[libmath-gsl-perl] 01/03: Added patch to fix spelling errors
Wolfgang Fütterer
debian at wlf-online.de
Wed Feb 17 12:58:07 UTC 2016
This is an automated email from the git hooks/post-receive script.
wlfuetter-guest pushed a commit to branch master
in repository libmath-gsl-perl.
commit f5f91fe25b56bf3bc8315936855dd1065b26b73a
Author: Wolfgang Fütterer <debian at wlf-online.de>
Date: Wed Feb 17 12:53:55 2016 +0100
Added patch to fix spelling errors
---
.../0002-Fixed-spelling-errors-in-man.patch | 5717 ++++++++++++++++++++
debian/patches/series | 1 +
2 files changed, 5718 insertions(+)
diff --git a/debian/patches/0002-Fixed-spelling-errors-in-man.patch b/debian/patches/0002-Fixed-spelling-errors-in-man.patch
new file mode 100644
index 0000000..078cdac
--- /dev/null
+++ b/debian/patches/0002-Fixed-spelling-errors-in-man.patch
@@ -0,0 +1,5717 @@
+From: =?utf-8?q?Wolfgang_F=C3=BCtterer?= <debian at wlf-online.de>
+Date: Wed, 17 Feb 2016 12:24:52 +0100
+Subject: Fixed spelling errors in man
+
+---
+ lib/Math/GSL.pm | 2 +-
+ lib/Math/GSL/BLAS.pm | 54 +++++++++++++++++++--------------------
+ lib/Math/GSL/BSpline.pm | 2 +-
+ lib/Math/GSL/CBLAS.pm | 2 +-
+ lib/Math/GSL/CDF.pm | 2 +-
+ lib/Math/GSL/Chebyshev.pm | 2 +-
+ lib/Math/GSL/Combination.pm | 2 +-
+ lib/Math/GSL/Deriv.pm | 2 +-
+ lib/Math/GSL/Eigen.pm | 2 +-
+ lib/Math/GSL/FFT.pm | 2 +-
+ lib/Math/GSL/Fit.pm | 2 +-
+ lib/Math/GSL/Heapsort.pm | 2 +-
+ lib/Math/GSL/Integration.pm | 2 +-
+ lib/Math/GSL/Linalg.pm | 2 +-
+ lib/Math/GSL/Matrix.pm | 18 ++++++-------
+ lib/Math/GSL/MatrixComplex.pm | 2 +-
+ lib/Math/GSL/Min.pm | 2 +-
+ lib/Math/GSL/Monte.pm | 2 +-
+ lib/Math/GSL/Multifit.pm | 2 +-
+ lib/Math/GSL/Multimin.pm | 2 +-
+ lib/Math/GSL/Multiroots.pm | 2 +-
+ lib/Math/GSL/NTuple.pm | 2 +-
+ lib/Math/GSL/ODEIV.pm | 2 +-
+ lib/Math/GSL/Permutation.pm | 16 ++++++------
+ lib/Math/GSL/Poly.pm | 2 +-
+ lib/Math/GSL/QRNG.pm | 2 +-
+ lib/Math/GSL/RNG.pm | 2 +-
+ lib/Math/GSL/Randist.pm | 2 +-
+ lib/Math/GSL/SF.pm | 2 +-
+ lib/Math/GSL/Siman.pm | 2 +-
+ lib/Math/GSL/Sort.pm | 2 +-
