[Pkg-octave-commit] rev 793 - in trunk/packages/octave/debian: . in patches

Thomas Weber thomas-guest at alioth.debian.org
Tue Nov 7 08:50:22 CET 2006


Author: thomas-guest
Date: 2006-11-07 08:50:22 +0100 (Tue, 07 Nov 2006)
New Revision: 793

Added:
   trunk/packages/octave/debian/patches/50_invalid_indexes.dpatch
Modified:
   trunk/packages/octave/debian/changelog
   trunk/packages/octave/debian/in/octave2.9-00list
Log:
Fix for 
http://www.cae.wisc.edu/pipermail/bug-octave/2006-November/001077.html


Modified: trunk/packages/octave/debian/changelog
===================================================================
--- trunk/packages/octave/debian/changelog	2006-10-27 09:12:38 UTC (rev 792)
+++ trunk/packages/octave/debian/changelog	2006-11-07 07:50:22 UTC (rev 793)
@@ -5,8 +5,11 @@
   [ Thomas Weber ]
   * debian/patches/50_sparse_constructors.dpatch: Patch for mixing bool
     with sparse matrices in kron() (closes: 395293). Thanks John Eaton.
+  * debian/patches/50_invalid_indexes.dpatch: Fixes a crash, see
+    http://www.cae.wisc.edu/pipermail/bug-octave/2006-November/001077.html
+    Thanks John Eaton.
 
- --
+ -- 
 
 octave2.9 (2.9.9-5) unstable; urgency=low
 

Modified: trunk/packages/octave/debian/in/octave2.9-00list
===================================================================
--- trunk/packages/octave/debian/in/octave2.9-00list	2006-10-27 09:12:38 UTC (rev 792)
+++ trunk/packages/octave/debian/in/octave2.9-00list	2006-11-07 07:50:22 UTC (rev 793)
@@ -5,3 +5,4 @@
 50_rename-octave-tags
 50_empty-lhs-sparse
 50_sparse_constructors.dpatch
+50_invalid_indexes

Added: trunk/packages/octave/debian/patches/50_invalid_indexes.dpatch
===================================================================
--- trunk/packages/octave/debian/patches/50_invalid_indexes.dpatch	2006-10-27 09:12:38 UTC (rev 792)
+++ trunk/packages/octave/debian/patches/50_invalid_indexes.dpatch	2006-11-07 07:50:22 UTC (rev 793)
@@ -0,0 +1,3246 @@
+#! /bin/sh /usr/share/dpatch/dpatch-run
+## 50_invalid_indexes.dpatch by Thomas Weber <thomas.weber.mail at gmail.com>
+##
+## All lines beginning with `## DP:' are a description of the patch.
+## DP: Fixes a crash, see
+## DP: http://www.cae.wisc.edu/pipermail/bug-octave/2006-November/001077.html
+
+ at DPATCH@
+diff -urNad octave2.9-2.9.9~/liboctave/Array.cc octave2.9-2.9.9/liboctave/Array.cc
+--- octave2.9-2.9.9~/liboctave/Array.cc	2006-09-15 22:29:18.000000000 +0200
++++ octave2.9-2.9.9/liboctave/Array.cc	2006-11-07 08:30:44.000000000 +0100
+@@ -3113,6 +3113,16 @@
+ 
+ 	      frozen_len = freeze (idx, new_dims, true);
+ 
++	      for (int i = 0; i < idx.length (); i++)
++		{
++		  if (! idx(i))
++		    {
++		      retval = 0;
++		      lhs.clear_index ();
++		      return retval;
++		    }
++		}
++
+ 	      if (rhs_is_scalar)
+ 		{
+ 		  if (n_idx < orig_lhs_dims_len)
+diff -urNad octave2.9-2.9.9~/liboctave/Array.cc.orig octave2.9-2.9.9/liboctave/Array.cc.orig
+--- octave2.9-2.9.9~/liboctave/Array.cc.orig	1970-01-01 01:00:00.000000000 +0100
++++ octave2.9-2.9.9/liboctave/Array.cc.orig	2006-09-15 22:29:18.000000000 +0200
+@@ -0,0 +1,3214 @@
++// Template array classes
++/*
++
++Copyright (C) 1996, 1997 John W. Eaton
++
++This file is part of Octave.
++
++Octave is free software; you can redistribute it and/or modify it
++under the terms of the GNU General Public License as published by the
++Free Software Foundation; either version 2, or (at your option) any
++later version.
++
++Octave is distributed in the hope that it will be useful, but WITHOUT
++ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
++for more details.
++
++You should have received a copy of the GNU General Public License
++along with Octave; see the file COPYING.  If not, write to the Free
++Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
++02110-1301, USA.
++
++*/
++
++#ifdef HAVE_CONFIG_H
++#include <config.h>
++#endif
++
++#include <cassert>
++#include <climits>
++
++#include <iostream>
++#include <sstream>
++#include <vector>
++
++#include "Array.h"
++#include "Array-util.h"
++#include "Range.h"
++#include "idx-vector.h"
++#include "lo-error.h"
++
++// One dimensional array class.  Handles the reference counting for
++// all the derived classes.
++
++template <class T>
++Array<T>::Array (const Array<T>& a, const dim_vector& dv)
++  : rep (a.rep), dimensions (dv), idx (0), idx_count (0)
++{
++  rep->count++;
++
++  if (a.numel () < dv.numel ())
++    (*current_liboctave_error_handler)
++      ("Array::Array (const Array&, const dim_vector&): dimension mismatch");
++}
++
++template <class T>
++Array<T>::~Array (void)
++{
++  if (--rep->count <= 0)
++    delete rep;
++
++  delete [] idx;
++}
++
++template <class T>
++Array<T>
++Array<T>::squeeze (void) const
++{
++  Array<T> retval = *this;
++
++  if (ndims () > 2)
++    {
++      bool dims_changed = false;
++
++      dim_vector new_dimensions = dimensions;
++
++      int k = 0;
++
++      for (int i = 0; i < ndims (); i++)
++	{
++	  if (dimensions(i) == 1)
++	    dims_changed = true;
++	  else
++	    new_dimensions(k++) = dimensions(i);
++	}
++
++      if (dims_changed)
++	{
++	  switch (k)
++	    {
++	    case 0:
++	      new_dimensions = dim_vector (1, 1);
++	      break;
++
++	    case 1:
++	      {
++		octave_idx_type tmp = new_dimensions(0);
++
++		new_dimensions.resize (2);
++
++		new_dimensions(0) = tmp;
++		new_dimensions(1) = 1;
++	      }
++	      break;
++
++	    default:
++	      new_dimensions.resize (k);
++	      break;
++	    }
++	}
++
++      // FIXME -- it would be better if we did not have to do
++      // this, so we could share the data while still having different
++      // dimension vectors.
++
++      retval.make_unique ();
++
++      retval.dimensions = new_dimensions;
++    }
++
++  return retval;
++}
++
++// A guess (should be quite conservative).
++#define MALLOC_OVERHEAD 1024
++
++template <class T>
++octave_idx_type
++Array<T>::get_size (octave_idx_type r, octave_idx_type c)
++{
++  // KLUGE
++
++  // If an allocation of an array with r * c elements of type T
++  // would cause an overflow in the allocator when computing the
++  // size of the allocation, then return a value which, although
++  // not equivalent to the actual request, should be too large for
++  // most current hardware, but not so large to cause the
++  // allocator to barf on computing retval * sizeof (T).
++
++  static int nl;
++  static double dl
++    = frexp (static_cast<double> 
++	(std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl);
++
++  // This value should be an integer.  If we return this value and
++  // things work the way we expect, we should be paying a visit to
++  // new_handler in no time flat.
++  static octave_idx_type max_items = static_cast<octave_idx_type> (ldexp (dl, nl));  // = dl.2^nl
++
++  int nr, nc;
++  double dr = frexp (static_cast<double> (r), &nr);   // r = dr * 2^nr
++  double dc = frexp (static_cast<double> (c), &nc);   // c = dc * 2^nc
++
++  int nt = nr + nc;
++  double dt = dr * dc;
++
++  if (dt < 0.5)
++    {
++      nt--;
++      dt *= 2;
++    }
++
++	// if (r*c) below limit, then return r*c, otherwise return TOO BIG num!
++  return (nt < nl || (nt == nl && dt < dl)) ? r * c : max_items;
++}
++
++template <class T>
++octave_idx_type
++Array<T>::get_size (octave_idx_type r, octave_idx_type c, octave_idx_type p)
++{
++  // KLUGE
++
++  // If an allocation of an array with r * c * p elements of type T
++  // would cause an overflow in the allocator when computing the
++  // size of the allocation, then return a value which, although
++  // not equivalent to the actual request, should be too large for
++  // most current hardware, but not so large to cause the
++  // allocator to barf on computing retval * sizeof (T).
++
++  static int nl;
++  static double dl
++    = frexp (static_cast<double>
++	(std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl);
++
++  // This value should be an integer.  If we return this value and
++  // things work the way we expect, we should be paying a visit to
++  // new_handler in no time flat.
++  static octave_idx_type max_items = static_cast<octave_idx_type> (ldexp (dl, nl));
++
++  int nr, nc, np;
++  double dr = frexp (static_cast<double> (r), &nr);
++  double dc = frexp (static_cast<double> (c), &nc);
++  double dp = frexp (static_cast<double> (p), &np);
++
++  int nt = nr + nc + np;
++  double dt = dr * dc * dp;
++
++  if (dt < 0.5)
++    {
++      nt--;
++      dt *= 2;
++
++      if (dt < 0.5)
++	{
++	  nt--;
++	  dt *= 2;
++	}
++    }
++
++  return (nt < nl || (nt == nl && dt < dl)) ? r * c * p : max_items;
++}
++
++template <class T>
++octave_idx_type
++Array<T>::get_size (const dim_vector& ra_idx)
++{
++  // KLUGE
++
++  // If an allocation of an array with r * c elements of type T
++  // would cause an overflow in the allocator when computing the
++  // size of the allocation, then return a value which, although
++  // not equivalent to the actual request, should be too large for
++  // most current hardware, but not so large to cause the
++  // allocator to barf on computing retval * sizeof (T).
++
++  static int nl;
++  static double dl
++    = frexp (static_cast<double>
++	(std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl);
++
++  // This value should be an integer.  If we return this value and
++  // things work the way we expect, we should be paying a visit to
++  // new_handler in no time flat.
