d=\n", j);
+            for(i=0;i<36;i++)
+                printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
+            printf("\n");
+        }
+#endif
         init = 1;
-        make_decode_tables(32767);
-        init_layer2();
-        init_layer3(SBLIMIT);
     }
 
     s->inbuf_index = 0;
     s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
     s->inbuf_ptr = s->inbuf;
-    
+#ifdef DEBUG
+    s->frame_count = 0;
+#endif
     return 0;
 }
 
+/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */;
+
+/* cos(i*pi/64) */
+
+#define COS0_0  FIXR(0.50060299823519630134)
+#define COS0_1  FIXR(0.50547095989754365998)
+#define COS0_2  FIXR(0.51544730992262454697)
+#define COS0_3  FIXR(0.53104259108978417447)
+#define COS0_4  FIXR(0.55310389603444452782)
+#define COS0_5  FIXR(0.58293496820613387367)
+#define COS0_6  FIXR(0.62250412303566481615)
+#define COS0_7  FIXR(0.67480834145500574602)
+#define COS0_8  FIXR(0.74453627100229844977)
+#define COS0_9  FIXR(0.83934964541552703873)
+#define COS0_10 FIXR(0.97256823786196069369)
+#define COS0_11 FIXR(1.16943993343288495515)
+#define COS0_12 FIXR(1.48416461631416627724)
+#define COS0_13 FIXR(2.05778100995341155085)
+#define COS0_14 FIXR(3.40760841846871878570)
+#define COS0_15 FIXR(10.19000812354805681150)
+
+#define COS1_0 FIXR(0.50241928618815570551)
+#define COS1_1 FIXR(0.52249861493968888062)
+#define COS1_2 FIXR(0.56694403481635770368)
+#define COS1_3 FIXR(0.64682178335999012954)
+#define COS1_4 FIXR(0.78815462345125022473)
+#define COS1_5 FIXR(1.06067768599034747134)
+#define COS1_6 FIXR(1.72244709823833392782)
+#define COS1_7 FIXR(5.10114861868916385802)
+
+#define COS2_0 FIXR(0.50979557910415916894)
+#define COS2_1 FIXR(0.60134488693504528054)
+#define COS2_2 FIXR(0.89997622313641570463)
+#define COS2_3 FIXR(2.56291544774150617881)
+
+#define COS3_0 FIXR(0.54119610014619698439)
+#define COS3_1 FIXR(1.30656296487637652785)
+
+#define COS4_0 FIXR(0.70710678118654752439)
+
+/* butterfly operator */
+#define BF(a, b, c)\
+{\
+    tmp0 = tab[a] + tab[b];\
+    tmp1 = tab[a] - tab[b];\
+    tab[a] = tmp0;\
+    tab[b] = MULL(tmp1, c);\
+}
+
+#define BF1(a, b, c, d)\
+{\
+    BF(a, b, COS4_0);\
+    BF(c, d, -COS4_0);\
+    tab[c] += tab[d];\
+}
+
+#define BF2(a, b, c, d)\
+{\
+    BF(a, b, COS4_0);\
+    BF(c, d, -COS4_0);\
+    tab[c] += tab[d];\
+    tab[a] += tab[c];\
+    tab[c] += tab[b];\
+    tab[b] += tab[d];\
+}
+
+#define ADD(a, b) tab[a] += tab[b]
+
+/* DCT32 without 1/sqrt(2) coef zero scaling. */
+static void dct32(INT32 *out, INT32 *tab)
+{
+    int tmp0, tmp1;
+
+    /* pass 1 */
+    BF(0, 31, COS0_0);
+    BF(1, 30, COS0_1);
+    BF(2, 29, COS0_2);
+    BF(3, 28, COS0_3);
+    BF(4, 27, COS0_4);
+    BF(5, 26, COS0_5);
+    BF(6, 25, COS0_6);
+    BF(7, 24, COS0_7);
+    BF(8, 23, COS0_8);
+    BF(9, 22, COS0_9);
+    BF(10, 21, COS0_10);
+    BF(11, 20, COS0_11);
+    BF(12, 19, COS0_12);
+    BF(13, 18, COS0_13);
+    BF(14, 17, COS0_14);
+    BF(15, 16, COS0_15);
+
+    /* pass 2 */
+    BF(0, 15, COS1_0);
+    BF(1, 14, COS1_1);
+    BF(2, 13, COS1_2);
+    BF(3, 12, COS1_3);
+    BF(4, 11, COS1_4);
+    BF(5, 10, COS1_5);
+    BF(6,  9, COS1_6);
+    BF(7,  8, COS1_7);
+    
+    BF(16, 31, -COS1_0);
+    BF(17, 30, -COS1_1);
+    BF(18, 29, -COS1_2);
+    BF(19, 28, -COS1_3);
+    BF(20, 27, -COS1_4);
+    BF(21, 26, -COS1_5);
+    BF(22, 25, -COS1_6);
+    BF(23, 24, -COS1_7);
+    
+    /* pass 3 */
+    BF(0, 7, COS2_0);
+    BF(1, 6, COS2_1);
+    BF(2, 5, COS2_2);
+    BF(3, 4, COS2_3);
+    
+    BF(8, 15, -COS2_0);
+    BF(9, 14, -COS2_1);
+    BF(10, 13, -COS2_2);
+    BF(11, 12, -COS2_3);
+    
+    BF(16, 23, COS2_0);
+    BF(17, 22, COS2_1);
+    BF(18, 21, COS2_2);
+    BF(19, 20, COS2_3);
+    
+    BF(24, 31, -COS2_0);
+    BF(25, 30, -COS2_1);
+    BF(26, 29, -COS2_2);
+    BF(27, 28, -COS2_3);
+
+    /* pass 4 */
+    BF(0, 3, COS3_0);
+    BF(1, 2, COS3_1);
+    
+    BF(4, 7, -COS3_0);
+    BF(5, 6, -COS3_1);
+    
+    BF(8, 11, COS3_0);
+    BF(9, 10, COS3_1);
+    
+    BF(12, 15, -COS3_0);
+    BF(13, 14, -COS3_1);
+    
+    BF(16, 19, COS3_0);
+    BF(17, 18, COS3_1);
+    
+    BF(20, 23, -COS3_0);
+    BF(21, 22, -COS3_1);
+    
+    BF(24, 27, COS3_0);
+    BF(25, 26, COS3_1);
+    
+    BF(28, 31, -COS3_0);
+    BF(29, 30, -COS3_1);
+    
+    /* pass 5 */
+    BF1(0, 1, 2, 3);
+    BF2(4, 5, 6, 7);
+    BF1(8, 9, 10, 11);
+    BF2(12, 13, 14, 15);
+    BF1(16, 17, 18, 19);
+    BF2(20, 21, 22, 23);
+    BF1(24, 25, 26, 27);
+    BF2(28, 29, 30, 31);
+    
+    /* pass 6 */
+    
+    ADD( 8, 12);
+    ADD(12, 10);
+    ADD(10, 14);
+    ADD(14,  9);
+    ADD( 9, 13);
+    ADD(13, 11);
+    ADD(11, 15);
+
+    out[ 0] = tab[0];
+    out[16] = tab[1];
+    out[ 8] = tab[2];
+    out[24] = tab[3];
+    out[ 4] = tab[4];
+    out[20] = tab[5];
+    out[12] = tab[6];
+    out[28] = tab[7];
+    out[ 2] = tab[8];
+    out[18] = tab[9];
+    out[10] = tab[10];
+    out[26] = tab[11];
+    out[ 6] = tab[12];
+    out[22] = tab[13];
+    out[14] = tab[14];
+    out[30] = tab[15];
+    
+    ADD(24, 28);
+    ADD(28, 26);
+    ADD(26, 30);
+    ADD(30, 25);
+    ADD(25, 29);
+    ADD(29, 27);
+    ADD(27, 31);
+
+    out[ 1] = tab[16] + tab[24];
+    out[17] = tab[17] + tab[25];
+    out[ 9] = tab[18] + tab[26];
+    out[25] = tab[19] + tab[27];
+    out[ 5] = tab[20] + tab[28];
+    out[21] = tab[21] + tab[29];
+    out[13] = tab[22] + tab[30];
+    out[29] = tab[23] + tab[31];
+    out[ 3] = tab[24] + tab[20];
+    out[19] = tab[25] + tab[21];
+    out[11] = tab[26] + tab[22];
+    out[27] = tab[27] + tab[23];
+    out[ 7] = tab[28] + tab[18];
+    out[23] = tab[29] + tab[19];
+    out[15] = tab[30] + tab[17];
+    out[31] = tab[31];
+}
+
+#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
+
+#if FRAC_BITS <= 15
+
+#define OUT_SAMPLE(sum)\
+{\
+    int sum1;\
+    sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;\
+    if (sum1 < -32768)\
+        sum1 = -32768;\
+    else if (sum1 > 32767)\
+        sum1 = 32767;\
+    *samples = sum1;\
+    samples += incr;\
+}
+
+#define SUM8(off, op)                           \
+{                                               \
+    sum op w[0 * 64 + off] * p[0 * 64];\
+    sum op w[1 * 64 + off] * p[1 * 64];\
+    sum op w[2 * 64 + off] * p[2 * 64];\
+    sum op w[3 * 64 + off] * p[3 * 64];\
+    sum op w[4 * 64 + off] * p[4 * 64];\
+    sum op w[5 * 64 + off] * p[5 * 64];\
+    sum op w[6 * 64 + off] * p[6 * 64];\
+    sum op w[7 * 64 + off] * p[7 * 64];\
+}
+
+#else
+
+#define OUT_SAMPLE(sum)\
+{\
+    int sum1;\
+    sum1 = (int)((sum + (INT64_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);\
+    if (sum1 < -32768)\
+        sum1 = -32768;\
+    else if (sum1 > 32767)\
+        sum1 = 32767;\
+    *samples = sum1;\
+    samples += incr;\
+}
+
+#define SUM8(off, op)                           \
+{                                               \
+    sum op MUL64(w[0 * 64 + off], p[0 * 64]);\
+    sum op MUL64(w[1 * 64 + off], p[1 * 64]);\
+    sum op MUL64(w[2 * 64 + off], p[2 * 64]);\
+    sum op MUL64(w[3 * 64 + off], p[3 * 64]);\
+    sum op MUL64(w[4 * 64 + off], p[4 * 64]);\
+    sum op MUL64(w[5 * 64 + off], p[5 * 64]);\
+    sum op MUL64(w[6 * 64 + off], p[6 * 64]);\
+    sum op MUL64(w[7 * 64 + off], p[7 * 64]);\
+}
+
+#endif
+
+/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
+   32 samples. */
+/* XXX: optimize by avoiding ring buffer usage */
+static void synth_filter(MPADecodeContext *s1,
+                         int ch, INT16 *samples, int incr, 
+                         INT32 sb_samples[SBLIMIT])
+{
+    INT32 tmp[32];
+    register MPA_INT *synth_buf, *p;