+ lib/Math/GSL/Spline.pm | 2 +-
+ lib/Math/GSL/Statistics.pm | 4 +--
+ lib/Math/GSL/Sys.pm | 2 +-
+ lib/Math/GSL/Vector.pm | 2 +-
+ pm/Math/GSL/BLAS.pm.1.11 | 54 +++++++++++++++++++--------------------
+ pm/Math/GSL/BLAS.pm.1.12 | 54 +++++++++++++++++++--------------------
+ pm/Math/GSL/BLAS.pm.1.13 | 54 +++++++++++++++++++--------------------
+ pm/Math/GSL/BLAS.pm.1.14 | 54 +++++++++++++++++++--------------------
+ pm/Math/GSL/BLAS.pm.1.15 | 54 +++++++++++++++++++--------------------
+ pm/Math/GSL/BLAS.pm.1.16 | 54 +++++++++++++++++++--------------------
+ pm/Math/GSL/BSpline.pm.1.11 | 2 +-
+ pm/Math/GSL/BSpline.pm.1.12 | 2 +-
+ pm/Math/GSL/BSpline.pm.1.13 | 2 +-
+ pm/Math/GSL/BSpline.pm.1.14 | 2 +-
+ pm/Math/GSL/BSpline.pm.1.15 | 2 +-
+ pm/Math/GSL/BSpline.pm.1.16 | 2 +-
+ pm/Math/GSL/CBLAS.pm.1.11 | 2 +-
+ pm/Math/GSL/CBLAS.pm.1.12 | 2 +-
+ pm/Math/GSL/CBLAS.pm.1.13 | 2 +-
+ pm/Math/GSL/CBLAS.pm.1.14 | 2 +-
+ pm/Math/GSL/CBLAS.pm.1.15 | 2 +-
+ pm/Math/GSL/CBLAS.pm.1.16 | 2 +-
+ pm/Math/GSL/CDF.pm.1.11 | 2 +-
+ pm/Math/GSL/CDF.pm.1.12 | 2 +-
+ pm/Math/GSL/CDF.pm.1.13 | 2 +-
+ pm/Math/GSL/CDF.pm.1.14 | 2 +-
+ pm/Math/GSL/CDF.pm.1.15 | 2 +-
+ pm/Math/GSL/CDF.pm.1.16 | 2 +-
+ pm/Math/GSL/Chebyshev.pm.1.11 | 2 +-
+ pm/Math/GSL/Chebyshev.pm.1.12 | 2 +-
+ pm/Math/GSL/Chebyshev.pm.1.13 | 2 +-
+ pm/Math/GSL/Chebyshev.pm.1.14 | 2 +-
+ pm/Math/GSL/Chebyshev.pm.1.15 | 2 +-
+ pm/Math/GSL/Chebyshev.pm.1.16 | 2 +-
+ pm/Math/GSL/Combination.pm.1.11 | 2 +-
+ pm/Math/GSL/Combination.pm.1.12 | 2 +-
+ pm/Math/GSL/Combination.pm.1.13 | 2 +-
+ pm/Math/GSL/Combination.pm.1.14 | 2 +-
+ pm/Math/GSL/Combination.pm.1.15 | 2 +-
+ pm/Math/GSL/Combination.pm.1.16 | 2 +-
+ pm/Math/GSL/Deriv.pm.1.11 | 2 +-
+ pm/Math/GSL/Deriv.pm.1.12 | 2 +-
+ pm/Math/GSL/Deriv.pm.1.13 | 2 +-
+ pm/Math/GSL/Deriv.pm.1.14 | 2 +-
+ pm/Math/GSL/Deriv.pm.1.15 | 2 +-
+ pm/Math/GSL/Deriv.pm.1.16 | 2 +-
+ pm/Math/GSL/Eigen.pm.1.11 | 2 +-
+ pm/Math/GSL/Eigen.pm.1.12 | 2 +-
+ pm/Math/GSL/Eigen.pm.1.13 | 2 +-
+ pm/Math/GSL/Eigen.pm.1.14 | 2 +-
+ pm/Math/GSL/Eigen.pm.1.15 | 2 +-
+ pm/Math/GSL/Eigen.pm.1.16 | 2 +-