++
++  static octave_idx_type max_items = static_cast<octave_idx_type> (ldexp (dl, nl));
++
++  octave_idx_type retval = max_items;
++
++  int n = ra_idx.length ();
++
++  int nt = 0;
++  double dt = 1;
++
++  for (int i = 0; i < n; i++)
++    {
++      int nra_idx;
++      double dra_idx = frexp (static_cast<double> (ra_idx(i)), &nra_idx);
++
++      nt += nra_idx;
++      dt *= dra_idx;
++
++      if (dt < 0.5)
++	{
++	  nt--;
++	  dt *= 2;
++	}
++    }
++
++  if (nt < nl || (nt == nl && dt < dl))
++    {
++      retval = 1;
++
++      for (int i = 0; i < n; i++)
++	retval *= ra_idx(i);
++    }
++
++  return retval;
++}
++
++#undef MALLOC_OVERHEAD
++
++template <class T>
++octave_idx_type
++Array<T>::compute_index (const Array<octave_idx_type>& ra_idx) const
++{
++  octave_idx_type retval = -1;
++
++  int n = dimensions.length ();
++
++  if (n > 0 && n == ra_idx.length ())
++    {
++      retval = ra_idx(--n);
++
++      while (--n >= 0)
++	{
++	  retval *= dimensions(n);
++	  retval += ra_idx(n);
++	}
++    }
++  else
++    (*current_liboctave_error_handler)
++      ("Array<T>::compute_index: invalid ra_idxing operation");
++
++  return retval;
++}
++
++template <class T>
++T
++Array<T>::range_error (const char *fcn, octave_idx_type n) const
++{
++  (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n);
++  return T ();
++}
++
++template <class T>
++T&
++Array<T>::range_error (const char *fcn, octave_idx_type n)
++{
++  (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n);
++  static T foo;
++  return foo;
++}
++
++template <class T>
++T
++Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const
++{
++  (*current_liboctave_error_handler)
++    ("%s (%d, %d): range error", fcn, i, j);
++  return T ();
++}
++
++template <class T>
++T&
++Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j)
++{
++  (*current_liboctave_error_handler)
++    ("%s (%d, %d): range error", fcn, i, j);
++  static T foo;
++  return foo;
++}
++
++template <class T>
++T
++Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) const
++{
++  (*current_liboctave_error_handler)
++    ("%s (%d, %d, %d): range error", fcn, i, j, k);
++  return T ();
++}
++
++template <class T>
++T&
++Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k)
++{
++  (*current_liboctave_error_handler)
++    ("%s (%d, %d, %d): range error", fcn, i, j, k);
++  static T foo;
++  return foo;
++}
++
++template <class T>
++T
++Array<T>::range_error (const char *fcn, const Array<int>& ra_idx) const
++{
++  std::ostringstream buf;
++
++  buf << fcn << " (";
++
++  octave_idx_type n = ra_idx.length ();
++
++  if (n > 0)
++    buf << ra_idx(0);
++
++  for (octave_idx_type i = 1; i < n; i++)
++    buf << ", " << ra_idx(i);
++
++  buf << "): range error";
++
++  std::string buf_str = buf.str ();
++
++  (*current_liboctave_error_handler) (buf_str.c_str ());
++
++  return T ();
++}
++
++template <class T>
++T&
++Array<T>::range_error (const char *fcn, const Array<int>& ra_idx)
++{
++  std::ostringstream buf;
++
++  buf << fcn << " (";
++
++  octave_idx_type n = ra_idx.length ();
++
++  if (n > 0)
++    buf << ra_idx(0);
++
++  for (octave_idx_type i = 1; i < n; i++)
++    buf << ", " << ra_idx(i);
++
++  buf << "): range error";
++
++  std::string buf_str = buf.str ();
++
++  (*current_liboctave_error_handler) (buf_str.c_str ());
++
++  static T foo;
++  return foo;
++}
++
++template <class T>
++Array<T>
++Array<T>::reshape (const dim_vector& new_dims) const
++{
++  Array<T> retval;
++
++  if (dimensions != new_dims)
++    {
++      if (dimensions.numel () == new_dims.numel ())
++	retval = Array<T> (*this, new_dims);
++      else
++	(*current_liboctave_error_handler) ("reshape: size mismatch");
++    }
++  else
++    retval = *this;
++
++  return retval;
++}
++
++struct
++permute_vector
++{
++  octave_idx_type pidx;
++  octave_idx_type iidx;
++};
++
++static int
++permute_vector_compare (const void *a, const void *b)
++{
++  const permute_vector *pva = static_cast<const permute_vector *> (a);
++  const permute_vector *pvb = static_cast<const permute_vector *> (b);
++
++  return pva->pidx > pvb->pidx;
++}
++
++template <class T>
++Array<T>
++Array<T>::permute (const Array<octave_idx_type>& perm_vec_arg, bool inv) const
++{
++  Array<T> retval;
++
++  Array<octave_idx_type> perm_vec = perm_vec_arg;
++
++  dim_vector dv = dims ();
++  dim_vector dv_new;
++
++  int perm_vec_len = perm_vec.length ();
++
++  if (perm_vec_len < dv.length ())
++    (*current_liboctave_error_handler)
++      ("%s: invalid permutation vector", inv ? "ipermute" : "permute");
++
++  dv_new.resize (perm_vec_len);
++
++  // Append singleton dimensions as needed.
++  dv.resize (perm_vec_len, 1);
++
++  // Need this array to check for identical elements in permutation array.
++  Array<bool> checked (perm_vec_len, false);
++
++  // Find dimension vector of permuted array.
++  for (int i = 0; i < perm_vec_len; i++)
++    {
++      octave_idx_type perm_elt = perm_vec.elem (i);
++
++      if (perm_elt >= perm_vec_len || perm_elt < 0)
++	{
++	  (*current_liboctave_error_handler)
++	    ("%s: permutation vector contains an invalid element",
++	     inv ? "ipermute" : "permute");
++
++	  return retval;
++	}
++
++      if (checked.elem(perm_elt))
++	{
++	  (*current_liboctave_error_handler)
++	    ("%s: permutation vector cannot contain identical elements",
++	     inv ? "ipermute" : "permute");
++
++	  return retval;
++	}
++      else
++	checked.elem(perm_elt) = true;
++
++      dv_new(i) = dv(perm_elt);
++    }
++
++  int nd = dv.length ();
++
++  // FIXME -- it would be nice to have a sort method in the
++  // Array class that also returns the sort indices.
++
++  if (inv)
++    {
++      OCTAVE_LOCAL_BUFFER (permute_vector, pvec, nd);
++
++      for (int i = 0; i < nd; i++)
++	{
++	  pvec[i].pidx = perm_vec(i);
++	  pvec[i].iidx = i;
++	}
++
++      octave_qsort (pvec, static_cast<size_t> (nd),
++		    sizeof (permute_vector), permute_vector_compare);
++
++      for (int i = 0; i < nd; i++)
++	{
++	  perm_vec(i) = pvec[i].iidx;
++	  dv_new(i) = dv(perm_vec(i));
++	}
++    }
++
++  retval.resize (dv_new);
++
++  if (numel () > 0)
++    {
++      Array<octave_idx_type> cp (nd+1, 1);
++      for (octave_idx_type i = 1; i < nd+1; i++)
++	cp(i) = cp(i-1) * dv(i-1);
++
++      octave_idx_type incr = cp(perm_vec(0));
++
++      Array<octave_idx_type> base_delta (nd-1, 0);
++      Array<octave_idx_type> base_delta_max (nd-1);
++      Array<octave_idx_type> base_incr (nd-1);
++      for (octave_idx_type i = 0; i < nd-1; i++)
++	{
++	  base_delta_max(i) = dv_new(i+1);
++	  base_incr(i) = cp(perm_vec(i+1));
++	}
++
++      octave_idx_type nr_new = dv_new(0);
++      octave_idx_type nel_new = dv_new.numel ();
++      octave_idx_type n = nel_new / nr_new;
++
++      octave_idx_type k = 0;
++
++      for (octave_idx_type i = 0; i < n; i++)
++	{
++	  octave_idx_type iidx = 0;
++	  for (octave_idx_type kk = 0; kk < nd-1; kk++)
++	    iidx += base_delta(kk) * base_incr(kk);
++
++	  for (octave_idx_type j = 0; j < nr_new; j++)
++	    {
++	      OCTAVE_QUIT;
++
++	      retval(k++) = elem(iidx);
++	      iidx += incr;
++	    }
++
++	  base_delta(0)++;
++
++	  for (octave_idx_type kk = 0; kk < nd-2; kk++)
++	    {
++	      if (base_delta(kk) == base_delta_max(kk))
++		{
++		  base_delta(kk) = 0;
++		  base_delta(kk+1)++;
++		}
++	    }
++	}
++    }
++
++  retval.chop_trailing_singletons ();
++
++  return retval;
++}
++
++template <class T>
++void
++Array<T>::resize_no_fill (octave_idx_type n)
++{
++  if (n < 0)
++    {
++      (*current_liboctave_error_handler)
++	("can't resize to negative dimension");
++      return;
++    }
++
++  if (n == length ())
++    return;
++
++  typename Array<T>::ArrayRep *old_rep = rep;
++  const T *old_data = data ();
++  octave_idx_type old_len = length ();
++
++  rep = new typename Array<T>::ArrayRep (n);
++
++  dimensions = dim_vector (n);
++
++  if (n > 0 && old_data && old_len > 0)
++    {
++      octave_idx_type min_len = old_len < n ? old_len : n;
++
++      for (octave_idx_type i = 0; i < min_len; i++)
++	xelem (i) = old_data[i];
++    }
++
++  if (--old_rep->count <= 0)
++    delete old_rep;
++}
++
++template <class T>
++void
++Array<T>::resize_no_fill (const dim_vector& dv)
++{
++  octave_idx_type n = dv.length ();
++
++  for (octave_idx_type i = 0; i < n; i++)
++    {
++      if (dv(i) < 0)
++	{
++	  (*current_liboctave_error_handler)
++	    ("can't resize to negative dimension");
++	  return;
++	}
++    }
++
++  bool same_size = true;
++
++  if (dimensions.length () != n)
++    {
++      same_size = false;
++    }
++  else
++    {
++      for (octave_idx_type i = 0; i < n; i++)
++	{
++	  if (dv(i) != dimensions(i))
++	    {
++	      same_size = false;
++	      break;
++	    }
++	}
++    }
++
++  if (same_size)
++    return;
++
++  typename Array<T>::ArrayRep *old_rep = rep;
++  const T *old_data = data ();
++
++  octave_idx_type ts = get_size (dv);
++
++  rep = new typename Array<T>::ArrayRep (ts);
++
++  dim_vector dv_old = dimensions;
++  octave_idx_type  dv_old_orig_len = dv_old.length ();
++  dimensions = dv;
++  octave_idx_type ts_old = get_size (dv_old);
++
++  if (ts > 0 && ts_old > 0 && dv_old_orig_len > 0)
++    {
++      Array<octave_idx_type> ra_idx (dimensions.length (), 0);
++
++      if (n > dv_old_orig_len)
++	{
++	  dv_old.resize (n);
++
++	  for (octave_idx_type i = dv_old_orig_len; i < n; i++)
++	    dv_old.elem (i) = 1;
++	}
++
++      for (octave_idx_type i = 0; i < ts; i++)
++	{
++	  if (index_in_bounds (ra_idx, dv_old))
++	    rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)];
++
++	  increment_index (ra_idx, dimensions);
++	}
++    }
++
++  if (--old_rep->count <= 0)
++    delete old_rep;
++}
++
++template <class T>
++void
++Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c)
++{
++  if (r < 0 || c < 0)
++    {
++      (*current_liboctave_error_handler)
++	("can't resize to negative dimension");
++      return;
++    }
++
++  int n = ndims ();
++
++  if (n == 0)
++    dimensions = dim_vector (0, 0);
++
++  assert (ndims () == 2);
++
++  if (r == dim1 () && c == dim2 ())
++    return;
++
++  typename Array<T>::ArrayRep *old_rep = Array<T>::rep;
++  const T *old_data = data ();
++
++  octave_idx_type old_d1 = dim1 ();
++  octave_idx_type old_d2 = dim2 ();
++  octave_idx_type old_len = length ();
++
++  octave_idx_type ts = get_size (r, c);
++
++  rep = new typename Array<T>::ArrayRep (ts);
++
++  dimensions = dim_vector (r, c);
++
++  if (ts > 0 && old_data && old_len > 0)
++    {
++      octave_idx_type min_r = old_d1 < r ? old_d1 : r;
++      octave_idx_type min_c = old_d2 < c ? old_d2 : c;
++
++      for (octave_idx_type j = 0; j < min_c; j++)
++	for (octave_idx_type i = 0; i < min_r; i++)
++	  xelem (i, j) = old_data[old_d1*j+i];
++    }
++
++  if (--old_rep->count <= 0)
++    delete old_rep;
++}
++