+    register MPA_INT *w;
+    int j, offset, v;
+#if FRAC_BITS <= 15
+    int sum;
+#else
+    INT64 sum;
+#endif
+
+    dct32(tmp, sb_samples);
+    
+    offset = s1->synth_buf_offset[ch];
+    synth_buf = s1->synth_buf[ch] + offset;
+
+    for(j=0;j<32;j++) {
+        v = tmp[j];
+#if FRAC_BITS <= 15
+        if (v > 32767)
+            v = 32767;
+        else if (v < -32768)
+            v = -32768;
+#endif
+        synth_buf[j] = v;
+    }
+    /* copy to avoid wrap */
+    memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
+
+    w = window;
+    for(j=0;j<16;j++) {
+        sum = 0;
+        p = synth_buf + 16 + j;    /* 0-15  */
+        SUM8(0, +=);
+        p = synth_buf + 48 - j;    /* 32-47 */
+        SUM8(32, -=);
+        OUT_SAMPLE(sum);
+        w++;
+    }
+    
+    p = synth_buf + 32; /* 48 */
+    sum = 0;
+    SUM8(32, -=);
+    OUT_SAMPLE(sum);
+    w++;
+
+    for(j=17;j<32;j++) {
+        sum = 0;
+        p = synth_buf + 48 - j; /* 17-31 */
+        SUM8(0, -=);
+        p = synth_buf + 16 + j; /* 49-63 */
+        SUM8(32, -=);
+        OUT_SAMPLE(sum);
+        w++;
+    }
+    offset = (offset - 32) & 511;
+    s1->synth_buf_offset[ch] = offset;
+}
+
+/* cos(pi*i/24) */
+#define C1  FIXR(0.99144486137381041114)
+#define C3  FIXR(0.92387953251128675612)
+#define C5  FIXR(0.79335334029123516458)
+#define C7  FIXR(0.60876142900872063941)
+#define C9  FIXR(0.38268343236508977173)
+#define C11 FIXR(0.13052619222005159154)
+
+/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
+   cases. */
+static void imdct12(int *out, int *in)
+{
+    int tmp;
+    INT64 in1_3, in1_9, in4_3, in4_9;
+
+    in1_3 = MUL64(in[1], C3);
+    in1_9 = MUL64(in[1], C9);
+    in4_3 = MUL64(in[4], C3);
+    in4_9 = MUL64(in[4], C9);
+    
+    tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) + 
+                   MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
+    out[0] = tmp;
+    out[5] = -tmp;
+    tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 + 
+                   MUL64(in[2] + in[5], C3) - in4_9);
+    out[1] = tmp;
+    out[4] = -tmp;
+    tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
+                   MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
+    out[2] = tmp;
+    out[3] = -tmp;
+    tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) + 
+                   MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
+    out[6] = tmp;
+    out[11] = tmp;
+    tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 + 
+                   MUL64(in[2] + in[5], C9) + in4_3);
+    out[7] = tmp;
+    out[10] = tmp;
+    tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
+                   MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
+    out[8] = tmp;
+    out[9] = tmp;
+}
+
+#undef C1
+#undef C3
+#undef C5
+#undef C7
+#undef C9
+#undef C11
+
+/* cos(pi*i/18) */
+#define C1 FIXR(0.98480775301220805936)
+#define C2 FIXR(0.93969262078590838405)
+#define C3 FIXR(0.86602540378443864676)
+#define C4 FIXR(0.76604444311897803520)
+#define C5 FIXR(0.64278760968653932632)
+#define C6 FIXR(0.5)
+#define C7 FIXR(0.34202014332566873304)
+#define C8 FIXR(0.17364817766693034885)
+
+/* 0.5 / cos(pi*(2*i+1)/36) */
+static const int icos36[9] = {
+    FIXR(0.50190991877167369479),
+    FIXR(0.51763809020504152469),
+    FIXR(0.55168895948124587824),
+    FIXR(0.61038729438072803416),
+    FIXR(0.70710678118654752439),
+    FIXR(0.87172339781054900991),
+    FIXR(1.18310079157624925896),
+    FIXR(1.93185165257813657349),
+    FIXR(5.73685662283492756461),
+};
+
+static const int icos72[18] = {
+    /* 0.5 / cos(pi*(2*i+19)/72) */
+    FIXR(0.74009361646113053152),
+    FIXR(0.82133981585229078570),
+    FIXR(0.93057949835178895673),
+    FIXR(1.08284028510010010928),
+    FIXR(1.30656296487637652785),
+    FIXR(1.66275476171152078719),
+    FIXR(2.31011315767264929558),
+    FIXR(3.83064878777019433457),
+    FIXR(11.46279281302667383546),
+
+    /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
+    FIXR(-0.67817085245462840086),
+    FIXR(-0.63023620700513223342),
+    FIXR(-0.59284452371708034528),
+    FIXR(-0.56369097343317117734),
+    FIXR(-0.54119610014619698439),
+    FIXR(-0.52426456257040533932),
+    FIXR(-0.51213975715725461845),
+    FIXR(-0.50431448029007636036),
+    FIXR(-0.50047634258165998492),
+};
+
+/* using Lee like decomposition followed by hand coded 9 points DCT */
+static void imdct36(int *out, int *in)
+{
+    int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
+    int tmp[18], *tmp1, *in1;
+    INT64 in3_3, in6_6;
+
+    for(i=17;i>=1;i--)
+        in[i] += in[i-1];
+    for(i=17;i>=3;i-=2)
+        in[i] += in[i-2];
+
+    for(j=0;j<2;j++) {
+        tmp1 = tmp + j;
+        in1 = in + j;
+
+        in3_3 = MUL64(in1[2*3], C3);
+        in6_6 = MUL64(in1[2*6], C6);
+
+        tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 + 
+                           MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
+        tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) + 
+                                      MUL64(in1[2*4], C4) + in6_6 + 
+                                      MUL64(in1[2*8], C8));
+        tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
+        tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) - 
+            in1[2*6] + in1[2*0];
+        tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 - 
+                           MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
+        tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) - 
+                                       MUL64(in1[2*4], C2) + in6_6 + 
+                                       MUL64(in1[2*8], C4));
+        tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 + 
+                            MUL64(in1[2*5], C1) - 
+                            MUL64(in1[2*7], C5));
+        tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) + 
+                                       MUL64(in1[2*4], C8) + in6_6 - 
+                                       MUL64(in1[2*8], C2));
+        tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
+    }
+
+    i = 0;
+    for(j=0;j<4;j++) {
+        t0 = tmp[i];
+        t1 = tmp[i + 2];
+        s0 = t1 + t0;
+        s2 = t1 - t0;
+
+        t2 = tmp[i + 1];
+        t3 = tmp[i + 3];
+        s1 = MULL(t3 + t2, icos36[j]);
+        s3 = MULL(t3 - t2, icos36[8 - j]);
+        
+        t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
+        t1 = MULL(s0 - s1, icos72[8 - j]);
+        out[18 + 9 + j] = t0;
+        out[18 + 8 - j] = t0;
+        out[9 + j] = -t1;
+        out[8 - j] = t1;
+        
+        t0 = MULL(s2 + s3, icos72[9+j]);
+        t1 = MULL(s2 - s3, icos72[j]);
+        out[18 + 9 + (8 - j)] = t0;
+        out[18 + j] = t0;
+        out[9 + (8 - j)] = -t1;
+        out[j] = t1;
+        i += 4;
+    }
+
+    s0 = tmp[16];
+    s1 = MULL(tmp[17], icos36[4]);
+    t0 = MULL(s0 + s1, icos72[9 + 4]);
+    t1 = MULL(s0 - s1, icos72[4]);
+    out[18 + 9 + 4] = t0;
+    out[18 + 8 - 4] = t0;
+    out[9 + 4] = -t1;
+    out[8 - 4] = t1;
+}
+
 /* fast header check for resync */
 static int check_header(UINT32 header)
 {
@@ -95,9 +953,8 @@ static int check_header(UINT32 header)
     /* layer check */
     if (((header >> 17) & 3) == 0)
 	return -1;
-    /* bit rate : currently no free format supported */
-    if (((header >> 12) & 0xf) == 0xf ||
-        ((header >> 12) & 0xf) == 0x0)
+    /* bit rate */
+    if (((header >> 12) & 0xf) == 0xf)
 	return -1;
     /* frequency */
     if (((header >> 10) & 3) == 3)
@@ -105,123 +962,1281 @@ static int check_header(UINT32 header)
     return 0;
 }
 