+ pm/Math/GSL/FFT.pm.1.11 | 2 +-
+ pm/Math/GSL/FFT.pm.1.12 | 2 +-
+ pm/Math/GSL/FFT.pm.1.13 | 2 +-
+ pm/Math/GSL/FFT.pm.1.14 | 2 +-
+ pm/Math/GSL/FFT.pm.1.15 | 2 +-
+ pm/Math/GSL/FFT.pm.1.16 | 2 +-
+ pm/Math/GSL/Fit.pm.1.11 | 2 +-
+ pm/Math/GSL/Fit.pm.1.12 | 2 +-
+ pm/Math/GSL/Fit.pm.1.13 | 2 +-
+ pm/Math/GSL/Fit.pm.1.14 | 2 +-
+ pm/Math/GSL/Fit.pm.1.15 | 2 +-
+ pm/Math/GSL/Fit.pm.1.16 | 2 +-
+ pm/Math/GSL/Heapsort.pm.1.11 | 2 +-
+ pm/Math/GSL/Heapsort.pm.1.12 | 2 +-
+ pm/Math/GSL/Heapsort.pm.1.13 | 2 +-
+ pm/Math/GSL/Heapsort.pm.1.14 | 2 +-
+ pm/Math/GSL/Heapsort.pm.1.15 | 2 +-
+ pm/Math/GSL/Heapsort.pm.1.16 | 2 +-
+ pm/Math/GSL/Integration.pm.1.11 | 2 +-
+ pm/Math/GSL/Integration.pm.1.12 | 2 +-
+ pm/Math/GSL/Integration.pm.1.13 | 2 +-
+ pm/Math/GSL/Integration.pm.1.14 | 2 +-
+ pm/Math/GSL/Integration.pm.1.15 | 2 +-
+ pm/Math/GSL/Integration.pm.1.16 | 2 +-
+ pm/Math/GSL/Linalg.pm.1.11 | 2 +-
+ pm/Math/GSL/Linalg.pm.1.12 | 2 +-
+ pm/Math/GSL/Linalg.pm.1.13 | 2 +-
+ pm/Math/GSL/Linalg.pm.1.14 | 2 +-
+ pm/Math/GSL/Linalg.pm.1.15 | 2 +-
+ pm/Math/GSL/Linalg.pm.1.16 | 2 +-
+ pm/Math/GSL/Matrix.pm.1.11 | 18 ++++++-------
+ pm/Math/GSL/Matrix.pm.1.12 | 18 ++++++-------
+ pm/Math/GSL/Matrix.pm.1.13 | 18 ++++++-------
+ pm/Math/GSL/Matrix.pm.1.14 | 18 ++++++-------
+ pm/Math/GSL/Matrix.pm.1.15 | 18 ++++++-------
+ pm/Math/GSL/Matrix.pm.1.16 | 18 ++++++-------
+ pm/Math/GSL/MatrixComplex.pm.1.11 | 2 +-
+ pm/Math/GSL/MatrixComplex.pm.1.12 | 2 +-
+ pm/Math/GSL/MatrixComplex.pm.1.13 | 2 +-
+ pm/Math/GSL/MatrixComplex.pm.1.14 | 2 +-
+ pm/Math/GSL/MatrixComplex.pm.1.15 | 2 +-
+ pm/Math/GSL/MatrixComplex.pm.1.16 | 2 +-
+ pm/Math/GSL/Min.pm.1.11 | 2 +-
+ pm/Math/GSL/Min.pm.1.12 | 2 +-
+ pm/Math/GSL/Min.pm.1.13 | 2 +-
+ pm/Math/GSL/Min.pm.1.14 | 2 +-
+ pm/Math/GSL/Min.pm.1.15 | 2 +-
+ pm/Math/GSL/Min.pm.1.16 | 2 +-
+ pm/Math/GSL/Monte.pm.1.11 | 2 +-
+ pm/Math/GSL/Monte.pm.1.12 | 2 +-
+ pm/Math/GSL/Monte.pm.1.13 | 2 +-
+ pm/Math/GSL/Monte.pm.1.14 | 2 +-
+ pm/Math/GSL/Monte.pm.1.15 | 2 +-
+ pm/Math/GSL/Monte.pm.1.16 | 2 +-
+ pm/Math/GSL/Multifit.pm.1.11 | 2 +-