++template <class T>
++void
++Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p)
++{
++  if (r < 0 || c < 0 || p < 0)
++    {
++      (*current_liboctave_error_handler)
++	("can't resize to negative dimension");
++      return;
++    }
++
++  int n = ndims ();
++
++  if (n == 0)
++    dimensions = dim_vector (0, 0, 0);
++
++  assert (ndims () == 3);
++
++  if (r == dim1 () && c == dim2 () && p == dim3 ())
++    return;
++
++  typename Array<T>::ArrayRep *old_rep = rep;
++  const T *old_data = data ();
++
++  octave_idx_type old_d1 = dim1 ();
++  octave_idx_type old_d2 = dim2 ();
++  octave_idx_type old_d3 = dim3 ();
++  octave_idx_type old_len = length ();
++
++  octave_idx_type ts = get_size (get_size (r, c), p);
++
++  rep = new typename Array<T>::ArrayRep (ts);
++
++  dimensions = dim_vector (r, c, p);
++
++  if (ts > 0 && old_data && old_len > 0)
++    {
++      octave_idx_type min_r = old_d1 < r ? old_d1 : r;
++      octave_idx_type min_c = old_d2 < c ? old_d2 : c;
++      octave_idx_type min_p = old_d3 < p ? old_d3 : p;
++
++      for (octave_idx_type k = 0; k < min_p; k++)
++	for (octave_idx_type j = 0; j < min_c; j++)
++	  for (octave_idx_type i = 0; i < min_r; i++)
++	    xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i];
++    }
++
++  if (--old_rep->count <= 0)
++    delete old_rep;
++}
++
++template <class T>
++void
++Array<T>::resize_and_fill (octave_idx_type n, const T& val)
++{
++  if (n < 0)
++    {
++      (*current_liboctave_error_handler)
++	("can't resize to negative dimension");
++      return;
++    }
++
++  if (n == length ())
++    return;
++
++  typename Array<T>::ArrayRep *old_rep = rep;
++  const T *old_data = data ();
++  octave_idx_type old_len = length ();
++
++  rep = new typename Array<T>::ArrayRep (n);
++
++  dimensions = dim_vector (n);
++
++  if (n > 0)
++    {
++      octave_idx_type min_len = old_len < n ? old_len : n;
++
++      if (old_data && old_len > 0)
++	{
++	  for (octave_idx_type i = 0; i < min_len; i++)
++	    xelem (i) = old_data[i];
++	}
++
++      for (octave_idx_type i = old_len; i < n; i++)
++	xelem (i) = val;
++    }
++
++  if (--old_rep->count <= 0)
++    delete old_rep;
++}
++
++template <class T>
++void
++Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, const T& val)
++{
++  if (r < 0 || c < 0)
++    {
++      (*current_liboctave_error_handler)
++	("can't resize to negative dimension");
++      return;
++    }
++
++  if (ndims () == 0)
++    dimensions = dim_vector (0, 0);
++
++  assert (ndims () == 2);
++
++  if (r == dim1 () && c == dim2 ())
++    return;
++
++  typename Array<T>::ArrayRep *old_rep = Array<T>::rep;
++  const T *old_data = data ();
++
++  octave_idx_type old_d1 = dim1 ();
++  octave_idx_type old_d2 = dim2 ();
++  octave_idx_type old_len = length ();
++
++  octave_idx_type ts = get_size (r, c);
++
++  rep = new typename Array<T>::ArrayRep (ts);
++
++  dimensions = dim_vector (r, c);
++
++  if (ts > 0)
++    {
++      octave_idx_type min_r = old_d1 < r ? old_d1 : r;
++      octave_idx_type min_c = old_d2 < c ? old_d2 : c;
++
++      if (old_data && old_len > 0)
++	{
++	  for (octave_idx_type j = 0; j < min_c; j++)
++	    for (octave_idx_type i = 0; i < min_r; i++)
++	      xelem (i, j) = old_data[old_d1*j+i];
++	}
++
++      for (octave_idx_type j = 0; j < min_c; j++)
++	for (octave_idx_type i = min_r; i < r; i++)
++	  xelem (i, j) = val;
++
++      for (octave_idx_type j = min_c; j < c; j++)
++	for (octave_idx_type i = 0; i < r; i++)
++	  xelem (i, j) = val;
++    }
++
++  if (--old_rep->count <= 0)
++    delete old_rep;
++}
++
++template <class T>
++void
++Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p, const T& val)
++{
++  if (r < 0 || c < 0 || p < 0)
++    {
++      (*current_liboctave_error_handler)
++	("can't resize to negative dimension");
++      return;
++    }
++
++  if (ndims () == 0)
++    dimensions = dim_vector (0, 0, 0);
++
++  assert (ndims () == 3);
++
++  if (r == dim1 () && c == dim2 () && p == dim3 ())
++    return;
++
++  typename Array<T>::ArrayRep *old_rep = rep;
++  const T *old_data = data ();
++
++  octave_idx_type old_d1 = dim1 ();
++  octave_idx_type old_d2 = dim2 ();
++  octave_idx_type old_d3 = dim3 ();
++
++  octave_idx_type old_len = length ();
++
++  octave_idx_type ts = get_size (get_size (r, c), p);
++
++  rep = new typename Array<T>::ArrayRep (ts);
++
++  dimensions = dim_vector (r, c, p);
++
++  if (ts > 0)
++    {
++      octave_idx_type min_r = old_d1 < r ? old_d1 : r;
++      octave_idx_type min_c = old_d2 < c ? old_d2 : c;
++      octave_idx_type min_p = old_d3 < p ? old_d3 : p;
++
++      if (old_data && old_len > 0)
++	for (octave_idx_type k = 0; k < min_p; k++)
++	  for (octave_idx_type j = 0; j < min_c; j++)
++	    for (octave_idx_type i = 0; i < min_r; i++)
++	      xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i];
++
++      // FIXME -- if the copy constructor is expensive, this
++      // may win.  Otherwise, it may make more sense to just copy the
++      // value everywhere when making the new ArrayRep.
++
++      for (octave_idx_type k = 0; k < min_p; k++)
++	for (octave_idx_type j = min_c; j < c; j++)
++	  for (octave_idx_type i = 0; i < min_r; i++)
++	    xelem (i, j, k) = val;
++
++      for (octave_idx_type k = 0; k < min_p; k++)
++	for (octave_idx_type j = 0; j < c; j++)
++	  for (octave_idx_type i = min_r; i < r; i++)
++	    xelem (i, j, k) = val;
++
++      for (octave_idx_type k = min_p; k < p; k++)
++	for (octave_idx_type j = 0; j < c; j++)
++	  for (octave_idx_type i = 0; i < r; i++)
++	    xelem (i, j, k) = val;
++    }
++
++  if (--old_rep->count <= 0)
++    delete old_rep;
++}
++
++template <class T>
++void
++Array<T>::resize_and_fill (const dim_vector& dv, const T& val)
++{
++  octave_idx_type n = dv.length ();
++
++  for (octave_idx_type i = 0; i < n; i++)
++    {
++      if (dv(i) < 0)
++	{
++	  (*current_liboctave_error_handler)
++	    ("can't resize to negative dimension");
++	  return;
++	}
++    }
++
++  bool same_size = true;
++
++  if (dimensions.length () != n)
++    {
++      same_size = false;
++    }
++  else
++    {
++      for (octave_idx_type i = 0; i < n; i++)
++	{
++	  if (dv(i) != dimensions(i))
++	    {
++	      same_size = false;
++	      break;
++	    }
++	}
++    }
++
++  if (same_size)
++    return;
++
++  typename Array<T>::ArrayRep *old_rep = rep;
++  const T *old_data = data ();
++
++  octave_idx_type len = get_size (dv);
++
++  rep = new typename Array<T>::ArrayRep (len);
++
++  dim_vector dv_old = dimensions;
++  octave_idx_type dv_old_orig_len = dv_old.length ();
++  dimensions = dv;
++
++  if (len > 0 && dv_old_orig_len > 0)
++    {
++      Array<octave_idx_type> ra_idx (dimensions.length (), 0);
++      
++      if (n > dv_old_orig_len)
++	{
++	  dv_old.resize (n);
++
++	  for (octave_idx_type i = dv_old_orig_len; i < n; i++)
++	    dv_old.elem (i) = 1;
++	}
++
++      for (octave_idx_type i = 0; i < len; i++)
++	{
++	  if (index_in_bounds (ra_idx, dv_old))
++	    rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)];
++	  else
++	    rep->elem (i) = val;
++	  
++	  increment_index (ra_idx, dimensions);
++	}
++    }
++  else
++    for (octave_idx_type i = 0; i < len; i++)
++      rep->elem (i) = val;
++
++  if (--old_rep->count <= 0)
++    delete old_rep;
++}
++
++template <class T>
++Array<T>&
++Array<T>::insert (const Array<T>& a, octave_idx_type r, octave_idx_type c)
++{
++  if (ndims () == 2 && a.ndims () == 2)
++    insert2 (a, r, c);
++  else
++    insertN (a, r, c);
++
++  return *this;
++}
++
++
++template <class T>
++Array<T>&
++Array<T>::insert2 (const Array<T>& a, octave_idx_type r, octave_idx_type c)
++{
++  octave_idx_type a_rows = a.rows ();
++  octave_idx_type a_cols = a.cols ();
++
++  if (r < 0 || r + a_rows > rows () || c < 0 || c + a_cols > cols ())
++    {
++      (*current_liboctave_error_handler) ("range error for insert");
++      return *this;
++    }
++
++  for (octave_idx_type j = 0; j < a_cols; j++)
++    for (octave_idx_type i = 0; i < a_rows; i++)
++      elem (r+i, c+j) = a.elem (i, j);
++
++  return *this;
++}
++
++template <class T>
++Array<T>&
++Array<T>::insertN (const Array<T>& a, octave_idx_type r, octave_idx_type c)
++{
++  dim_vector dv = dims ();
++
++  dim_vector a_dv = a.dims ();
++
++  int n = a_dv.length ();
++
++  if (n == dimensions.length ())
++    {
++      Array<octave_idx_type> a_ra_idx (a_dv.length (), 0);
++
++      a_ra_idx.elem (0) = r;
++      a_ra_idx.elem (1) = c;
++
++      for (int i = 0; i < n; i++)
++	{
++	  if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) > dv(i))
++	    {
++	      (*current_liboctave_error_handler)
++		("Array<T>::insert: range error for insert");
++	      return *this;
++	    }
++	}
++
++      octave_idx_type n_elt = a.numel ();
++      
++      const T *a_data = a.data ();   
++   
++      octave_idx_type iidx = 0;
++	  
++      octave_idx_type a_rows = a_dv(0);
++
++      octave_idx_type this_rows = dv(0);
++	  
++      octave_idx_type numel_page = a_dv(0) * a_dv(1);	  
++
++      octave_idx_type count_pages = 0;
++	  
++      for (octave_idx_type i = 0; i < n_elt; i++)
++	{
++	  if (i != 0 && i % a_rows == 0)
++	    iidx += (this_rows - a_rows);	      
++	  
++	  if (i % numel_page == 0)
++	    iidx = c * dv(0) + r + dv(0) * dv(1) * count_pages++;
++
++	  elem (iidx++) = a_data[i];
++	}
++    }
++  else
++    (*current_liboctave_error_handler)
++      ("Array<T>::insert: invalid indexing operation");
++
++  return *this;
++}
++
++template <class T>
++Array<T>&
++Array<T>::insert (const Array<T>& a, const Array<octave_idx_type>& ra_idx)
++{
++  octave_idx_type n = ra_idx.length ();
++
++  if (n == dimensions.length ())
++    {
++      dim_vector dva = a.dims ();
++      dim_vector dv = dims ();
++      int len_a = dva.length ();
++      int non_full_dim = 0;
++
++      for (octave_idx_type i = 0; i < n; i++)
++	{
++	  if (ra_idx(i) < 0 || (ra_idx(i) + 
++				(i < len_a ? dva(i) : 1)) > dimensions(i))
++	    {
++	      (*current_liboctave_error_handler)
++		("Array<T>::insert: range error for insert");
++	      return *this;
++	    }
++
++	  if (dv(i) != (i < len_a ? dva(i) : 1))
++	    non_full_dim++;
++	}
++
++      if (dva.numel ())
++        {
++	  if (non_full_dim < 2)
++	    {
++	      // Special case for fast concatenation
++	      const T *a_data = a.data ();
++	      octave_idx_type numel_to_move = 1;
++	      octave_idx_type skip = 0;
++	      for (int i = 0; i < len_a; i++)
++		if (ra_idx(i) == 0 && dva(i) == dv(i))
++		  numel_to_move *= dva(i);
++		else
++		  {
++		    skip = numel_to_move * (dv(i) - dva(i));
++		    numel_to_move *= dva(i);
++		    break;
++		  }
++
++	      octave_idx_type jidx = ra_idx(n-1);
++	      for (int i = n-2; i >= 0; i--)
++		{
++		  jidx *= dv(i);
++		  jidx += ra_idx(i);
++		}
++
++	      octave_idx_type iidx = 0;
++	      octave_idx_type moves = dva.numel () / numel_to_move;