+/* header + layer + bitrate + freq + lsf/mpeg25 */
+#define SAME_HEADER_MASK \
+   (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
+
 /* header decoding. MUST check the header before because no
-   consistency check is done there */
-static void decode_header(MPADecodeContext *s, UINT32 header)
+   consistency check is done there. Return 1 if free format found and
+   that the frame size must be computed externally */
+static int decode_header(MPADecodeContext *s, UINT32 header)
 {
-    struct frame *fr = &s->mpstr.fr;
-    int sample_rate, frame_size;
-
+    int sample_rate, frame_size, mpeg25, padding;
+    int sample_rate_index, bitrate_index;
     if (header & (1<<20)) {
-        fr->lsf = (header & (1<<19)) ? 0 : 1;
-        fr->mpeg25 = 0;
+        s->lsf = (header & (1<<19)) ? 0 : 1;
+        mpeg25 = 0;
     } else {
-        fr->lsf = 1;
-        fr->mpeg25 = 1;
+        s->lsf = 1;
+        mpeg25 = 1;
     }
     
     s->layer = 4 - ((header >> 17) & 3);
     /* extract frequency */
-    fr->sampling_frequency = ((header >> 10) & 3);
-    sample_rate = mp_freq_tab[fr->sampling_frequency] >> (fr->lsf + fr->mpeg25);
-    fr->sampling_frequency += 3 * (fr->lsf + fr->mpeg25);
-
-    s->error_protection = ((header>>16) & 1) ^ 1;
+    sample_rate_index = (header >> 10) & 3;
+    sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
+    sample_rate_index += 3 * (s->lsf + mpeg25);
+    s->sample_rate_index = sample_rate_index;
+    s->error_protection = ((header >> 16) & 1) ^ 1;
 
-    fr->bitrate_index = ((header>>12)&0xf);
-    fr->padding   = ((header>>9)&0x1);
-    fr->extension = ((header>>8)&0x1);
-    fr->mode      = ((header>>6)&0x3);
-    fr->mode_ext  = ((header>>4)&0x3);
-    fr->copyright = ((header>>3)&0x1);
-    fr->original  = ((header>>2)&0x1);
-    fr->emphasis  = header & 0x3;
-
-    fr->stereo    = (fr->mode == MPG_MD_MONO) ? 1 : 2;
+    bitrate_index = (header >> 12) & 0xf;
+    padding = (header >> 9) & 1;
+    //extension = (header >> 8) & 1;
+    s->mode = (header >> 6) & 3;
+    s->mode_ext = (header >> 4) & 3;
+    //copyright = (header >> 3) & 1;
+    //original = (header >> 2) & 1;
+    //emphasis = header & 3;
 
+    if (s->mode == MPA_MONO)
+        s->nb_channels = 1;
+    else
+        s->nb_channels = 2;
     
-    frame_size = mp_bitrate_tab[fr->lsf][s->layer - 1][fr->bitrate_index];
-    s->bit_rate = frame_size * 1000;
-    switch(s->layer) {
-    case 1:
-        frame_size = (frame_size * 12000) / sample_rate;
-        frame_size = ((frame_size + fr->padding) << 2);
-        break;
-    case 2:
-        frame_size = (frame_size * 144000) / sample_rate;
-        frame_size += fr->padding;
-        break;
-    case 3:
-        frame_size = (frame_size * 144000) / (sample_rate << fr->lsf);
-        frame_size += fr->padding;
-        break;
+    if (bitrate_index != 0) {
+        frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
+        s->bit_rate = frame_size * 1000;
+        switch(s->layer) {
+        case 1:
+            frame_size = (frame_size * 12000) / sample_rate;
+            frame_size = (frame_size + padding) * 4;
+            break;
+        case 2:
+            frame_size = (frame_size * 144000) / sample_rate;
+            frame_size += padding;
+            break;
+        default:
+        case 3:
+            frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
+            frame_size += padding;
+            break;
+        }
+        s->frame_size = frame_size;
+    } else {
+        /* if no frame size computed, signal it */
+        if (!s->free_format_frame_size)
+            return 1;
+        /* free format: compute bitrate and real frame size from the
+           frame size we extracted by reading the bitstream */
+        s->frame_size = s->free_format_frame_size;
+        switch(s->layer) {
+        case 1:
+            s->frame_size += padding  * 4;
+            s->bit_rate = (s->frame_size * sample_rate) / 48000;
+            break;
+        case 2:
+            s->frame_size += padding;
+            s->bit_rate = (s->frame_size * sample_rate) / 144000;
+            break;
+        default:
+        case 3:
+            s->frame_size += padding;
+            s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
+            break;
+        }
     }
-    s->frame_size = frame_size;
     s->sample_rate = sample_rate;
-
-#if 0
-    printf("layer%d, %d Hz, %d kbits/s, %s\n",
-           s->layer, s->sample_rate, s->bit_rate, fr->stereo ? "stereo" : "mono");
+    
+#ifdef DEBUG
+    printf("layer%d, %d Hz, %d kbits/s, ",
+           s->layer, s->sample_rate, s->bit_rate);
+    if (s->nb_channels == 2) {
+        if (s->layer == 3) {
+            if (s->mode_ext & MODE_EXT_MS_STEREO)
+                printf("ms-");
+            if (s->mode_ext & MODE_EXT_I_STEREO)
+                printf("i-");
+        }
+        printf("stereo");
+    } else {
+        printf("mono");
+    }
+    printf("\n");
 #endif
+    return 0;
 }
 
-static int mp_decode_frame(MPADecodeContext *s, 
-                           short *samples)
+/* return the number of decoded frames */
+static int mp_decode_layer1(MPADecodeContext *s)
 {
-    int nb_bytes;
+    int bound, i, v, n, ch, j, mant;
+    UINT8 allocation[MPA_MAX_CHANNELS][SBLIMIT];
+    UINT8 scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
+
+    if (s->mode == MPA_JSTEREO) 
+        bound = (s->mode_ext + 1) * 4;
+    else
+        bound = SBLIMIT;
+
+    /* allocation bits */
+    for(i=0;i<bound;i++) {
+        for(ch=0;ch<s->nb_channels;ch++) {
+            allocation[ch][i] = get_bits(&s->gb, 4);
+        }
+    }
+    for(i=bound;i<SBLIMIT;i++) {
+        allocation[0][i] = get_bits(&s->gb, 4);
+    }
+
+    /* scale factors */
+    for(i=0;i<bound;i++) {
+        for(ch=0;ch<s->nb_channels;ch++) {
+            if (allocation[ch][i])
+                scale_factors[ch][i] = get_bits(&s->gb, 6);
+        }
+    }
+    for(i=bound;i<SBLIMIT;i++) {
+        if (allocation[0][i]) {
+            scale_factors[0][i] = get_bits(&s->gb, 6);
+            scale_factors[1][i] = get_bits(&s->gb, 6);
+        }
+    }
     