+ pm/Math/GSL/Multifit.pm.1.12 | 2 +-
+ pm/Math/GSL/Multifit.pm.1.13 | 2 +-
+ pm/Math/GSL/Multifit.pm.1.14 | 2 +-
+ pm/Math/GSL/Multifit.pm.1.15 | 2 +-
+ pm/Math/GSL/Multifit.pm.1.16 | 2 +-
+ pm/Math/GSL/Multimin.pm.1.11 | 2 +-
+ pm/Math/GSL/Multimin.pm.1.12 | 2 +-
+ pm/Math/GSL/Multimin.pm.1.13 | 2 +-
+ pm/Math/GSL/Multimin.pm.1.14 | 2 +-
+ pm/Math/GSL/Multimin.pm.1.15 | 2 +-
+ pm/Math/GSL/Multimin.pm.1.16 | 2 +-
+ pm/Math/GSL/Multiroots.pm.1.11 | 2 +-
+ pm/Math/GSL/Multiroots.pm.1.12 | 2 +-
+ pm/Math/GSL/Multiroots.pm.1.13 | 2 +-
+ pm/Math/GSL/Multiroots.pm.1.14 | 2 +-
+ pm/Math/GSL/Multiroots.pm.1.15 | 2 +-
+ pm/Math/GSL/Multiroots.pm.1.16 | 2 +-
+ pm/Math/GSL/NTuple.pm.1.11 | 2 +-
+ pm/Math/GSL/NTuple.pm.1.12 | 2 +-
+ pm/Math/GSL/NTuple.pm.1.13 | 2 +-
+ pm/Math/GSL/NTuple.pm.1.14 | 2 +-
+ pm/Math/GSL/NTuple.pm.1.15 | 2 +-
+ pm/Math/GSL/NTuple.pm.1.16 | 2 +-
+ pm/Math/GSL/ODEIV.pm.1.11 | 2 +-
+ pm/Math/GSL/ODEIV.pm.1.12 | 2 +-
+ pm/Math/GSL/ODEIV.pm.1.13 | 2 +-
+ pm/Math/GSL/ODEIV.pm.1.14 | 2 +-
+ pm/Math/GSL/ODEIV.pm.1.15 | 2 +-
+ pm/Math/GSL/ODEIV.pm.1.16 | 2 +-
+ pm/Math/GSL/Permutation.pm.1.11 | 16 ++++++------
+ pm/Math/GSL/Permutation.pm.1.12 | 16 ++++++------
+ pm/Math/GSL/Permutation.pm.1.13 | 16 ++++++------
+ pm/Math/GSL/Permutation.pm.1.14 | 16 ++++++------
+ pm/Math/GSL/Permutation.pm.1.15 | 16 ++++++------
+ pm/Math/GSL/Permutation.pm.1.16 | 16 ++++++------
+ pm/Math/GSL/Poly.pm.1.11 | 2 +-
+ pm/Math/GSL/Poly.pm.1.12 | 2 +-
+ pm/Math/GSL/Poly.pm.1.13 | 2 +-
+ pm/Math/GSL/Poly.pm.1.14 | 2 +-
+ pm/Math/GSL/Poly.pm.1.15 | 2 +-
+ pm/Math/GSL/Poly.pm.1.16 | 2 +-
+ pm/Math/GSL/QRNG.pm.1.11 | 2 +-
+ pm/Math/GSL/QRNG.pm.1.12 | 2 +-
+ pm/Math/GSL/QRNG.pm.1.13 | 2 +-
+ pm/Math/GSL/QRNG.pm.1.14 | 2 +-
+ pm/Math/GSL/QRNG.pm.1.15 | 2 +-
+ pm/Math/GSL/QRNG.pm.1.16 | 2 +-
+ pm/Math/GSL/RNG.pm.1.11 | 2 +-
+ pm/Math/GSL/RNG.pm.1.12 | 2 +-
+ pm/Math/GSL/RNG.pm.1.13 | 2 +-
+ pm/Math/GSL/RNG.pm.1.14 | 2 +-
+ pm/Math/GSL/RNG.pm.1.15 | 2 +-
+ pm/Math/GSL/RNG.pm.1.16 | 2 +-
+ pm/Math/GSL/Randist.pm.1.11 | 2 +-
+ pm/Math/GSL/Randist.pm.1.12 | 2 +-