++	      for (octave_idx_type i = 0; i < moves; i++)
++		{
++		  for (octave_idx_type j = 0; j < numel_to_move; j++)
++		    elem (jidx++) = a_data[iidx++];
++		  jidx += skip;
++		}
++	    }
++	  else
++	    {
++	      // Generic code
++	      const T *a_data = a.data ();
++	      int nel = a.numel ();
++	      Array<octave_idx_type> a_idx (n, 0);
++
++	      for (int i = 0; i < nel; i++)
++		{
++		  int iidx = a_idx(n-1) + ra_idx(n-1);
++		  for (int j = n-2; j >= 0; j--)
++		    {
++		      iidx *= dv(j);
++		      iidx += a_idx(j) + ra_idx(j);
++		    }
++
++		  elem (iidx) = a_data[i];
++
++		  increment_index (a_idx, dva);
++		}
++	    }
++	}
++    }
++  else
++    (*current_liboctave_error_handler)
++      ("Array<T>::insert: invalid indexing operation");
++
++  return *this;
++}
++
++template <class T>
++Array<T>
++Array<T>::transpose (void) const
++{
++  assert (ndims () == 2);
++
++  octave_idx_type nr = dim1 ();
++  octave_idx_type nc = dim2 ();
++
++  if (nr > 1 && nc > 1)
++    {
++      Array<T> result (dim_vector (nc, nr));
++
++      for (octave_idx_type j = 0; j < nc; j++)
++	for (octave_idx_type i = 0; i < nr; i++)
++	  result.xelem (j, i) = xelem (i, j);
++
++      return result;
++    }
++  else
++    {
++      // Fast transpose for vectors and empty matrices
++      return Array<T> (*this, dim_vector (nc, nr));
++    }
++}
++
++template <class T>
++T *
++Array<T>::fortran_vec (void)
++{
++  if (rep->count > 1)
++    {
++      --rep->count;
++      rep = new typename Array<T>::ArrayRep (*rep);
++    }
++  return rep->data;
++}
++
++template <class T>
++void
++Array<T>::maybe_delete_dims (void)
++{
++  int nd = dimensions.length ();
++
++  dim_vector new_dims (1, 1);
++
++  bool delete_dims = true;
++
++  for (int i = nd - 1; i >= 0; i--)
++    {
++      if (delete_dims)
++        {
++          if (dimensions(i) != 1)
++	    {
++	      delete_dims = false;
++
++	      new_dims = dim_vector (i + 1, dimensions(i));
++	    }
++        }
++      else
++	new_dims(i) = dimensions(i);
++    }
++
++  if (nd != new_dims.length ())
++    dimensions = new_dims;
++}
++
++template <class T>
++void
++Array<T>::clear_index (void)
++{
++  delete [] idx;
++  idx = 0;
++  idx_count = 0;
++}
++
++template <class T>
++void
++Array<T>::set_index (const idx_vector& idx_arg)
++{
++  int nd = ndims ();
++
++  if (! idx && nd > 0)
++    idx = new idx_vector [nd];
++
++  if (idx_count < nd)
++    {
++      idx[idx_count++] = idx_arg;
++    }
++  else
++    {
++      idx_vector *new_idx = new idx_vector [idx_count+1];
++
++      for (int i = 0; i < idx_count; i++)
++	new_idx[i] = idx[i];
++
++      new_idx[idx_count++] = idx_arg;
++
++      delete [] idx;
++
++      idx = new_idx;
++    }
++}
++
++template <class T>
++void
++Array<T>::maybe_delete_elements (idx_vector& idx_arg)
++{
++  switch (ndims ())
++    {
++    case 1:
++      maybe_delete_elements_1 (idx_arg);
++      break;
++
++    case 2:
++      maybe_delete_elements_2 (idx_arg);
++      break;
++
++    default:
++      (*current_liboctave_error_handler)
++	("Array<T>::maybe_delete_elements: invalid operation");
++      break;
++    }
++}
++
++template <class T>
++void
++Array<T>::maybe_delete_elements_1 (idx_vector& idx_arg)
++{
++  octave_idx_type len = length ();
++
++  if (len == 0)
++    return;
++
++  if (idx_arg.is_colon_equiv (len, 1))
++    resize_no_fill (0);
++  else
++    {
++      int num_to_delete = idx_arg.length (len);
++
++      if (num_to_delete != 0)
++	{
++	  octave_idx_type new_len = len;
++
++	  octave_idx_type iidx = 0;
++
++	  for (octave_idx_type i = 0; i < len; i++)
++	    if (i == idx_arg.elem (iidx))
++	      {
++		iidx++;
++		new_len--;
++
++		if (iidx == num_to_delete)
++		  break;
++	      }
++
++	  if (new_len > 0)
++	    {
++	      T *new_data = new T [new_len];
++
++	      octave_idx_type ii = 0;
++	      iidx = 0;
++	      for (octave_idx_type i = 0; i < len; i++)
++		{
++		  if (iidx < num_to_delete && i == idx_arg.elem (iidx))
++		    iidx++;
++		  else
++		    {
++		      new_data[ii] = elem (i);
++		      ii++;
++		    }
++		}
++
++	      if (--rep->count <= 0)
++		delete rep;
++
++	      rep = new typename Array<T>::ArrayRep (new_data, new_len);
++
++	      dimensions.resize (1);
++	      dimensions(0) = new_len;
++	    }
++	  else
++	    (*current_liboctave_error_handler)
++	      ("A(idx) = []: index out of range");
++	}
++    }
++}
++
++template <class T>
++void
++Array<T>::maybe_delete_elements_2 (idx_vector& idx_arg)
++{
++  assert (ndims () == 2);
++
++  octave_idx_type nr = dim1 ();
++  octave_idx_type nc = dim2 ();
++
++  if (nr == 0 && nc == 0)
++    return;
++
++  octave_idx_type n;
++  if (nr == 1)
++    n = nc;
++  else if (nc == 1)
++    n = nr;
++  else
++    {
++      // Reshape to row vector for Matlab compatibility.
++
++      n = nr * nc;
++      nr = 1;
++      nc = n;
++    }
++
++  if (idx_arg.is_colon_equiv (n, 1))
++    {
++      // Either A(:) = [] or A(idx) = [] with idx enumerating all
++      // elements, so we delete all elements and return [](0x0).  To
++      // preserve the orientation of the vector, you have to use
++      // A(idx,:) = [] (delete rows) or A(:,idx) (delete columns).
++
++      resize_no_fill (0, 0);
++      return;
++    }
++
++  idx_arg.sort (true);
++
++  octave_idx_type num_to_delete = idx_arg.length (n);
++
++  if (num_to_delete != 0)
++    {
++      octave_idx_type new_n = n;
++
++      octave_idx_type iidx = 0;
++
++      for (octave_idx_type i = 0; i < n; i++)
++	if (i == idx_arg.elem (iidx))
++	  {
++	    iidx++;
++	    new_n--;
++
++	    if (iidx == num_to_delete)
++	      break;
++	  }
++
++      if (new_n > 0)
++	{
++	  T *new_data = new T [new_n];
++
++	  octave_idx_type ii = 0;
++	  iidx = 0;
++	  for (octave_idx_type i = 0; i < n; i++)
++	    {
++	      if (iidx < num_to_delete && i == idx_arg.elem (iidx))
++		iidx++;
++	      else
++		{
++		  new_data[ii] = elem (i);
++
++		  ii++;
++		}
++	    }
++
++	  if (--(Array<T>::rep)->count <= 0)
++	    delete Array<T>::rep;
++
++	  Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_n);
++
++	  dimensions.resize (2);
++
++	  if (nr == 1)
++	    {
++	      dimensions(0) = 1;
++	      dimensions(1) = new_n;
++	    }
++	  else
++	    {
++	      dimensions(0) = new_n;
++	      dimensions(1) = 1;
++	    }
++	}
++      else
++	(*current_liboctave_error_handler)
++	  ("A(idx) = []: index out of range");
++    }
++}
++
++template <class T>
++void
++Array<T>::maybe_delete_elements (idx_vector& idx_i, idx_vector& idx_j)
++{
++  assert (ndims () == 2);
++
++  octave_idx_type nr = dim1 ();
++  octave_idx_type nc = dim2 ();
++
++  if (nr == 0 && nc == 0)
++    return;
++
++  if (idx_i.is_colon ())
++    {
++      if (idx_j.is_colon ())
++	{
++	  // A(:,:) -- We are deleting columns and rows, so the result
++	  // is [](0x0).
++
++	  resize_no_fill (0, 0);
++	  return;
++	}
++
++      if (idx_j.is_colon_equiv (nc, 1))
++	{
++	  // A(:,j) -- We are deleting columns by enumerating them,
++	  // If we enumerate all of them, we should have zero columns
++	  // with the same number of rows that we started with.
++
++	  resize_no_fill (nr, 0);
++	  return;
++	}
++    }
++
++  if (idx_j.is_colon () && idx_i.is_colon_equiv (nr, 1))
++    {
++      // A(i,:) -- We are deleting rows by enumerating them.  If we
++      // enumerate all of them, we should have zero rows with the
++      // same number of columns that we started with.
++
++      resize_no_fill (0, nc);
++      return;
++    }
++
++  if (idx_i.is_colon_equiv (nr, 1))
++    {
++      if (idx_j.is_colon_equiv (nc, 1))
++	resize_no_fill (0, 0);
++      else
++	{
++	  idx_j.sort (true);
++
++	  octave_idx_type num_to_delete = idx_j.length (nc);
++
++	  if (num_to_delete != 0)
++	    {
++	      if (nr == 1 && num_to_delete == nc)
++		resize_no_fill (0, 0);
++	      else
++		{
++		  octave_idx_type new_nc = nc;
++
++		  octave_idx_type iidx = 0;
++
++		  for (octave_idx_type j = 0; j < nc; j++)
++		    if (j == idx_j.elem (iidx))
++		      {
++			iidx++;
++			new_nc--;
++
++			if (iidx == num_to_delete)
++			  break;
++		      }
++
++		  if (new_nc > 0)
++		    {
++		      T *new_data = new T [nr * new_nc];
++
++		      octave_idx_type jj = 0;
++		      iidx = 0;
++		      for (octave_idx_type j = 0; j < nc; j++)
++			{
++			  if (iidx < num_to_delete && j == idx_j.elem (iidx))
++			    iidx++;
++			  else
++			    {
++			      for (octave_idx_type i = 0; i < nr; i++)
++				new_data[nr*jj+i] = elem (i, j);
++			      jj++;
++			    }
++			}
++
++		      if (--(Array<T>::rep)->count <= 0)
++			delete Array<T>::rep;
++
++		      Array<T>::rep = new typename Array<T>::ArrayRep (new_data, nr * new_nc);
++
++		      dimensions.resize (2);
++		      dimensions(1) = new_nc;
++		    }
++		  else
++		    (*current_liboctave_error_handler)
++		      ("A(idx) = []: index out of range");
++		}
++	    }
++	}
++    }
++  else if (idx_j.is_colon_equiv (nc, 1))
++    {
++      if (idx_i.is_colon_equiv (nr, 1))
++	resize_no_fill (0, 0);
++      else
++	{
++	  idx_i.sort (true);
++
++	  octave_idx_type num_to_delete = idx_i.length (nr);
++
++	  if (num_to_delete != 0)
++	    {
++	      if (nc == 1 && num_to_delete == nr)
++		resize_no_fill (0, 0);
++	      else
++		{
++		  octave_idx_type new_nr = nr;
++
++		  octave_idx_type iidx = 0;
++
++		  for (octave_idx_type i = 0; i < nr; i++)
++		    if (i == idx_i.elem (iidx))
++		      {
++			iidx++;
++			new_nr--;
++
++			if (iidx == num_to_delete)
++			  break;
++		      }
++
++		  if (new_nr > 0)
++		    {
++		      T *new_data = new T [new_nr * nc];
++
++		      octave_idx_type ii = 0;
++		      iidx = 0;
++		      for (octave_idx_type i = 0; i < nr; i++)
++			{
++			  if (iidx < num_to_delete && i == idx_i.elem (iidx))
++			    iidx++;
++			  else
++			    {
++			      for (octave_idx_type j = 0; j < nc; j++)
++				new_data[new_nr*j+ii] = elem (i, j);
++			      ii++;
++			    }
++			}
++
++		      if (--(Array<T>::rep)->count <= 0)
++			delete Array<T>::rep;
++
++		      Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_nr * nc);
++
++		      dimensions.resize (2);
++		      dimensions(0) = new_nr;
++		    }
++		  else
++		    (*current_liboctave_error_handler)
++		      ("A(idx) = []: index out of range");
++		}
++	    }
++	}
++    }
++}
++
++template <class T>
++void
++Array<T>::maybe_delete_elements (idx_vector&, idx_vector&, idx_vector&)
++{
++  assert (0);
++}
++
++template <class T>
++void
++Array<T>::maybe_delete_elements (Array<idx_vector>& ra_idx, const T& rfv)
++{
++  octave_idx_type n_idx = ra_idx.length ();
++
++  dim_vector lhs_dims = dims ();
++
++  if (lhs_dims.all_zero ())
++    return;
++
++  int n_lhs_dims = lhs_dims.length ();
++
++  Array<int> idx_is_colon (n_idx, 0);
++
++  Array<int> idx_is_colon_equiv (n_idx, 0);
++
++  // Initialization of colon arrays.