-    init_get_bits(&s->gb, s->inbuf + HEADER_SIZE, s->inbuf_ptr - s->inbuf - HEADER_SIZE);
+    /* compute samples */
+    for(j=0;j<12;j++) {
+        for(i=0;i<bound;i++) {
+            for(ch=0;ch<s->nb_channels;ch++) {
+                n = allocation[ch][i];
+                if (n) {
+                    mant = get_bits(&s->gb, n + 1);
+                    v = l1_unscale(n, mant, scale_factors[ch][i]);
+                } else {
+                    v = 0;
+                }
+                s->sb_samples[ch][j][i] = v;
+            }
+        }
+        for(i=bound;i<SBLIMIT;i++) {
+            n = allocation[0][i];
+            if (n) {
+                mant = get_bits(&s->gb, n + 1);
+                v = l1_unscale(n, mant, scale_factors[0][i]);
+                s->sb_samples[0][j][i] = v;
+                v = l1_unscale(n, mant, scale_factors[1][i]);
+                s->sb_samples[1][j][i] = v;
+            } else {
+                s->sb_samples[0][j][i] = 0;
+                s->sb_samples[1][j][i] = 0;
+            }
+        }
+    }
+    return 12;
+}
+
+/* bitrate is in kb/s */
+int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
+{
+    int ch_bitrate, table;
     
-    /* skip error protection field */
-    if (s->error_protection)
-        get_bits(&s->gb, 16);
+    ch_bitrate = bitrate / nb_channels;
+    if (!lsf) {
+        if ((freq == 48000 && ch_bitrate >= 56) ||
+            (ch_bitrate >= 56 && ch_bitrate <= 80)) 
+            table = 0;
+        else if (freq != 48000 && ch_bitrate >= 96) 
+            table = 1;
+        else if (freq != 32000 && ch_bitrate <= 48) 
+            table = 2;
+        else 
+            table = 3;
+    } else {
+        table = 4;
+    }
+    return table;
+}
 
-    /* XXX: horrible: global! */
-    gmp = &s->mpstr;
-    gmp_s = s;
-    gmp_gb = &s->gb;
+static int mp_decode_layer2(MPADecodeContext *s)
+{
+    int sblimit; /* number of used subbands */
+    const unsigned char *alloc_table;
+    int table, bit_alloc_bits, i, j, ch, bound, v;
+    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
+    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
+    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
+    int scale, qindex, bits, steps, k, l, m, b;
 
-    nb_bytes = 0;
-    switch(s->layer) {
-    case 1:
-        do_layer1(&s->mpstr.fr,(unsigned char *)samples, &nb_bytes);
-        break;
-    case 2:
-        do_layer2(&s->mpstr.fr,(unsigned char *)samples, &nb_bytes);
-        break;
-    case 3:
-        do_layer3(&s->mpstr.fr,(unsigned char *)samples, &nb_bytes);
-        s->inbuf_index ^= 1;
-        s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
-        s->old_frame_size = s->frame_size;
-        break;
-    default:
-        break;
+    /* select decoding table */
+    table = l2_select_table(s->bit_rate / 1000, s->nb_channels, 
+                            s->sample_rate, s->lsf);
+    sblimit = sblimit_table[table];
+    alloc_table = alloc_tables[table];
+
+    if (s->mode == MPA_JSTEREO) 
+        bound = (s->mode_ext + 1) * 4;
+    else
+        bound = sblimit;
+
+    dprintf("bound=%d sblimit=%d\n", bound, sblimit);
+    /* parse bit allocation */
+    j = 0;
+    for(i=0;i<bound;i++) {
+        bit_alloc_bits = alloc_table[j];
+        for(ch=0;ch<s->nb_channels;ch++) {
+            bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
+        }
+        j += 1 << bit_alloc_bits;
+    }
+    for(i=bound;i<sblimit;i++) {
+        bit_alloc_bits = alloc_table[j];
+        v = get_bits(&s->gb, bit_alloc_bits);
+        bit_alloc[0][i] = v;
+        bit_alloc[1][i] = v;
+        j += 1 << bit_alloc_bits;
     }
-    return nb_bytes;
+
+#ifdef DEBUG
+    {
+        for(ch=0;ch<s->nb_channels;ch++) {
+            for(i=0;i<sblimit;i++)
+                printf(" %d", bit_alloc[ch][i]);
+            printf("\n");
+        }
+    }
+#endif
+
+    /* scale codes */
+    for(i=0;i<sblimit;i++) {
+        for(ch=0;ch<s->nb_channels;ch++) {
+            if (bit_alloc[ch][i]) 
+                scale_code[ch][i] = get_bits(&s->gb, 2);
+        }
+    }
+    
+    /* scale factors */
+    for(i=0;i<sblimit;i++) {
+        for(ch=0;ch<s->nb_channels;ch++) {
+            if (bit_alloc[ch][i]) {
+                sf = scale_factors[ch][i];
+                switch(scale_code[ch][i]) {
+                default:
+                case 0:
+                    sf[0] = get_bits(&s->gb, 6);
+                    sf[1] = get_bits(&s->gb, 6);
+                    sf[2] = get_bits(&s->gb, 6);
+                    break;
+                case 2:
+                    sf[0] = get_bits(&s->gb, 6);
+                    sf[1] = sf[0];
+                    sf[2] = sf[0];
+                    break;
+                case 1:
+                    sf[0] = get_bits(&s->gb, 6);
+                    sf[2] = get_bits(&s->gb, 6);
+                    sf[1] = sf[0];
+                    break;
+                case 3:
+                    sf[0] = get_bits(&s->gb, 6);
+                    sf[2] = get_bits(&s->gb, 6);
+                    sf[1] = sf[2];
+                    break;
+                }
+            }
+        }
+    }
+
+#ifdef DEBUG
+    for(ch=0;ch<s->nb_channels;ch++) {
+        for(i=0;i<sblimit;i++) {
+            if (bit_alloc[ch][i]) {
+                sf = scale_factors[ch][i];
+                printf(" %d %d %d", sf[0], sf[1], sf[2]);
+            } else {
+                printf(" -");
+            }
+        }
+        printf("\n");
+    }
+#endif
+
+    /* samples */
+    for(k=0;k<3;k++) {
+        for(l=0;l<12;l+=3) {
+            j = 0;
+            for(i=0;i<bound;i++) {
+                bit_alloc_bits = alloc_table[j];
+                for(ch=0;ch<s->nb_channels;ch++) {
+                    b = bit_alloc[ch][i];
+                    if (b) {
+                        scale = scale_factors[ch][i][k];
+                        qindex = alloc_table[j+b];
+                        bits = quant_bits[qindex];
+                        if (bits < 0) {
+                            /* 3 values at the same time */
+                            v = get_bits(&s->gb, -bits);
+                            steps = quant_steps[qindex];
+                            s->sb_samples[ch][k * 12 + l + 0][i] = 
+                                l2_unscale_group(steps, v % steps, scale);
+                            v = v / steps;
+                            s->sb_samples[ch][k * 12 + l + 1][i] = 
+                                l2_unscale_group(steps, v % steps, scale);
+                            v = v / steps;
+                            s->sb_samples[ch][k * 12 + l + 2][i] = 
+                                l2_unscale_group(steps, v, scale);
+                        } else {
+                            for(m=0;m<3;m++) {
+                                v = get_bits(&s->gb, bits);
+                                v = l1_unscale(bits - 1, v, scale);
+                                s->sb_samples[ch][k * 12 + l + m][i] = v;
+                            }
+                        }
+                    } else {
+                        s->sb_samples[ch][k * 12 + l + 0][i] = 0;
+                        s->sb_samples[ch][k * 12 + l + 1][i] = 0;
+                        s->sb_samples[ch][k * 12 + l + 2][i] = 0;
+                    }
+                }
+                /* next subband in alloc table */
+                j += 1 << bit_alloc_bits; 
+            }
+            /* XXX: find a way to avoid this duplication of code */
+            for(i=bound;i<sblimit;i++) {
+                bit_alloc_bits = alloc_table[j];
+                b = bit_alloc[0][i];
+                if (b) {
+                    int mant, scale0, scale1;
+                    scale0 = scale_factors[0][i][k];
+                    scale1 = scale_factors[1][i][k];
+                    qindex = alloc_table[j+b];
+                    bits = quant_bits[qindex];
+                    if (bits < 0) {
+                        /* 3 values at the same time */
+                        v = get_bits(&s->gb, -bits);
+                        steps = quant_steps[qindex];
+                        mant = v % steps;
+                        v = v / steps;
+                        s->sb_samples[0][k * 12 + l + 0][i] = 
+                            l2_unscale_group(steps, mant, scale0);
+                        s->sb_samples[1][k * 12 + l + 0][i] = 
+                            l2_unscale_group(steps, mant, scale1);
+                        mant = v % steps;
+                        v = v / steps;
+                        s->sb_samples[0][k * 12 + l + 1][i] = 
+                            l2_unscale_group(steps, mant, scale0);
+                        s->sb_samples[1][k * 12 + l + 1][i] = 
+                            l2_unscale_group(steps, mant, scale1);
+                        s->sb_samples[0][k * 12 + l + 2][i] = 
+                            l2_unscale_group(steps, v, scale0);
+                        s->sb_samples[1][k * 12 + l + 2][i] = 
+                            l2_unscale_group(steps, v, scale1);
+                    } else {
+                        for(m=0;m<3;m++) {
+                            mant = get_bits(&s->gb, bits);
+                            s->sb_samples[0][k * 12 + l + m][i] = 
+                                l1_unscale(bits - 1, mant, scale0);
+                            s->sb_samples[1][k * 12 + l + m][i] = 
+                                l1_unscale(bits - 1, mant, scale1);
+                        }
+                    }
+                } else {
+                    s->sb_samples[0][k * 12 + l + 0][i] = 0;
+                    s->sb_samples[0][k * 12 + l + 1][i] = 0;
+                    s->sb_samples[0][k * 12 + l + 2][i] = 0;
+                    s->sb_samples[1][k * 12 + l + 0][i] = 0;
+                    s->sb_samples[1][k * 12 + l + 1][i] = 0;
+                    s->sb_samples[1][k * 12 + l + 2][i] = 0;
+                }
+                /* next subband in alloc table */
+                j += 1 << bit_alloc_bits; 
+            }
+            /* fill remaining samples to zero */
+            for(i=sblimit;i<SBLIMIT;i++) {
+                for(ch=0;ch<s->nb_channels;ch++) {
+                    s->sb_samples[ch][k * 12 + l + 0][i] = 0;
+                    s->sb_samples[ch][k * 12 + l + 1][i] = 0;
+                    s->sb_samples[ch][k * 12 + l + 2][i] = 0;
+                }
+            }
+        }
+    }
+    return 3 * 12;
 }
 