+ pm/Math/GSL/Randist.pm.1.13 | 2 +-
+ pm/Math/GSL/Randist.pm.1.14 | 2 +-
+ pm/Math/GSL/Randist.pm.1.15 | 2 +-
+ pm/Math/GSL/Randist.pm.1.16 | 2 +-
+ pm/Math/GSL/SF.pm.1.11 | 2 +-
+ pm/Math/GSL/SF.pm.1.12 | 2 +-
+ pm/Math/GSL/SF.pm.1.13 | 2 +-
+ pm/Math/GSL/SF.pm.1.14 | 2 +-
+ pm/Math/GSL/SF.pm.1.15 | 2 +-
+ pm/Math/GSL/SF.pm.1.16 | 2 +-
+ pm/Math/GSL/Siman.pm.1.11 | 2 +-
+ pm/Math/GSL/Siman.pm.1.12 | 2 +-
+ pm/Math/GSL/Siman.pm.1.13 | 2 +-
+ pm/Math/GSL/Siman.pm.1.14 | 2 +-
+ pm/Math/GSL/Siman.pm.1.15 | 2 +-
+ pm/Math/GSL/Siman.pm.1.16 | 2 +-
+ pm/Math/GSL/Sort.pm.1.11 | 2 +-
+ pm/Math/GSL/Sort.pm.1.12 | 2 +-
+ pm/Math/GSL/Sort.pm.1.13 | 2 +-
+ pm/Math/GSL/Sort.pm.1.14 | 2 +-
+ pm/Math/GSL/Sort.pm.1.15 | 2 +-
+ pm/Math/GSL/Sort.pm.1.16 | 2 +-
+ pm/Math/GSL/Spline.pm.1.11 | 2 +-
+ pm/Math/GSL/Spline.pm.1.12 | 2 +-
+ pm/Math/GSL/Spline.pm.1.13 | 2 +-
+ pm/Math/GSL/Spline.pm.1.14 | 2 +-
+ pm/Math/GSL/Spline.pm.1.15 | 2 +-
+ pm/Math/GSL/Spline.pm.1.16 | 2 +-
+ pm/Math/GSL/Statistics.pm.1.11 | 4 +--
+ pm/Math/GSL/Statistics.pm.1.12 | 4 +--
+ pm/Math/GSL/Statistics.pm.1.13 | 4 +--
+ pm/Math/GSL/Statistics.pm.1.14 | 4 +--
+ pm/Math/GSL/Statistics.pm.1.15 | 4 +--
+ pm/Math/GSL/Statistics.pm.1.16 | 4 +--
+ pm/Math/GSL/Sys.pm.1.11 | 2 +-
+ pm/Math/GSL/Sys.pm.1.12 | 2 +-
+ pm/Math/GSL/Sys.pm.1.13 | 2 +-
+ pm/Math/GSL/Sys.pm.1.14 | 2 +-
+ pm/Math/GSL/Sys.pm.1.15 | 2 +-
+ pm/Math/GSL/Sys.pm.1.16 | 2 +-
+ pm/Math/GSL/Vector.pm.1.11 | 2 +-
+ pm/Math/GSL/Vector.pm.1.12 | 2 +-
+ pm/Math/GSL/Vector.pm.1.13 | 2 +-
+ pm/Math/GSL/Vector.pm.1.14 | 2 +-
+ pm/Math/GSL/Vector.pm.1.15 | 2 +-
+ pm/Math/GSL/Vector.pm.1.16 | 2 +-
+ pod/BLAS.pod | 54 +++++++++++++++++++--------------------
+ pod/BSpline.pod | 2 +-
+ pod/CBLAS.pod | 2 +-
+ pod/CDF.pod | 2 +-
+ pod/Chebyshev.pod | 2 +-
+ pod/Combination.pod | 2 +-
+ pod/Deriv.pod | 2 +-
+ pod/Eigen.pod | 2 +-
+ pod/FFT.pod | 2 +-
+ pod/Fit.pod | 2 +-
+ pod/Heapsort.pod | 2 +-
+ pod/Integration.pod | 2 +-
+ pod/Linalg.pod | 2 +-
+ pod/Matrix.pod | 18 ++++++-------
+ pod/MatrixComplex.pod | 2 +-
+ pod/Min.pod | 2 +-