++
++  for (octave_idx_type i = 0; i < n_idx; i++)
++    {
++      idx_is_colon_equiv(i) = ra_idx(i).is_colon_equiv (lhs_dims(i), 1);
++
++      idx_is_colon(i) = ra_idx(i).is_colon ();
++    }
++
++  bool idx_ok = true;
++
++  // Check for index out of bounds.
++
++  for (octave_idx_type i = 0 ; i < n_idx - 1; i++)
++    {
++      if (! (idx_is_colon(i) || idx_is_colon_equiv(i)))
++	{
++	  ra_idx(i).sort (true);
++
++	  if (ra_idx(i).max () > lhs_dims(i))
++	    {
++	      (*current_liboctave_error_handler)
++		("index exceeds array dimensions");
++
++	      idx_ok = false;
++	      break;
++	    }
++	  else if (ra_idx(i).min () < 0) // I believe this is checked elsewhere
++	    {
++	      (*current_liboctave_error_handler)
++		("index must be one or larger");
++
++	      idx_ok = false;
++	      break;
++	    }
++	}
++    }
++
++  if (n_idx <= n_lhs_dims)
++    {
++      octave_idx_type last_idx = ra_idx(n_idx-1).max ();
++
++      octave_idx_type sum_el = lhs_dims(n_idx-1);
++
++      for (octave_idx_type i = n_idx; i < n_lhs_dims; i++)
++	  sum_el *= lhs_dims(i);
++
++      if (last_idx > sum_el - 1)
++	{
++	  (*current_liboctave_error_handler)
++	    ("index exceeds array dimensions");
++
++	  idx_ok = false;
++	}
++    }
++
++  if (idx_ok)
++    {
++      if (n_idx > 1
++	  && (all_ones (idx_is_colon) || all_ones (idx_is_colon_equiv)))
++	{
++	  // A(:,:,:) -- we are deleting elements in all dimensions, so
++	  // the result is [](0x0x0).
++
++	  dim_vector zeros;
++	  zeros.resize (n_idx);
++
++	  for (int i = 0; i < n_idx; i++)
++	    zeros(i) = 0;
++
++	  resize (zeros, rfv);
++	}
++
++      else if (n_idx > 1
++	       && num_ones (idx_is_colon) == n_idx - 1
++	       && num_ones (idx_is_colon_equiv) == n_idx)
++	{
++	  // A(:,:,j) -- we are deleting elements in one dimension by
++	  // enumerating them.
++	  //
++	  // If we enumerate all of the elements, we should have zero
++	  // elements in that dimension with the same number of elements
++	  // in the other dimensions that we started with.
++
++	  dim_vector temp_dims;
++	  temp_dims.resize (n_idx);
++
++	  for (octave_idx_type i = 0; i < n_idx; i++)
++	    {
++	      if (idx_is_colon (i))
++		temp_dims(i) =  lhs_dims(i);
++	      else
++		temp_dims(i) = 0;
++	    }
++
++	  resize (temp_dims);
++	}
++      else if (n_idx > 1 && num_ones (idx_is_colon) == n_idx - 1)
++	{
++	  // We have colons in all indices except for one.
++	  // This index tells us which slice to delete
++
++	  if (n_idx < n_lhs_dims)
++	    {
++	      // Collapse dimensions beyond last index.
++
++	      if (! (ra_idx(n_idx-1).is_colon ()))
++		(*current_liboctave_warning_with_id_handler)
++		  ("Octave:fortran-indexing",
++		   "fewer indices than dimensions for N-d array");
++
++	      for (octave_idx_type i = n_idx; i < n_lhs_dims; i++)
++		lhs_dims(n_idx-1) *= lhs_dims(i);
++
++	      lhs_dims.resize (n_idx);
++
++	      // Reshape *this.
++	      dimensions = lhs_dims;
++	    }
++
++	  int non_col = 0;
++
++	  // Find the non-colon column.
++
++	  for (octave_idx_type i = 0; i < n_idx; i++)
++	    {
++	      if (! idx_is_colon(i))
++		non_col = i;
++	    }
++
++	  // The length of the non-colon dimension.
++
++	  octave_idx_type non_col_dim = lhs_dims (non_col);
++
++	  octave_idx_type num_to_delete = ra_idx(non_col).length (lhs_dims (non_col));
++
++	  if (num_to_delete > 0)
++	    {
++	      int temp = lhs_dims.num_ones ();
++
++	      if (non_col_dim == 1)
++		temp--;
++
++	      if (temp == n_idx - 1 && num_to_delete == non_col_dim)
++		{
++		  // We have A with (1x1x4), where A(1,:,1:4)
++		  // Delete all (0x0x0)
++
++		  dim_vector zero_dims (n_idx, 0);
++
++		  resize (zero_dims, rfv);
++		}
++	      else
++		{
++		  // New length of non-colon dimension
++		  // (calculated in the next for loop)
++
++		  octave_idx_type new_dim = non_col_dim;
++
++		  octave_idx_type iidx = 0;
++
++		  for (octave_idx_type j = 0; j < non_col_dim; j++)
++		    if (j == ra_idx(non_col).elem (iidx))
++		      {
++			iidx++;
++
++			new_dim--;
++
++			if (iidx == num_to_delete)
++			  break;
++		      }
++
++		  // Creating the new nd array after deletions.
++
++		  if (new_dim > 0)
++		    {
++		      // Calculate number of elements in new array.
++
++		      octave_idx_type num_new_elem=1;
++
++		      for (int i = 0; i < n_idx; i++)
++			{
++			  if (i == non_col)
++			    num_new_elem *= new_dim;
++
++			  else
++			    num_new_elem *= lhs_dims(i);
++			}
++
++		      T *new_data = new T [num_new_elem];
++
++		      Array<octave_idx_type> result_idx (n_lhs_dims, 0);
++
++		      dim_vector new_lhs_dim = lhs_dims;
++
++		      new_lhs_dim(non_col) = new_dim;
++
++		      octave_idx_type num_elem = 1;
++
++		      octave_idx_type numidx = 0;
++
++		      octave_idx_type n = length ();
++
++		      for (int i = 0; i < n_lhs_dims; i++)
++			if (i != non_col)
++			  num_elem *= lhs_dims(i);
++
++		      num_elem *= ra_idx(non_col).capacity ();
++
++		      for (octave_idx_type i = 0; i < n; i++)
++			{
++			  if (numidx < num_elem
++			      && is_in (result_idx(non_col), ra_idx(non_col)))
++			    numidx++;
++
++			  else
++			    {
++			      Array<octave_idx_type> temp_result_idx = result_idx;
++
++			      octave_idx_type num_lgt = how_many_lgt (result_idx(non_col),
++							  ra_idx(non_col));
++
++			      temp_result_idx(non_col) -= num_lgt;
++
++			      octave_idx_type kidx
++				= ::compute_index (temp_result_idx, new_lhs_dim);
++
++			      new_data[kidx] = elem (result_idx);
++			    }
++
++			  increment_index (result_idx, lhs_dims);
++			}
++
++		      if (--rep->count <= 0)
++			delete rep;
++
++		      rep = new typename Array<T>::ArrayRep (new_data,
++							     num_new_elem);
++
++		      dimensions = new_lhs_dim;
++		    }
++		}
++	    }
++	}
++      else if (n_idx == 1)
++	{
++	  // This handle cases where we only have one index (not
++	  // colon).  The index denotes which elements we should
++	  // delete in the array which can be of any dimension. We
++	  // return a column vector, except for the case where we are
++	  // operating on a row vector. The elements are numerated
++	  // column by column.
++	  //
++	  // A(3,3,3)=2;
++	  // A(3:5) = []; A(6)=[]
++
++	  octave_idx_type lhs_numel = numel ();
++
++	  idx_vector idx_vec = ra_idx(0);
++
++	  idx_vec.freeze (lhs_numel, 0, true);
++      
++	  idx_vec.sort (true);
++
++	  octave_idx_type num_to_delete = idx_vec.length (lhs_numel);
++
++	  if (num_to_delete > 0)
++	    {
++	      octave_idx_type new_numel = lhs_numel - num_to_delete;
++
++	      T *new_data = new T[new_numel];
++
++	      Array<octave_idx_type> lhs_ra_idx (ndims (), 0);
++
++	      octave_idx_type ii = 0;
++	      octave_idx_type iidx = 0;
++
++	      for (octave_idx_type i = 0; i < lhs_numel; i++)
++		{
++		  if (iidx < num_to_delete && i == idx_vec.elem (iidx))
++		    {
++		      iidx++;
++		    }
++		  else
++		    {
++		      new_data[ii++] = elem (lhs_ra_idx);
++		    }
++
++		  increment_index (lhs_ra_idx, lhs_dims);
++		}
++
++	      if (--(Array<T>::rep)->count <= 0)
++		delete Array<T>::rep;
++
++	      Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_numel);
++
++	      dimensions.resize (2);
++
++	      if (lhs_dims.length () == 2 && lhs_dims(1) == 1)
++		{
++		  dimensions(0) = new_numel;
++		  dimensions(1) = 1;
++		}
++	      else
++		{
++		  dimensions(0) = 1;
++		  dimensions(1) = new_numel;
++		}
++	    }
++	}
++      else if (num_ones (idx_is_colon) < n_idx)
++	{
++	  (*current_liboctave_error_handler)
++	    ("a null assignment can have only one non-colon index");
++	}
++    }
++}
++
++template <class T>
++Array<T>
++Array<T>::value (void)
++{
++  Array<T> retval;
++
++  int n_idx = index_count ();
++
++  if (n_idx == 2)
++    {
++      idx_vector *tmp = get_idx ();
++
++      idx_vector idx_i = tmp[0];
++      idx_vector idx_j = tmp[1];
++
++      retval = index (idx_i, idx_j);
++    }
++  else if (n_idx == 1)
++    {
++      retval = index (idx[0]);
++    }
++  else
++    (*current_liboctave_error_handler)
++      ("Array<T>::value: invalid number of indices specified");
++
++  clear_index ();
++
++  return retval;
++}
++
++template <class T>
++Array<T>
++Array<T>::index (idx_vector& idx_arg, int resize_ok, const T& rfv) const
++{
++  Array<T> retval;
++
++  dim_vector dv = idx_arg.orig_dimensions ();
++
++  if (dv.length () > 2 || ndims () > 2)
++    retval = indexN (idx_arg, resize_ok, rfv);
++  else
++    {
++      switch (ndims ())
++	{
++	case 1:
++	  retval = index1 (idx_arg, resize_ok, rfv);
++	  break;
++
++	case 2:
++	  retval = index2 (idx_arg, resize_ok, rfv);
++	  break;
++
++	default:
++	  (*current_liboctave_error_handler)
++	    ("invalid array (internal error)");
++	  break;
++	}
++    }
++
++  return retval;
++}
++
++template <class T>
++Array<T>
++Array<T>::index1 (idx_vector& idx_arg, int resize_ok, const T& rfv) const
++{
++  Array<T> retval;
++
++  octave_idx_type len = length ();
++
++  octave_idx_type n = idx_arg.freeze (len, "vector", resize_ok);
++
++  if (idx_arg)
++    {
++      if (idx_arg.is_colon_equiv (len))
++	{
++	  retval = *this;
++	}
++      else if (n == 0)
++	{
++	  retval.resize_no_fill (0);
++	}
++      else if (len == 1 && n > 1
++	       && idx_arg.one_zero_only ()
++	       && idx_arg.ones_count () == n)
++	{
++	  retval.resize_and_fill (n, elem (0));
++	}
++      else
++	{
++	  retval.resize_no_fill (n);
++
++	  for (octave_idx_type i = 0; i < n; i++)
++	    {
++	      octave_idx_type ii = idx_arg.elem (i);
++	      if (ii >= len)
++		retval.elem (i) = rfv;
++	      else
++		retval.elem (i) = elem (ii);
++	    }
++	}
++    }
++
++  // idx_vector::freeze() printed an error message for us.