 /*
- * seek back in the stream for backstep bytes (at most 511 bytes, and
- * at most in last frame). Note that this is slightly incorrect (data
- * can span more than one block!)  
+ * Seek back in the stream for backstep bytes (at most 511 bytes)
  */
-int set_pointer(long backstep)
+static void seek_to_maindata(MPADecodeContext *s, long backstep)
 {
     UINT8 *ptr;
 
     /* compute current position in stream */
-    ptr = gmp_gb->buf_ptr - (gmp_gb->bit_cnt >> 3);
+    ptr = s->gb.buf_ptr - (s->gb.bit_cnt >> 3);
     /* copy old data before current one */
     ptr -= backstep;
-    memcpy(ptr, gmp_s->inbuf1[gmp_s->inbuf_index ^ 1] + 
-           BACKSTEP_SIZE + gmp_s->old_frame_size - backstep, backstep);
+    memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] + 
+           BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
     /* init get bits again */
-    init_get_bits(gmp_gb, ptr, gmp_s->frame_size + backstep);
+    init_get_bits(&s->gb, ptr, s->frame_size + backstep);
 
+    /* prepare next buffer */
+    s->inbuf_index ^= 1;
+    s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
+    s->old_frame_size = s->frame_size;
+}
+
+static inline void lsf_sf_expand(int *slen,
+                                 int sf, int n1, int n2, int n3)
+{
+    if (n3) {
+        slen[3] = sf % n3;
+        sf /= n3;
+    } else {
+        slen[3] = 0;
+    }
+    if (n2) {
+        slen[2] = sf % n2;
+        sf /= n2;
+    } else {
+        slen[2] = 0;
+    }
+    slen[1] = sf % n1;
+    sf /= n1;
+    slen[0] = sf;
+}
+
+static void exponents_from_scale_factors(MPADecodeContext *s, 
+                                         GranuleDef *g,
+                                         INT16 *exponents)
+{
+    const UINT8 *bstab, *pretab;
+    int len, i, j, k, l, v0, shift, gain, gains[3];
+    INT16 *exp_ptr;
+
+    exp_ptr = exponents;
+    gain = g->global_gain - 210;
+    shift = g->scalefac_scale + 1;
+
+    bstab = band_size_long[s->sample_rate_index];
+    pretab = mpa_pretab[g->preflag];
+    for(i=0;i<g->long_end;i++) {
+        v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
+        len = bstab[i];
+        for(j=len;j>0;j--)
+            *exp_ptr++ = v0;
+    }
+
+    if (g->short_start < 13) {
+        bstab = band_size_short[s->sample_rate_index];
+        gains[0] = gain - (g->subblock_gain[0] << 3);
+        gains[1] = gain - (g->subblock_gain[1] << 3);
+        gains[2] = gain - (g->subblock_gain[2] << 3);
+        k = g->long_end;
+        for(i=g->short_start;i<13;i++) {
+            len = bstab[i];
+            for(l=0;l<3;l++) {
+                v0 = gains[l] - (g->scale_factors[k++] << shift);
+                for(j=len;j>0;j--)
+                *exp_ptr++ = v0;
+            }
+        }
+    }
+}
+
+/* handle n = 0 too */
+static inline int get_bitsz(GetBitContext *s, int n)
+{
+    if (n == 0)
+        return 0;
+    else
+        return get_bits(s, n);
+}
+
+static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
+                          INT16 *exponents, int end_pos)
+{
+    int s_index;
+    int linbits, code, x, y, l, v, i, j, k, pos;
+    UINT8 *last_buf_ptr;
+    UINT32 last_bit_buf;
+    int last_bit_cnt;
+    VLC *vlc;
+    UINT8 *code_table;
+
+    /* low frequencies (called big values) */
+    s_index = 0;
+    for(i=0;i<3;i++) {
+        j = g->region_size[i];
+        if (j == 0)
+            continue;
+        /* select vlc table */
+        k = g->table_select[i];
+        l = mpa_huff_data[k][0];
+        linbits = mpa_huff_data[k][1];
+        vlc = &huff_vlc[l];
+        code_table = huff_code_table[l];
+
+        /* read huffcode and compute each couple */
+        for(;j>0;j--) {
+            if (get_bits_count(&s->gb) >= end_pos)
+                break;
+            if (code_table) {
+                code = get_vlc(&s->gb, vlc);
+                if (code < 0)
+                    return -1;
+                y = code_table[code];
+                x = y >> 4;
+                y = y & 0x0f;
+            } else {
+                x = 0;
+                y = 0;
+            }
+            dprintf("region=%d n=%d x=%d y=%d exp=%d\n", 
+                    i, g->region_size[i] - j, x, y, exponents[s_index]);
+            if (x) {
+                if (x == 15)
+                    x += get_bitsz(&s->gb, linbits);
+                v = l3_unscale(x, exponents[s_index]);
+                if (get_bits1(&s->gb))
+                    v = -v;
+            } else {
+                v = 0;
+            }
+            g->sb_hybrid[s_index++] = v;
+            if (y) {
+                if (y == 15)
+                    y += get_bitsz(&s->gb, linbits);
+                v = l3_unscale(y, exponents[s_index]);
+                if (get_bits1(&s->gb))
+                    v = -v;
+            } else {
+                v = 0;
+            }
+            g->sb_hybrid[s_index++] = v;
+        }
+    }
+            
+    /* high frequencies */
+    vlc = &huff_quad_vlc[g->count1table_select];
+    last_buf_ptr = NULL;
+    last_bit_buf = 0;
+    last_bit_cnt = 0;
+    while (s_index <= 572) {
+        pos = get_bits_count(&s->gb);
+        if (pos >= end_pos) {
+            if (pos > end_pos && last_buf_ptr != NULL) {
+                /* some encoders generate an incorrect size for this
+                   part. We must go back into the data */
+                s_index -= 4;
+                s->gb.buf_ptr = last_buf_ptr;
+                s->gb.bit_buf = last_bit_buf;
+                s->gb.bit_cnt = last_bit_cnt;
+            }
+            break;
+        }
+        last_buf_ptr = s->gb.buf_ptr;
+        last_bit_buf = s->gb.bit_buf;
+        last_bit_cnt = s->gb.bit_cnt;
+        
+        code = get_vlc(&s->gb, vlc);
+        dprintf("t=%d code=%d\n", g->count1table_select, code);
+        if (code < 0)
+            return -1;
+        for(i=0;i<4;i++) {
+            if (code & (8 >> i)) {
+                /* non zero value. Could use a hand coded function for
+                   'one' value */
+                v = l3_unscale(1, exponents[s_index]);
+                if(get_bits1(&s->gb))
+                    v = -v;
+            } else {
+                v = 0;
+            }
+            g->sb_hybrid[s_index++] = v;
+        }
+    }
+    while (s_index < 576)
+        g->sb_hybrid[s_index++] = 0;
     return 0;
 }
 