+ pod/Monte.pod | 2 +-
+ pod/Multifit.pod | 2 +-
+ pod/Multimin.pod | 2 +-
+ pod/Multiroots.pod | 2 +-
+ pod/NTuple.pod | 2 +-
+ pod/ODEIV.pod | 2 +-
+ pod/Permutation.pod | 16 ++++++------
+ pod/Poly.pod | 2 +-
+ pod/QRNG.pod | 2 +-
+ pod/RNG.pod | 2 +-
+ pod/Randist.pod | 2 +-
+ pod/SF.pod | 2 +-
+ pod/Siman.pod | 2 +-
+ pod/Sort.pod | 2 +-
+ pod/Spline.pod | 2 +-
+ pod/Statistics.pod | 4 +--
+ pod/Sys.pod | 2 +-
+ pod/Vector.pod | 2 +-
+ 273 files changed, 609 insertions(+), 609 deletions(-)
+
+diff --git a/lib/Math/GSL.pm b/lib/Math/GSL.pm
+index 249903d..366939d 100644
+--- a/lib/Math/GSL.pm
++++ b/lib/Math/GSL.pm
+@@ -153,7 +153,7 @@ L<Math::GSL::Statistics> - Statistics Functions
+
+ L<Math::GSL::Sum> - Summation
+
+-L<Math::GSL::Sys> - Sytem utility functions
++L<Math::GSL::Sys> - System utility functions
+
+ L<Math::GSL::Vector> - N-dimensional Vectors
+
+diff --git a/lib/Math/GSL/BLAS.pm b/lib/Math/GSL/BLAS.pm
+index 881d7b5..d76f30e 100644
+--- a/lib/Math/GSL/BLAS.pm
++++ b/lib/Math/GSL/BLAS.pm
+@@ -266,7 +266,7 @@ The functions of this module are divised into 3 levels:
+ =item C<gsl_blas_ddot($x, $y)>
+
+ This function computes the scalar product x^T y for the vectors $x and $y. The
+-function returns two values, the first is 0 if the operation suceeded, 1
++function returns two values, the first is 0 if the operation succeeded, 1
+ otherwise and the second value is the result of the computation.
+
+ =item C<gsl_blas_cdotu>
+@@ -277,13 +277,13 @@ otherwise and the second value is the result of the computation.
+
+ This function computes the complex scalar product x^T y for the complex vectors
+ $x and $y, returning the result in the complex number $dotu. The function
+-returns 0 if the operation suceeded, 1 otherwise.
++returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zdotc($x, $y, $dotc)>
+
+ This function computes the complex conjugate scalar product x^H y for the
+ complex vectors $x and $y, returning the result in the complex number $dotc.
+-The function returns 0 if the operation suceeded, 1 otherwise.