++
++  return retval;
++}
++
++template <class T>
++Array<T>
++Array<T>::index2 (idx_vector& idx_arg, int resize_ok, const T& rfv) const
++{
++  Array<T> retval;
++
++  assert (ndims () == 2);
++
++  octave_idx_type nr = dim1 ();
++  octave_idx_type nc = dim2 ();
++
++  octave_idx_type orig_len = nr * nc;
++
++  dim_vector idx_orig_dims = idx_arg.orig_dimensions ();
++
++  octave_idx_type idx_orig_rows = idx_arg.orig_rows ();
++  octave_idx_type idx_orig_columns = idx_arg.orig_columns ();
++
++  if (idx_arg.is_colon ())
++    {
++      // Fast magic colon processing.
++
++      octave_idx_type result_nr = nr * nc;
++      octave_idx_type result_nc = 1;
++
++      retval = Array<T> (*this, dim_vector (result_nr, result_nc));
++    }
++  else if (nr == 1 && nc == 1)
++    {
++      Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok);
++
++      octave_idx_type len = tmp.length ();
++
++      if (len == 0 && idx_arg.one_zero_only ())
++	retval = Array<T> (tmp, dim_vector (0, 0));
++      else if (len >= idx_orig_dims.numel ())
++	retval = Array<T> (tmp, idx_orig_dims);
++    }
++  else if (nr == 1 || nc == 1)
++    {
++      // If indexing a vector with a matrix, return value has same
++      // shape as the index.  Otherwise, it has same orientation as
++      // indexed object.
++
++      Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok);
++
++      octave_idx_type len = tmp.length ();
++
++      if ((len != 0 && idx_arg.one_zero_only ())
++	  || idx_orig_rows == 1 || idx_orig_columns == 1)
++	{
++	  if (nr == 1)
++	    retval = Array<T> (tmp, dim_vector (1, len));
++	  else
++	    retval = Array<T> (tmp, dim_vector (len, 1));
++	}
++      else if (len >= idx_orig_dims.numel ())
++	retval = Array<T> (tmp, idx_orig_dims);
++    }
++  else
++    {
++      if (! (idx_arg.one_zero_only ()
++	     && idx_orig_rows == nr
++	     && idx_orig_columns == nc))
++	(*current_liboctave_warning_with_id_handler)
++	  ("Octave:fortran-indexing", "single index used for matrix");
++
++      // This code is only for indexing matrices.  The vector
++      // cases are handled above.
++
++      idx_arg.freeze (nr * nc, "matrix", resize_ok);
++
++      if (idx_arg)
++	{
++	  octave_idx_type result_nr = idx_orig_rows;
++	  octave_idx_type result_nc = idx_orig_columns;
++
++	  if (idx_arg.one_zero_only ())
++	    {
++	      result_nr = idx_arg.ones_count ();
++	      result_nc = (result_nr > 0 ? 1 : 0);
++	    }
++
++	  retval.resize_no_fill (result_nr, result_nc);
++
++	  octave_idx_type k = 0;
++	  for (octave_idx_type j = 0; j < result_nc; j++)
++	    {
++	      for (octave_idx_type i = 0; i < result_nr; i++)
++		{
++		  octave_idx_type ii = idx_arg.elem (k++);
++		  if (ii >= orig_len)
++		    retval.elem (i, j) = rfv;
++		  else
++		    {
++		      octave_idx_type fr = ii % nr;
++		      octave_idx_type fc = (ii - fr) / nr;
++		      retval.elem (i, j) = elem (fr, fc);
++		    }
++		}
++	    }
++	}
++      // idx_vector::freeze() printed an error message for us.
++    }
++
++  return retval;
++}
++
++template <class T>
++Array<T>
++Array<T>::indexN (idx_vector& ra_idx, int resize_ok, const T& rfv) const
++{
++  Array<T> retval;
++
++  dim_vector dv = dims ();
++
++  int n_dims = dv.length ();
++
++  octave_idx_type orig_len = dv.numel ();
++
++  dim_vector idx_orig_dims = ra_idx.orig_dimensions ();
++
++  if (ra_idx.is_colon ())
++    {
++      // Fast magic colon processing.
++
++      retval = Array<T> (*this, dim_vector (orig_len, 1));
++    }
++  else
++    {
++      bool vec_equiv = vector_equivalent (dv);
++
++      if (! vec_equiv
++	  && ! (ra_idx.is_colon ()
++		|| (ra_idx.one_zero_only () && idx_orig_dims == dv)))
++	(*current_liboctave_warning_with_id_handler)
++	  ("Octave:fortran-indexing", "single index used for N-d array");
++
++      octave_idx_type frozen_len
++	= ra_idx.freeze (orig_len, "nd-array", resize_ok);
++
++      if (ra_idx)
++	{
++	  dim_vector result_dims;
++
++	  if (vec_equiv)
++	    {
++	      result_dims = dv;
++
++	      for (int i = 0; i < n_dims; i++)
++		{
++		  if (result_dims(i) != 1)
++		    {
++		      // All but this dim should be one.
++		      result_dims(i) = frozen_len;
++		      break;
++		    }
++		}
++	    }
++	  else
++	    result_dims = idx_orig_dims;
++
++	  if (ra_idx.one_zero_only ())
++	    {
++	      result_dims.resize (2);
++	      octave_idx_type ntot = ra_idx.ones_count ();
++	      result_dims(0) = ntot;
++	      result_dims(1) = (ntot > 0 ? 1 : 0);
++	    }
++
++	  result_dims.chop_trailing_singletons ();
++
++	  retval.resize (result_dims);
++
++	  octave_idx_type n = result_dims.numel ();
++
++	  octave_idx_type k = 0;
++
++	  for (octave_idx_type i = 0; i < n; i++)
++	    {
++	      octave_idx_type ii = ra_idx.elem (k++);
++
++	      if (ii >= orig_len)
++	        retval.elem (i) = rfv;
++	      else
++		retval.elem (i) = elem (ii);
++	    }
++	}
++    }
++
++  return retval;
++}
++
++template <class T>
++Array<T>
++Array<T>::index (idx_vector& idx_i, idx_vector& idx_j, int resize_ok,
++		 const T& rfv) const
++{
++  Array<T> retval;
++
++  assert (ndims () == 2);
++
++  octave_idx_type nr = dim1 ();
++  octave_idx_type nc = dim2 ();
++
++  octave_idx_type n = idx_i.freeze (nr, "row", resize_ok);
++  octave_idx_type m = idx_j.freeze (nc, "column", resize_ok);
++
++  if (idx_i && idx_j)
++    {
++      if (idx_i.orig_empty () || idx_j.orig_empty () || n == 0 || m == 0)
++	{
++	  retval.resize_no_fill (n, m);
++	}
++      else if (idx_i.is_colon_equiv (nr) && idx_j.is_colon_equiv (nc))
++	{
++	  retval = *this;
++	}
++      else
++	{
++	  retval.resize_no_fill (n, m);
++
++	  for (octave_idx_type j = 0; j < m; j++)
++	    {
++	      octave_idx_type jj = idx_j.elem (j);
++	      for (octave_idx_type i = 0; i < n; i++)
++		{
++		  octave_idx_type ii = idx_i.elem (i);
++		  if (ii >= nr || jj >= nc)
++		    retval.elem (i, j) = rfv;
++		  else
++		    retval.elem (i, j) = elem (ii, jj);
++		}
++	    }
++	}
++    }
++
++  // idx_vector::freeze() printed an error message for us.
++
++  return retval;
++}
++
++template <class T>
++Array<T>
++Array<T>::index (Array<idx_vector>& ra_idx, int resize_ok, const T& rfv) const
++{
++  // This function handles all calls with more than one idx.
++  // For (3x3x3), the call can be A(2,5), A(2,:,:), A(3,2,3) etc.
++
++  Array<T> retval;
++
++  int n_dims = dimensions.length ();
++
++  // Remove trailing singletons in ra_idx, but leave at least ndims
++  // elements.
++
++  octave_idx_type ra_idx_len = ra_idx.length ();
++
++  bool trim_trailing_singletons = true;
++  for (octave_idx_type j = ra_idx_len; j > n_dims; j--)
++    {
++      idx_vector iidx = ra_idx (ra_idx_len-1);
++      if (iidx.capacity () == 1 && trim_trailing_singletons)
++	ra_idx_len--;
++      else
++	trim_trailing_singletons = false;
++
++      if (! resize_ok)
++	{
++	  for (octave_idx_type i = 0; i < iidx.capacity (); i++)
++	    if (iidx (i) != 0)
++	      {
++		(*current_liboctave_error_handler)
++		  ("index exceeds N-d array dimensions");
++
++		return retval;
++	      }
++	}
++    }
++
++  ra_idx.resize (ra_idx_len);
++
++  dim_vector new_dims = dims ();
++  dim_vector frozen_lengths;
++
++  if (! any_orig_empty (ra_idx) && ra_idx_len < n_dims)
++    frozen_lengths = short_freeze (ra_idx, dimensions, resize_ok);
++  else
++    {
++      new_dims.resize (ra_idx_len, 1);
++      frozen_lengths = freeze (ra_idx, new_dims, resize_ok);
++    }
++
++  if (all_ok (ra_idx))
++    {
++      if (any_orig_empty (ra_idx) || frozen_lengths.any_zero ())
++	{
++	  frozen_lengths.chop_trailing_singletons ();
++
++	  retval.resize (frozen_lengths);
++	}
++      else if (frozen_lengths.length () == n_dims
++	       && all_colon_equiv (ra_idx, dimensions))
++	{
++	  retval = *this;
++	}
++      else
++	{
++	  dim_vector frozen_lengths_for_resize = frozen_lengths;
++
++	  frozen_lengths_for_resize.chop_trailing_singletons ();
++
++	  retval.resize (frozen_lengths_for_resize);
++
++	  octave_idx_type n = retval.length ();
++
++	  Array<octave_idx_type> result_idx (ra_idx.length (), 0);
++
++	  Array<octave_idx_type> elt_idx;
++
++	  for (octave_idx_type i = 0; i < n; i++)
++	    {
++	      elt_idx = get_elt_idx (ra_idx, result_idx);
++
++	      octave_idx_type numelem_elt = get_scalar_idx (elt_idx, new_dims);
++
++	      if (numelem_elt >= length () || numelem_elt < 0)
++		retval.elem (i) = rfv;
++	      else
++		retval.elem (i) = elem (numelem_elt);
++
++	      increment_index (result_idx, frozen_lengths);
++
++	    }
++	}
++    }
++
++  return retval;
++}
++
++// FIXME -- this is a mess.