+/* Reorder short blocks from bitstream order to interleaved order. It
+   would be faster to do it in parsing, but the code would be far more
+   complicated */
+static void reorder_block(MPADecodeContext *s, GranuleDef *g)
+{
+    int i, j, k, len;
+    INT32 *ptr, *dst, *ptr1;
+    INT32 tmp[576];
+
+    if (g->block_type != 2)
+        return;
+
+    if (g->switch_point) {
+        if (s->sample_rate_index != 8) {
+            ptr = g->sb_hybrid + 36;
+        } else {
+            ptr = g->sb_hybrid + 48;
+        }
+    } else {
+        ptr = g->sb_hybrid;
+    }
+    
+    for(i=g->short_start;i<13;i++) {
+        len = band_size_short[s->sample_rate_index][i];
+        ptr1 = ptr;
+        for(k=0;k<3;k++) {
+            dst = tmp + k;
+            for(j=len;j>0;j--) {
+                *dst = *ptr++;
+                dst += 3;
+            }
+        }
+        memcpy(ptr1, tmp, len * 3 * sizeof(INT32));
+    }
+}
+
+#define ISQRT2 FIXR(0.70710678118654752440)
+
+static void compute_stereo(MPADecodeContext *s,
+                           GranuleDef *g0, GranuleDef *g1)
+{
+    int i, j, k, l;
+    INT32 v1, v2;
+    int sf_max, tmp0, tmp1, sf, len, non_zero_found;
+    INT32 (*is_tab)[16];
+    INT32 *tab0, *tab1;
+    int non_zero_found_short[3];
+
+    /* intensity stereo */
+    if (s->mode_ext & MODE_EXT_I_STEREO) {
+        if (!s->lsf) {
+            is_tab = is_table;
+            sf_max = 7;
+        } else {
+            is_tab = is_table_lsf[g1->scalefac_compress & 1];
+            sf_max = 16;
+        }
+            
+        tab0 = g0->sb_hybrid + 576;
+        tab1 = g1->sb_hybrid + 576;
+
+        non_zero_found_short[0] = 0;
+        non_zero_found_short[1] = 0;
+        non_zero_found_short[2] = 0;
+        k = (13 - g1->short_start) * 3 + g1->long_end - 3;
+        for(i = 12;i >= g1->short_start;i--) {
+            /* for last band, use previous scale factor */
+            if (i != 11)
+                k -= 3;
+            len = band_size_short[s->sample_rate_index][i];
+            for(l=2;l>=0;l--) {
+                tab0 -= len;
+                tab1 -= len;
+                if (!non_zero_found_short[l]) {
+                    /* test if non zero band. if so, stop doing i-stereo */
+                    for(j=0;j<len;j++) {
+                        if (tab1[j] != 0) {
+                            non_zero_found_short[l] = 1;
+                            goto found1;
+                        }
+                    }
+                    sf = g1->scale_factors[k + l];
+                    if (sf >= sf_max)
+                        goto found1;
+
+                    v1 = is_tab[0][sf];
+                    v2 = is_tab[1][sf];
+                    for(j=0;j<len;j++) {
+                        tmp0 = tab0[j];
+                        tab0[j] = MULL(tmp0, v1);
+                        tab1[j] = MULL(tmp0, v2);
+                    }
+                } else {
+                found1:
+                    if (s->mode_ext & MODE_EXT_MS_STEREO) {
+                        /* lower part of the spectrum : do ms stereo
+                           if enabled */
+                        for(j=0;j<len;j++) {
+                            tmp0 = tab0[j];
+                            tmp1 = tab1[j];
+                            tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
+                            tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
+                        }
+                    }
+                }
+            }
+        }
+
+        non_zero_found = non_zero_found_short[0] | 
+            non_zero_found_short[1] | 
+            non_zero_found_short[2];
+
+        for(i = g1->long_end - 1;i >= 0;i--) {
+            len = band_size_long[s->sample_rate_index][i];
+            tab0 -= len;
+            tab1 -= len;
+            /* test if non zero band. if so, stop doing i-stereo */
+            if (!non_zero_found) {
+                for(j=0;j<len;j++) {
+                    if (tab1[j] != 0) {
+                        non_zero_found = 1;
+                        goto found2;
+                    }
+                }
+                /* for last band, use previous scale factor */
+                k = (i == 21) ? 20 : i;
+                sf = g1->scale_factors[k];
+                if (sf >= sf_max)
+                    goto found2;
+                v1 = is_tab[0][sf];
+                v2 = is_tab[1][sf];
+                for(j=0;j<len;j++) {
+                    tmp0 = tab0[j];
+                    tab0[j] = MULL(tmp0, v1);
+                    tab1[j] = MULL(tmp0, v2);
+                }
+            } else {
+            found2:
+                if (s->mode_ext & MODE_EXT_MS_STEREO) {
+                    /* lower part of the spectrum : do ms stereo
+                       if enabled */
+                    for(j=0;j<len;j++) {
+                        tmp0 = tab0[j];
+                        tmp1 = tab1[j];
+                        tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
+                        tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
+                    }
+                }
+            }
+        }
+    } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
+        /* ms stereo ONLY */
+        /* NOTE: the 1/sqrt(2) normalization factor is included in the
+           global gain */
+        tab0 = g0->sb_hybrid;
+        tab1 = g1->sb_hybrid;
+        for(i=0;i<576;i++) {
+            tmp0 = tab0[i];
+            tmp1 = tab1[i];
+            tab0[i] = tmp0 + tmp1;
+            tab1[i] = tmp0 - tmp1;
+        }
+    }
+}
+
+static void compute_antialias(MPADecodeContext *s,
+                              GranuleDef *g)
+{
+    INT32 *ptr, *p0, *p1, *csa;
+    int n, tmp0, tmp1, i, j;
+
+    /* we antialias only "long" bands */
+    if (g->block_type == 2) {
+        if (!g->switch_point)
+            return;
+        /* XXX: check this for 8000Hz case */
+        n = 1;
+    } else {
+        n = SBLIMIT - 1;
+    }
+    
+    ptr = g->sb_hybrid + 18;
+    for(i = n;i > 0;i--) {
+        p0 = ptr - 1;
+        p1 = ptr;
+        csa = &csa_table[0][0];
+        for(j=0;j<8;j++) {
+            tmp0 = *p0;
+            tmp1 = *p1;
+            *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
+            *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
+            p0--;
+            p1++;
+            csa += 2;
+        }
+        ptr += 18;
+    }
+}
+
+static void compute_imdct(MPADecodeContext *s,
+                          GranuleDef *g, 
+                          INT32 *sb_samples,
+                          INT32 *mdct_buf)
+{
+    INT32 *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
+    INT32 in[6];
+    INT32 out[36];
+    INT32 out2[12];
+    int i, j, k, mdct_long_end, v, sblimit;
+
+    /* find last non zero block */
+    ptr = g->sb_hybrid + 576;
+    ptr1 = g->sb_hybrid + 2 * 18;
+    while (ptr >= ptr1) {
+        ptr -= 6;
+        v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
+        if (v != 0)
+            break;
+    }
+    sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
+
+    if (g->block_type == 2) {
+        /* XXX: check for 8000 Hz */
+        if (g->switch_point)
+            mdct_long_end = 2;
+        else
+            mdct_long_end = 0;
+    } else {
+        mdct_long_end = sblimit;
+    }
+
+    buf = mdct_buf;
+    ptr = g->sb_hybrid;
+    for(j=0;j<mdct_long_end;j++) {
+        imdct36(out, ptr);
+        /* apply window & overlap with previous buffer */
+        out_ptr = sb_samples + j;
+        /* select window */
+        if (g->switch_point && j < 2)
+            win1 = mdct_win[0];
+        else
+            win1 = mdct_win[g->block_type];
+        /* select frequency inversion */
+        win = win1 + ((4 * 36) & -(j & 1));
+        for(i=0;i<18;i++) {
+            *out_ptr = MULL(out[i], win[i]) + buf[i];
+            buf[i] = MULL(out[i + 18], win[i + 18]);
+            out_ptr += SBLIMIT;
+        }
+        ptr += 18;
+        buf += 18;
+    }
+    for(j=mdct_long_end;j<sblimit;j++) {
+        for(i=0;i<6;i++) {
+            out[i] = 0;
+            out[6 + i] = 0;
+            out[30+i] = 0;
+        }
+        /* select frequency inversion */
+        win = mdct_win[2] + ((4 * 36) & -(j & 1));
+        buf2 = out + 6;
+        for(k=0;k<3;k++) {
+            /* reorder input for short mdct */
+            ptr1 = ptr + k;
+            for(i=0;i<6;i++) {
+                in[i] = *ptr1;
+                ptr1 += 3;
+            }
+            imdct12(out2, in);
+            /* apply 12 point window and do small overlap */
+            for(i=0;i<6;i++) {
+                buf2[i] = MULL(out2[i], win[i]) + buf2[i];
+                buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
+            }
+            buf2 += 6;
+        }
+        /* overlap */
+        out_ptr = sb_samples + j;
+        for(i=0;i<18;i++) {
+            *out_ptr = out[i] + buf[i];
+            buf[i] = out[i + 18];
+            out_ptr += SBLIMIT;
+        }
+        ptr += 18;
+        buf += 18;
+    }
+    /* zero bands */
+    for(j=sblimit;j<SBLIMIT;j++) {
+        /* overlap */
+        out_ptr = sb_samples + j;
+        for(i=0;i<18;i++) {
+            *out_ptr = buf[i];
+            buf[i] = 0;
+            out_ptr += SBLIMIT;