++
++template <class LT, class RT>
++int
++assign (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv)
++{
++  int retval = 0;
++
++  switch (lhs.ndims ())
++    {
++    case 0:
++      {
++	if (lhs.index_count () < 3)
++	  {
++	    // kluge...
++	    lhs.resize_no_fill (0, 0);
++	    retval = assign2 (lhs, rhs, rfv);
++	  }
++	else
++	  retval = assignN (lhs, rhs, rfv);
++      }
++      break;
++
++    case 1:
++      {
++	if (lhs.index_count () > 1)
++	  retval = assignN (lhs, rhs, rfv);
++	else
++	  retval = assign1 (lhs, rhs, rfv);
++      }
++      break;
++
++    case 2:
++      {
++	if (lhs.index_count () > 2)
++	  retval = assignN (lhs, rhs, rfv);
++	else
++	  retval = assign2 (lhs, rhs, rfv);
++      }
++      break;
++
++    default:
++      retval = assignN (lhs, rhs, rfv);
++      break;
++    }
++
++  return retval;
++}
++
++template <class LT, class RT>
++int
++assign1 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv)
++{
++  int retval = 1;
++
++  idx_vector *tmp = lhs.get_idx ();
++
++  idx_vector lhs_idx = tmp[0];
++
++  octave_idx_type lhs_len = lhs.length ();
++  octave_idx_type rhs_len = rhs.length ();
++
++  octave_idx_type n = lhs_idx.freeze (lhs_len, "vector", true);
++
++  if (n != 0)
++    {
++      if (rhs_len == n || rhs_len == 1)
++	{
++	  octave_idx_type max_idx = lhs_idx.max () + 1;
++	  if (max_idx > lhs_len)
++	    lhs.resize_and_fill (max_idx, rfv);
++	}
++
++      if (rhs_len == n)
++	{
++	  for (octave_idx_type i = 0; i < n; i++)
++	    {
++	      octave_idx_type ii = lhs_idx.elem (i);
++	      lhs.elem (ii) = rhs.elem (i);
++	    }
++	}
++      else if (rhs_len == 1)
++	{
++	  RT scalar = rhs.elem (0);
++
++	  for (octave_idx_type i = 0; i < n; i++)
++	    {
++	      octave_idx_type ii = lhs_idx.elem (i);
++	      lhs.elem (ii) = scalar;
++	    }
++	}
++      else
++	{
++	  (*current_liboctave_error_handler)
++	    ("A(I) = X: X must be a scalar or a vector with same length as I");
++
++	  retval = 0;
++	}
++    }
++  else if (lhs_idx.is_colon ())
++    {
++      if (lhs_len == 0)
++	{
++	  lhs.resize_no_fill (rhs_len);
++
++	  for (octave_idx_type i = 0; i < rhs_len; i++)
++	    lhs.elem (i) = rhs.elem (i);
++	}
++      else
++	(*current_liboctave_error_handler)
++	  ("A(:) = X: A must be the same size as X");
++    }
++  else if (! (rhs_len == 1 || rhs_len == 0))
++    {
++      (*current_liboctave_error_handler)
++	("A([]) = X: X must also be an empty matrix or a scalar");
++
++      retval = 0;
++    }
++
++  lhs.clear_index ();
++
++  return retval;
++}
++
++#define MAYBE_RESIZE_LHS \
++  do \
++    { \
++      octave_idx_type max_row_idx = idx_i_is_colon ? rhs_nr : idx_i.max () + 1; \
++      octave_idx_type max_col_idx = idx_j_is_colon ? rhs_nc : idx_j.max () + 1; \
++ \
++      octave_idx_type new_nr = max_row_idx > lhs_nr ? max_row_idx : lhs_nr; \
++      octave_idx_type new_nc = max_col_idx > lhs_nc ? max_col_idx : lhs_nc; \
++ \
++      lhs.resize_and_fill (new_nr, new_nc, rfv); \
++    } \
++  while (0)
++
++template <class LT, class RT>
++int
++assign2 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv)
++{
++  int retval = 1;
++
++  int n_idx = lhs.index_count ();
++
++  octave_idx_type lhs_nr = lhs.rows ();
++  octave_idx_type lhs_nc = lhs.cols ();
++
++  Array<RT> xrhs = rhs;
++
++  octave_idx_type rhs_nr = xrhs.rows ();
++  octave_idx_type rhs_nc = xrhs.cols ();
++
++  if (xrhs.ndims () > 2)
++    {
++      xrhs = xrhs.squeeze ();
++
++      dim_vector dv_tmp = xrhs.dims ();
++
++      switch (dv_tmp.length ())
++	{
++	case 1:
++	  // FIXME -- this case should be unnecessary, because
++	  // squeeze should always return an object with 2 dimensions.
++	  if (rhs_nr == 1)
++	    rhs_nc = dv_tmp.elem (0);
++	  break;
++
++	case 2:
++	  rhs_nr = dv_tmp.elem (0);
++	  rhs_nc = dv_tmp.elem (1);
++	  break;
++
++	default:
++	  (*current_liboctave_error_handler)
++	    ("Array<T>::assign2: Dimension mismatch");
++	  return 0;
++	}
++    }
++
++  idx_vector *tmp = lhs.get_idx ();
++
++  idx_vector idx_i;
++  idx_vector idx_j;
++
++  if (n_idx > 1)
++    idx_j = tmp[1];
++
++  if (n_idx > 0)
++    idx_i = tmp[0];
++
++  if (n_idx == 2)
++    {
++      octave_idx_type n = idx_i.freeze (lhs_nr, "row", true);
++
++      octave_idx_type m = idx_j.freeze (lhs_nc, "column", true);
++
++      int idx_i_is_colon = idx_i.is_colon ();
++      int idx_j_is_colon = idx_j.is_colon ();
++
++      if (idx_i_is_colon)
++	n = lhs_nr > 0 ? lhs_nr : rhs_nr;
++
++      if (idx_j_is_colon)
++	m = lhs_nc > 0 ? lhs_nc : rhs_nc;
++
++      if (idx_i && idx_j)
++	{
++	  if (rhs_nr == 0 && rhs_nc == 0)
++	    {
++	      lhs.maybe_delete_elements (idx_i, idx_j);
++	    }
++	  else
++	    {
++	      if (rhs_nr == 1 && rhs_nc == 1 && n >= 0 && m >= 0)
++		{
++		  // No need to do anything if either of the indices
++		  // are empty.
++
++		  if (n > 0 && m > 0)
++		    {
++		      MAYBE_RESIZE_LHS;
++
++		      RT scalar = xrhs.elem (0, 0);
++
++		      for (octave_idx_type j = 0; j < m; j++)
++			{
++			  octave_idx_type jj = idx_j.elem (j);
++			  for (octave_idx_type i = 0; i < n; i++)
++			    {
++			      octave_idx_type ii = idx_i.elem (i);
++			      lhs.elem (ii, jj) = scalar;
++			    }
++			}
++		    }
++		}
++	      else if (n == rhs_nr && m == rhs_nc)
++		{
++		  if (n > 0 && m > 0)
++		    {
++		      MAYBE_RESIZE_LHS;
++
++		      for (octave_idx_type j = 0; j < m; j++)
++			{
++			  octave_idx_type jj = idx_j.elem (j);
++			  for (octave_idx_type i = 0; i < n; i++)
++			    {
++			      octave_idx_type ii = idx_i.elem (i);
++			      lhs.elem (ii, jj) = xrhs.elem (i, j);
++			    }
++			}
++		    }
++		}
++	      else if (n == 0 && m == 0)
++		{
++		  if (! ((rhs_nr == 1 && rhs_nc == 1)
++			 || (rhs_nr == 0 || rhs_nc == 0)))
++		    {
++		      (*current_liboctave_error_handler)
++		("A([], []) = X: X must be an empty matrix or a scalar");
++
++		      retval = 0;
++		    }
++		}
++	      else
++		{
++		  (*current_liboctave_error_handler)
++    ("A(I, J) = X: X must be a scalar or the number of elements in I must");
++		  (*current_liboctave_error_handler)
++    ("match the number of rows in X and the number of elements in J must");
++		  (*current_liboctave_error_handler)
++    ("match the number of columns in X");
++
++		  retval = 0;
++		}
++	    }
++	}
++      // idx_vector::freeze() printed an error message for us.
++    }
++  else if (n_idx == 1)
++    {
++      int lhs_is_empty = lhs_nr == 0 || lhs_nc == 0;
++
++      if (lhs_is_empty || (lhs_nr == 1 && lhs_nc == 1))
++	{
++	  octave_idx_type lhs_len = lhs.length ();
++
++	  octave_idx_type n = idx_i.freeze (lhs_len, 0, true);
++
++	  if (idx_i)
++	    {
++	      if (rhs_nr == 0 && rhs_nc == 0)
++		{
++		  if (n != 0 && (lhs_nr != 0 || lhs_nc != 0))
++		    lhs.maybe_delete_elements (idx_i);
++		}
++	      else
++		{
++		  if (lhs_is_empty
++		      && idx_i.is_colon ()
++		      && ! (rhs_nr == 1 || rhs_nc == 1))
++		    {
++		      (*current_liboctave_warning_with_id_handler)
++			("Octave:fortran-indexing",
++			 "A(:) = X: X is not a vector or scalar");
++		    }
++		  else
++		    {
++		      octave_idx_type idx_nr = idx_i.orig_rows ();
++		      octave_idx_type idx_nc = idx_i.orig_columns ();
++
++		      if (! (rhs_nr == idx_nr && rhs_nc == idx_nc))
++			(*current_liboctave_warning_with_id_handler)
++			  ("Octave:fortran-indexing",
++			   "A(I) = X: X does not have same shape as I");
++		    }
++
++		  if (assign1 (lhs, xrhs, rfv))
++		    {
++		      octave_idx_type len = lhs.length ();
++
++		      if (len > 0)
++			{
++			  // The following behavior is much simplified
++			  // over previous versions of Octave.  It
++			  // seems to be compatible with Matlab.
++
++			  lhs.dimensions = dim_vector (1, lhs.length ());
++			}
++		      else
++			lhs.dimensions = dim_vector (0, 0);
++		    }
++		  else
++		    retval = 0;
++		}
++	    }
++	  // idx_vector::freeze() printed an error message for us.
++	}
++      else if (lhs_nr == 1)
++	{
++	  idx_i.freeze (lhs_nc, "vector", true);
++
++	  if (idx_i)
++	    {
++	      if (rhs_nr == 0 && rhs_nc == 0)
++		lhs.maybe_delete_elements (idx_i);
++	      else
++		{
++		  if (assign1 (lhs, xrhs, rfv))
++		    lhs.dimensions = dim_vector (1, lhs.length ());
++		  else
++		    retval = 0;
++		}
++	    }
++	  // idx_vector::freeze() printed an error message for us.
++	}
++      else if (lhs_nc == 1)
++	{
++	  idx_i.freeze (lhs_nr, "vector", true);
++
++	  if (idx_i)
++	    {
++	      if (rhs_nr == 0 && rhs_nc == 0)
++		lhs.maybe_delete_elements (idx_i);
++	      else
++		{
++		  if (assign1 (lhs, xrhs, rfv))
++		    lhs.dimensions = dim_vector (lhs.length (), 1);
++		  else
++		    retval = 0;
++		}
++	    }
++	  // idx_vector::freeze() printed an error message for us.