+        }
+        buf += 18;
+    }
+}
+
+#ifdef DEBUG
+void sample_dump(int fnum, INT32 *tab, int n)
+{
+    static FILE *files[16], *f;
+    char buf[512];
+
+    f = files[fnum];
+    if (!f) {
+        sprintf(buf, "/tmp/out%d.pcm", fnum);
+        f = fopen(buf, "w");
+        if (!f)
+            return;
+        files[fnum] = f;
+    }
+    
+    if (fnum == 0) {
+        int i;
+        static int pos = 0;
+        printf("pos=%d\n", pos);
+        for(i=0;i<n;i++) {
+            printf(" %f", (double)tab[i] / 32768.0);
+            if ((i % 18) == 17)
+                printf("\n");
+        }
+        pos += n;
+    }
+
+    fwrite(tab, 1, n * sizeof(INT32), f);
+}
+#endif
+
+
+/* main layer3 decoding function */
+static int mp_decode_layer3(MPADecodeContext *s)
+{
+    int nb_granules, main_data_begin, private_bits;
+    int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
+    GranuleDef granules[2][2], *g;
+    INT16 exponents[576];
+
+    /* read side info */
+    if (s->lsf) {
+        main_data_begin = get_bits(&s->gb, 8);
+        if (s->nb_channels == 2)
+            private_bits = get_bits(&s->gb, 2);
+        else
+            private_bits = get_bits(&s->gb, 1);
+        nb_granules = 1;
+    } else {
+        main_data_begin = get_bits(&s->gb, 9);
+        if (s->nb_channels == 2)
+            private_bits = get_bits(&s->gb, 3);
+        else
+            private_bits = get_bits(&s->gb, 5);
+        nb_granules = 2;
+        for(ch=0;ch<s->nb_channels;ch++) {
+            granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
+            granules[ch][1].scfsi = get_bits(&s->gb, 4);
+        }
+    }
+    
+    for(gr=0;gr<nb_granules;gr++) {
+        for(ch=0;ch<s->nb_channels;ch++) {
+            dprintf("gr=%d ch=%d: side_info\n", gr, ch);
+            g = &granules[ch][gr];
+            g->part2_3_length = get_bits(&s->gb, 12);
+            g->big_values = get_bits(&s->gb, 9);
+            g->global_gain = get_bits(&s->gb, 8);
+            /* if MS stereo only is selected, we precompute the
+               1/sqrt(2) renormalization factor */
+            if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == 
+                MODE_EXT_MS_STEREO)
+                g->global_gain -= 2;
+            if (s->lsf)
+                g->scalefac_compress = get_bits(&s->gb, 9);
+            else
+                g->scalefac_compress = get_bits(&s->gb, 4);
+            blocksplit_flag = get_bits(&s->gb, 1);
+            if (blocksplit_flag) {
+                g->block_type = get_bits(&s->gb, 2);
+                if (g->block_type == 0)
+                    return -1;
+                g->switch_point = get_bits(&s->gb, 1);
+                for(i=0;i<2;i++)
+                    g->table_select[i] = get_bits(&s->gb, 5);
+                for(i=0;i<3;i++) 
+                    g->subblock_gain[i] = get_bits(&s->gb, 3);
+                /* compute huffman coded region sizes */
+                if (g->block_type == 2)
+                    g->region_size[0] = (36 / 2);
+                else {
+                    if (s->sample_rate_index <= 2) 
+                        g->region_size[0] = (36 / 2);
+                    else if (s->sample_rate_index != 8) 
+                        g->region_size[0] = (54 / 2);
+                    else
+                        g->region_size[0] = (108 / 2);
+                }
+                g->region_size[1] = (576 / 2);
+            } else {
+                int region_address1, region_address2, l;
+                g->block_type = 0;
+                g->switch_point = 0;
+                for(i=0;i<3;i++)
+                    g->table_select[i] = get_bits(&s->gb, 5);
+                /* compute huffman coded region sizes */
+                region_address1 = get_bits(&s->gb, 4);
+                region_address2 = get_bits(&s->gb, 3);
+                dprintf("region1=%d region2=%d\n", 
+                        region_address1, region_address2);
+                g->region_size[0] = 
+                    band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
+                l = region_address1 + region_address2 + 2;
+                /* should not overflow */
+                if (l > 22)
+                    l = 22;
+                g->region_size[1] = 
+                    band_index_long[s->sample_rate_index][l] >> 1;
+            }
+            /* convert region offsets to region sizes and truncate
+               size to big_values */
+            g->region_size[2] = (576 / 2);
+            j = 0;
+            for(i=0;i<3;i++) {
+                k = g->region_size[i];
+                if (k > g->big_values)
+                    k = g->big_values;
+                g->region_size[i] = k - j;
+                j = k;
+            }
+
+            /* compute band indexes */
+            if (g->block_type == 2) {
+                if (g->switch_point) {
+                    /* if switched mode, we handle the 36 first samples as
+                       long blocks.  For 8000Hz, we handle the 48 first
+                       exponents as long blocks (XXX: check this!) */
+                    if (s->sample_rate_index <= 2)
+                        g->long_end = 8;
+                    else if (s->sample_rate_index != 8)
+                        g->long_end = 6;
+                    else
+                        g->long_end = 4; /* 8000 Hz */
+                    
+                    if (s->sample_rate_index != 8)
+                        g->short_start = 3;
+                    else
+                        g->short_start = 2; 
+                } else {
+                    g->long_end = 0;
+                    g->short_start = 0;
+                }
+            } else {
+                g->short_start = 13;
+                g->long_end = 22;
+            }
+            
+            g->preflag = 0;
+            if (!s->lsf)
+                g->preflag = get_bits(&s->gb, 1);
+            g->scalefac_scale = get_bits(&s->gb, 1);
+            g->count1table_select = get_bits(&s->gb, 1);
+            dprintf("block_type=%d switch_point=%d\n",
+                    g->block_type, g->switch_point);
+        }
+    }
+
+    /* now we get bits from the main_data_begin offset */
+    dprintf("seekback: %d\n", main_data_begin);
+    seek_to_maindata(s, main_data_begin);
+
+    for(gr=0;gr<nb_granules;gr++) {
+        for(ch=0;ch<s->nb_channels;ch++) {
+            g = &granules[ch][gr];
+            
+            bits_pos = get_bits_count(&s->gb);
+            
+            if (!s->lsf) {
+                UINT8 *sc;
+                int slen, slen1, slen2;
+
+                /* MPEG1 scale factors */
+                slen1 = slen_table[0][g->scalefac_compress];
+                slen2 = slen_table[1][g->scalefac_compress];
+                dprintf("slen1=%d slen2=%d\n", slen1, slen2);
+                if (g->block_type == 2) {
+                    n = g->switch_point ? 17 : 18;
+                    j = 0;
+                    for(i=0;i<n;i++)
+                        g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
+                    for(i=0;i<18;i++)
+                        g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
+                    for(i=0;i<3;i++)
+                        g->scale_factors[j++] = 0;
+                } else {
+                    sc = granules[ch][0].scale_factors;
+                    j = 0;
+                    for(k=0;k<4;k++) {
+                        n = (k == 0 ? 6 : 5);
+                        if ((g->scfsi & (0x8 >> k)) == 0) {
+                            slen = (k < 2) ? slen1 : slen2;
+                            for(i=0;i<n;i++)
+                                g->scale_factors[j++] = get_bitsz(&s->gb, slen);
+                        } else {
+                            /* simply copy from last granule */
+                            for(i=0;i<n;i++) {
+                                g->scale_factors[j] = sc[j];
+                                j++;
+                            }
+                        }
+                    }
+                    g->scale_factors[j++] = 0;
+                }
+#ifdef DEBUG
+                {
+                    printf("scfsi=%x gr=%d ch=%d scale_factors:\n", 
+                           g->scfsi, gr, ch);
+                    for(i=0;i<j;i++)
+                        printf(" %d", g->scale_factors[i]);
+                    printf("\n");
+                }
+#endif
+            } else {
+                int tindex, tindex2, slen[4], sl, sf;
+
+                /* LSF scale factors */
+                if (g->block_type == 2) {
+                    tindex = g->switch_point ? 2 : 1;
+                } else {
+                    tindex = 0;
+                }
+                sf = g->scalefac_compress;
+                if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
+                    /* intensity stereo case */
+                    sf >>= 1;
+                    if (sf < 180) {
+                        lsf_sf_expand(slen, sf, 6, 6, 0);
+                        tindex2 = 3;
+                    } else if (sf < 244) {
+                        lsf_sf_expand(slen, sf - 180, 4, 4, 0);
+                        tindex2 = 4;
+                    } else {
+                        lsf_sf_expand(slen, sf - 244, 3, 0, 0);
+                        tindex2 = 5;
+                    }
+                } else {
+                    /* normal case */
+                    if (sf < 400) {
+                        lsf_sf_expand(slen, sf, 5, 4, 4);
+                        tindex2 = 0;
+                    } else if (sf < 500) {
+                        lsf_sf_expand(slen, sf - 400, 5, 4, 0);
+                        tindex2 = 1;
+                    } else {
+                        lsf_sf_expand(slen, sf - 500, 3, 0, 0);
+                        tindex2 = 2;
+                        g->preflag = 1;
+                    }
+                }
+
+                j = 0;
+                for(k=0;k<4;k++) {
+                    n = lsf_nsf_table[tindex2][tindex][k];
+                    sl = slen[k];
+                    for(i=0;i<n;i++)
+                        g->scale_factors[j++] = get_bitsz(&s->gb, sl);
+                }
+                /* XXX: should compute exact size */
+                for(;j<40;j++)
+                    g->scale_factors[j] = 0;
+#ifdef DEBUG
+                {
+                    printf("gr=%d ch=%d scale_factors:\n", 
+                           gr, ch);
+                    for(i=0;i<40;i++)
+                        printf(" %d", g->scale_factors[i]);
+                    printf("\n");
+                }
+#endif
+            }
+
+            exponents_from_scale_factors(s, g, exponents);
+
+            /* read Huffman coded residue */
+            if (huffman_decode(s, g, exponents,
+                               bits_pos + g->part2_3_length) < 0)
+                return -1;
+#if defined(DEBUG) && 0
+            sample_dump(3, g->sb_hybrid, 576);
+#endif
+
+            /* skip extension bits */
+            bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
+            if (bits_left < 0) {
+                dprintf("bits_left=%d\n", bits_left);
+                return -1;
+            }
+            while (bits_left >= 16) {
+                skip_bits(&s->gb, 16);
+                bits_left -= 16;
+            }
+            if (bits_left > 0)
+                skip_bits(&s->gb, bits_left);
+        } /* ch */
+
+        if (s->nb_channels == 2)
+            compute_stereo(s, &granules[0][gr], &granules[1][gr]);
+
+        for(ch=0;ch<s->nb_channels;ch++) {
+            g = &granules[ch][gr];
+
+            reorder_block(s, g);
+#ifdef DEBUG
+            sample_dump(0, g->sb_hybrid, 576);
+#endif
+            compute_antialias(s, g);
+#ifdef DEBUG
+            sample_dump(1, g->sb_hybrid, 576);
+#endif
+            compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); 
+#ifdef DEBUG
+            sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
+#endif
+        }
+    } /* gr */
+    return nb_granules * 18;
+}
+
+static int mp_decode_frame(MPADecodeContext *s, 
+                           short *samples)
+{
+    int i, nb_frames, ch;
+    short *samples_ptr;
+
+    init_get_bits(&s->gb, s->inbuf + HEADER_SIZE, 
+                  s->inbuf_ptr - s->inbuf - HEADER_SIZE);
+    
+    /* skip error protection field */
+    if (s->error_protection)
+        get_bits(&s->gb, 16);
+
+    dprintf("frame %d:\n", s->frame_count);
+    switch(s->layer) {
+    case 1:
+        nb_frames = mp_decode_layer1(s);
+        break;
+    case 2:
+        nb_frames = mp_decode_layer2(s);
+        break;
+    case 3:
+    default:
+        nb_frames = mp_decode_layer3(s);
+        break;
+    }
+#if defined(DEBUG)
+    for(i=0;i<nb_frames;i++) {
+        for(ch=0;ch<s->nb_channels;ch++) {
+            int j;
+            printf("%d-%d:", i, ch);
+            for(j=0;j<SBLIMIT;j++)
+                printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
+            printf("\n");
+        }
+    }
+#endif
+    /* apply the synthesis filter */
+    for(ch=0;ch<s->nb_channels;ch++) {
+        samples_ptr = samples + ch;
+        for(i=0;i<nb_frames;i++) {
+            synth_filter(s, ch, samples_ptr, s->nb_channels,
+                         s->sb_samples[ch][i]);
+            samples_ptr += 32 * s->nb_channels;
+        }
+    }
+#ifdef DEBUG
+    s->frame_count++;        
+#endif
+    return nb_frames * 32 * sizeof(short) * s->nb_channels;
+}
+
 static int decode_frame(AVCodecContext * avctx,
 			void *data, int *data_size,
 			UINT8 * buf, int buf_size)
@@ -237,7 +2252,19 @@ static int decode_frame(AVCodecContext * avctx,
     while (buf_size > 0) {
 	len = s->inbuf_ptr - s->inbuf;
 	if (s->frame_size == 0) {
-	    /* no header seen : find one. We need at least 7 bytes to parse it */
+            /* special case for next header for first frame in free
+               format case (XXX: find a simpler method) */
+            if (s->free_format_next_header != 0) {
+                s->inbuf[0] = s->free_format_next_header >> 24;
+                s->inbuf[1] = s->free_format_next_header >> 16;
+                s->inbuf[2] = s->free_format_next_header >> 8;
+                s->inbuf[3] = s->free_format_next_header;
+                s->inbuf_ptr = s->inbuf + 4;
+                s->free_format_next_header = 0;
+                goto got_header;
+            }
+	    /* no header seen : find one. We need at least HEADER_SIZE
+               bytes to parse it */
 	    len = HEADER_SIZE - len;
 	    if (len > buf_size)
 		len = buf_size;
@@ -246,20 +2273,80 @@ static int decode_frame(AVCodecContext * avctx,
 	    s->inbuf_ptr += len;
 	    buf_size -= len;
 	    if ((s->inbuf_ptr - s->inbuf) == HEADER_SIZE) {
+            got_header:
 		header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
 		    (s->inbuf[2] << 8) | s->inbuf[3];
 		if (check_header(header) < 0) {
 		    /* no sync found : move by one byte (inefficient, but simple!) */
 		    memcpy(s->inbuf, s->inbuf + 1, HEADER_SIZE - 1);
 		    s->inbuf_ptr--;
+                    dprintf("skip %x\n", header);
+                    /* reset free format frame size to give a chance
+                       to get a new bitrate */
+                    s->free_format_frame_size = 0;
 		} else {
-		    decode_header(s, header);
-		    /* update codec info */
-		    avctx->sample_rate = s->sample_rate;
-                    avctx->channels = s->mpstr.fr.stereo ? 2 : 1;
-		    avctx->bit_rate = s->bit_rate;
+		    if (decode_header(s, header) == 1) {
+                        /* free format: compute frame size */
+                        s->frame_size = -1;
+                    } else {
+                        /* update codec info */
+                        avctx->sample_rate = s->sample_rate;
+                        avctx->channels = s->nb_channels;
+                        avctx->bit_rate = s->bit_rate;
+                    }
 		}
 	    }
+        } else if (s->frame_size == -1) {
+            /* free format : find next sync to compute frame size */
+	    len = MPA_MAX_CODED_FRAME_SIZE - len;
+	    if (len > buf_size)
+		len = buf_size;
+            if (len == 0) {
+                /* frame too long: resync */
+                s->frame_size = 0;
+            } else {
+                UINT8 *p, *pend;
+                UINT32 header1;
+                int padding;
+
+                memcpy(s->inbuf_ptr, buf_ptr, len);
+                /* check for header */
+                p = s->inbuf_ptr - 3;
+                pend = s->inbuf_ptr + len - 4;
+                while (p <= pend) {
+                    header = (p[0] << 24) | (p[1] << 16) |
+                        (p[2] << 8) | p[3];
+                    header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
+                        (s->inbuf[2] << 8) | s->inbuf[3];
+                    /* check with high probability that we have a
+                       valid header */
+                    if ((header & SAME_HEADER_MASK) ==
+                        (header1 & SAME_HEADER_MASK)) {
+                        /* header found: update pointers */
+                        len = (p + 4) - s->inbuf_ptr;
+                        buf_ptr += len;
+                        buf_size -= len;
+                        s->inbuf_ptr = p;
+                        /* compute frame size */
+                        s->free_format_next_header = header;
+                        s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
+                        padding = (header1 >> 9) & 1;
+                        if (s->layer == 1)
+                            s->free_format_frame_size -= padding * 4;
+                        else
+                            s->free_format_frame_size -= padding;
+                        dprintf("free frame size=%d padding=%d\n", 
+                                s->free_format_frame_size, padding);
+                        decode_header(s, header1);
+                        goto next_data;
+                    }
+                    p++;
+                }
+                /* not found: simply increase pointers */
+                buf_ptr += len;
+                s->inbuf_ptr += len;
+                buf_size -= len;
+            }
 	} else if (len < s->frame_size) {
 	    len = s->frame_size - len;
 	    if (len > buf_size)
@@ -276,6 +2363,7 @@ static int decode_frame(AVCodecContext * avctx,
 	    *data_size = out_size;
 	    break;
 	}
+    next_data:
     }
     return buf_ptr - buf;
 }

-- 
Libav/FFmpeg packaging



More information about the pkg-multimedia-commits mailing list