++	}
++      else
++	{
++	  if (! (idx_i.is_colon ()
++		 || (idx_i.one_zero_only ()
++		     && idx_i.orig_rows () == lhs_nr
++		     && idx_i.orig_columns () == lhs_nc)))
++	    (*current_liboctave_warning_with_id_handler)
++	      ("Octave:fortran-indexing", "single index used for matrix");
++
++	  octave_idx_type len = idx_i.freeze (lhs_nr * lhs_nc, "matrix");
++
++	  if (idx_i)
++	    {
++	      if (rhs_nr == 0 && rhs_nc == 0)
++		lhs.maybe_delete_elements (idx_i);
++	      else if (len == 0)
++		{
++		  if (! ((rhs_nr == 1 && rhs_nc == 1)
++			 || (rhs_nr == 0 || rhs_nc == 0)))
++		    (*current_liboctave_error_handler)
++		      ("A([]) = X: X must be an empty matrix or scalar");
++		}
++	      else if (len == rhs_nr * rhs_nc)
++		{
++		  octave_idx_type k = 0;
++		  for (octave_idx_type j = 0; j < rhs_nc; j++)
++		    {
++		      for (octave_idx_type i = 0; i < rhs_nr; i++)
++			{
++			  octave_idx_type ii = idx_i.elem (k++);
++			  octave_idx_type fr = ii % lhs_nr;
++			  octave_idx_type fc = (ii - fr) / lhs_nr;
++			  lhs.elem (fr, fc) = xrhs.elem (i, j);
++			}
++		    }
++		}
++	      else if (rhs_nr == 1 && rhs_nc == 1)
++		{
++		  RT scalar = rhs.elem (0, 0);
++
++		  for (octave_idx_type i = 0; i < len; i++)
++		    {
++		      octave_idx_type ii = idx_i.elem (i);
++		      lhs.elem (ii) = scalar;
++		    }
++		}
++	      else
++		{
++		  (*current_liboctave_error_handler)
++      ("A(I) = X: X must be a scalar or a matrix with the same size as I");
++
++		  retval = 0;
++		}
++	    }
++	  // idx_vector::freeze() printed an error message for us.
++	}
++    }
++  else
++    {
++      (*current_liboctave_error_handler)
++	("invalid number of indices for matrix expression");
++
++      retval = 0;
++    }
++
++  lhs.clear_index ();
++
++  return retval;
++}
++
++template <class LT, class RT>
++int
++assignN (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv)
++{
++  int retval = 1;
++
++  dim_vector rhs_dims = rhs.dims ();
++
++  octave_idx_type rhs_dims_len = rhs_dims.length ();
++
++  bool rhs_is_scalar = is_scalar (rhs_dims);
++
++  int n_idx = lhs.index_count ();
++
++  idx_vector *idx_vex = lhs.get_idx ();
++
++  Array<idx_vector> idx = conv_to_array (idx_vex, n_idx);
++
++  if (rhs_dims_len == 2 && rhs_dims(0) == 0 && rhs_dims(1) == 0)
++    {
++      lhs.maybe_delete_elements (idx, rfv);
++    }
++  else if (n_idx == 0)
++    {
++      (*current_liboctave_error_handler)
++	("invalid number of indices for matrix expression");
++
++      retval = 0;
++    }
++  else if (n_idx == 1)
++    {
++      idx_vector iidx = idx(0);
++
++      if (! (iidx.is_colon ()
++	     || (iidx.one_zero_only ()
++		 && iidx.orig_dimensions () == lhs.dims ())))
++	(*current_liboctave_warning_with_id_handler)
++	  ("Octave:fortran-indexing", "single index used for N-d array");
++
++      octave_idx_type lhs_len = lhs.length ();
++
++      octave_idx_type len = iidx.freeze (lhs_len, "N-d arrray");
++
++      if (iidx)
++	{
++	  if (len == 0)
++	    {
++	      if (! (rhs_dims.all_ones () || rhs_dims.any_zero ()))
++		{
++		  (*current_liboctave_error_handler)
++		    ("A([]) = X: X must be an empty matrix or scalar");
++
++		  retval = 0;
++		}
++	    }
++	  else if (len == rhs.length ())
++	    {
++	      for (octave_idx_type i = 0; i < len; i++)
++		{
++		  octave_idx_type ii = iidx.elem (i);
++
++		  lhs.elem (ii) = rhs.elem (i);
++		}
++	    }
++	  else if (rhs_is_scalar)
++	    {
++	      RT scalar = rhs.elem (0);
++
++	      for (octave_idx_type i = 0; i < len; i++)
++		{
++		  octave_idx_type ii = iidx.elem (i);
++
++		  lhs.elem (ii) = scalar;
++		}
++	    }
++	  else
++	    {
++	      (*current_liboctave_error_handler)
++		("A(I) = X: X must be a scalar or a matrix with the same size as I");
++
++	      retval = 0;
++	    }
++
++	  // idx_vector::freeze() printed an error message for us.
++	}
++    }
++  else
++    {
++      // Maybe expand to more dimensions.
++
++      dim_vector lhs_dims = lhs.dims ();
++
++      octave_idx_type lhs_dims_len = lhs_dims.length ();
++
++      dim_vector final_lhs_dims = lhs_dims;
++
++      dim_vector frozen_len;
++
++      octave_idx_type orig_lhs_dims_len = lhs_dims_len;
++
++      bool orig_empty = lhs_dims.all_zero ();
++
++      if (n_idx < lhs_dims_len)
++	{
++	  // Collapse dimensions beyond last index.  Note that we
++	  // delay resizing LHS until we know that the assignment will
++	  // succeed.
++
++	  if (! (idx(n_idx-1).is_colon ()))
++	    (*current_liboctave_warning_with_id_handler)
++	      ("Octave:fortran-indexing",
++	       "fewer indices than dimensions for N-d array");
++
++	  for (int i = n_idx; i < lhs_dims_len; i++)
++	    lhs_dims(n_idx-1) *= lhs_dims(i);
++
++	  lhs_dims.resize (n_idx);
++
++	  lhs_dims_len = lhs_dims.length ();
++	}
++
++      // Resize.
++
++      dim_vector new_dims;
++      new_dims.resize (n_idx);
++
++      if (orig_empty)
++	{
++	  int k = 0;
++	  for (int i = 0; i < n_idx; i++)
++	    {
++	      // If index is a colon, resizing to RHS dimensions is
++	      // allowed because we started out empty.
++
++	      if (idx(i).is_colon ())
++		{
++		  if (k < rhs_dims.length ())
++		    new_dims(i) = rhs_dims(k++);
++		  else
++		    new_dims(i) = 1;
++		}
++	      else
++		{
++		  octave_idx_type nelem = idx(i).capacity ();
++
++		  if (nelem >= 1
++		      && k < rhs_dims.length () && nelem == rhs_dims(k))
++		    k++;
++		  else if (nelem != 1)
++		    {
++		      (*current_liboctave_error_handler)
++			("A(IDX-LIST) = RHS: mismatched index and RHS dimension");
++		      return retval;
++		    }
++
++		  new_dims(i) = idx(i).max () + 1;
++		}
++	    }
++	}
++      else
++	{
++	  for (int i = 0; i < n_idx; i++)
++	    {
++	      // We didn't start out with all zero dimensions, so if
++	      // index is a colon, it refers to the current LHS
++	      // dimension.  Otherwise, it is OK to enlarge to a
++	      // dimension given by the largest index, but if that
++	      // index is a colon the new dimension is singleton.
++
++	      if (i < lhs_dims_len
++		  && (idx(i).is_colon () || idx(i).max () < lhs_dims(i)))
++		new_dims(i) = lhs_dims(i);
++	      else if (! idx(i).is_colon ())
++		new_dims(i) = idx(i).max () + 1;
++	      else
++		new_dims(i) = 1;
++	    }
++	}
++
++      if (retval != 0)
++	{
++	  if (! orig_empty
++	      && n_idx < orig_lhs_dims_len
++	      && new_dims(n_idx-1) != lhs_dims(n_idx-1))
++	    {
++	      // We reshaped and the last dimension changed.  This has to
++	      // be an error, because we don't know how to undo that
++	      // later...
++
++	      (*current_liboctave_error_handler)
++		("array index %d (= %d) for assignment requires invalid resizing operation",
++		 n_idx, new_dims(n_idx-1));
++
++	      retval = 0;
++	    }
++	  else
++	    {
++	      // Determine final dimensions for LHS and reset the
++	      // current size of the LHS.  Note that we delay actually
++	      // resizing LHS until we know that the assignment will
++	      // succeed.
++
++	      if (n_idx < orig_lhs_dims_len)
++		{
++		  for (int i = 0; i < n_idx-1; i++)
++		    final_lhs_dims(i) = new_dims(i);
++		}
++	      else
++		final_lhs_dims = new_dims;
++
++	      lhs_dims_len = new_dims.length ();
++
++	      frozen_len = freeze (idx, new_dims, true);
++
++	      if (rhs_is_scalar)
++		{
++		  if (n_idx < orig_lhs_dims_len)
++		    lhs = lhs.reshape (lhs_dims);
++
++		  lhs.resize_and_fill (new_dims, rfv);
++
++		  if  (! final_lhs_dims.any_zero ())
++		    {
++		      octave_idx_type n = Array<LT>::get_size (frozen_len);
++
++		      Array<octave_idx_type> result_idx (lhs_dims_len, 0);
++
++		      RT scalar = rhs.elem (0);
++
++		      for (octave_idx_type i = 0; i < n; i++)
++			{
++			  Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx);
++
++			  lhs.elem (elt_idx) = scalar;
++
++			  increment_index (result_idx, frozen_len);
++			}
++		    }
++		}
++	      else
++		{
++		  // RHS is matrix or higher dimension.
++
++		  octave_idx_type n = Array<LT>::get_size (frozen_len);
++
++		  if (n != rhs.numel ())
++		    {
++		      (*current_liboctave_error_handler)
++			("A(IDX-LIST) = X: X must be a scalar or size of X must equal number of elements indexed by IDX-LIST");
++
++			  retval = 0;
++		    }
++		  else
++		    {
++		      if (n_idx < orig_lhs_dims_len)
++			lhs = lhs.reshape (lhs_dims);
++
++		      lhs.resize_and_fill (new_dims, rfv);
++
++		      if  (! final_lhs_dims.any_zero ())
++			{
++			  n = Array<LT>::get_size (frozen_len);
++
++			  Array<octave_idx_type> result_idx (lhs_dims_len, 0);
++
++			  for (octave_idx_type i = 0; i < n; i++)
++			    {
++			      Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx);
++
++			      lhs.elem (elt_idx) = rhs.elem (i);
++
++			      increment_index (result_idx, frozen_len);
++			    }
++			}
++		    }
++		}
++	    }
++	}
++
++      lhs.clear_index ();
++
++      if (retval != 0)
++	lhs = lhs.reshape (final_lhs_dims);
++    }
++
++  if (retval != 0)
++    lhs.chop_trailing_singletons ();
++
++  lhs.clear_index ();
++
++  return retval;
++}
++
++template <class T>
++void
++Array<T>::print_info (std::ostream& os, const std::string& prefix) const
++{
++  os << prefix << "rep address: " << rep << "\n"
++     << prefix << "rep->len:    " << rep->len << "\n"
++     << prefix << "rep->data:   " << static_cast<void *> (rep->data) << "\n"
++     << prefix << "rep->count:  " << rep->count << "\n";
++
++  // 2D info:
++  //
++  //     << pefix << "rows: " << rows () << "\n"
++  //     << prefix << "cols: " << cols () << "\n";
++}
++
++/*
++;;; Local Variables: ***
++;;; mode: C++ ***
++;;; End: ***
++*/


Property changes on: trunk/packages/octave/debian/patches/50_invalid_indexes.dpatch
___________________________________________________________________
Name: svn:executable
   + *




More information about the Pkg-octave-commit mailing list