++The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_snrm2>
+ =item C<gsl_blas_sasum>
+@@ -328,11 +328,11 @@ This function computes the sum of the magnitudes of the real and imaginary parts
+
+ =item C<gsl_blas_dswap($x, $y)>
+
+-This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dcopy($x, $y)>
+
+-This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_daxpy($alpha, $x, $y)>
+
+@@ -394,11 +394,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsv>
+
+-=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
++=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
+
+-=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
++=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
+
+ =item C<gsl_blas_cgemv >
+
+@@ -422,9 +422,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_dsymv>
+
+-=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)> - This function computes the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used.
+
+@@ -440,11 +440,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemv >
+
+-=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zgerc>
+
+-=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
++=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
+
+
+ =item C<gsl_blas_zher2 >
+@@ -467,17 +467,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsm>
+
+-=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_cgemm>
+
+@@ -491,17 +491,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_ctrsm>
+
+-=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise. $A, $B and $C are complex matrices
++=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices
+
+-=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
++=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
+
+-=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
++=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
+
+-=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_chemm>
+
+@@ -511,9 +511,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.
+
+-=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
++=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
+
+ =back
+
+@@ -531,7 +531,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+
+diff --git a/lib/Math/GSL/BSpline.pm b/lib/Math/GSL/BSpline.pm
+index 3a2c67e..5e6a45b 100644
+--- a/lib/Math/GSL/BSpline.pm
++++ b/lib/Math/GSL/BSpline.pm
+@@ -241,7 +241,7 @@ gsl_bspline_ncoeffs. It is far more efficient to compute all of the basis
+ functions at once than to compute them individually, due to the nature of the
+ defining recurrence relation.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ http://www.gnu.org/software/gsl/manual/html_node/
+
+ =back
+diff --git a/lib/Math/GSL/CBLAS.pm b/lib/Math/GSL/CBLAS.pm
+index da59ab1..d2dc76e 100644
+--- a/lib/Math/GSL/CBLAS.pm
++++ b/lib/Math/GSL/CBLAS.pm
+@@ -704,7 +704,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/lib/Math/GSL/CDF.pm b/lib/Math/GSL/CDF.pm
+index d0642e5..a7afa98 100644
+--- a/lib/Math/GSL/CDF.pm
++++ b/lib/Math/GSL/CDF.pm
+@@ -516,7 +516,7 @@ This is the list of available import tags:
+ For example the beta tag contains theses functions : gsl_cdf_beta_P,
+ gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv .
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Chebyshev.pm b/lib/Math/GSL/Chebyshev.pm
+index 5cd6c45..0d0e881 100644
+--- a/lib/Math/GSL/Chebyshev.pm
++++ b/lib/Math/GSL/Chebyshev.pm
+@@ -364,7 +364,7 @@ in $deriv, which must be pre-allocated. Returns a GSL status code.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/lib/Math/GSL/Combination.pm b/lib/Math/GSL/Combination.pm
+index 1b82012..30497d0 100644
+--- a/lib/Math/GSL/Combination.pm
++++ b/lib/Math/GSL/Combination.pm
+@@ -325,7 +325,7 @@ sub prev {
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Deriv.pm b/lib/Math/GSL/Deriv.pm
+index 1a29db6..c3ead42 100644
+--- a/lib/Math/GSL/Deriv.pm
++++ b/lib/Math/GSL/Deriv.pm
+@@ -291,7 +291,7 @@ function is evaluated at $x and $x+$h.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/lib/Math/GSL/Eigen.pm b/lib/Math/GSL/Eigen.pm
+index facd9d4..7414b7c 100644
+--- a/lib/Math/GSL/Eigen.pm
++++ b/lib/Math/GSL/Eigen.pm
+@@ -1048,7 +1048,7 @@ This module also includes these constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/FFT.pm b/lib/Math/GSL/FFT.pm
+index 8acb44a..408ff60 100644
+--- a/lib/Math/GSL/FFT.pm
++++ b/lib/Math/GSL/FFT.pm
+@@ -943,7 +943,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Fit.pm b/lib/Math/GSL/Fit.pm
+index f2b0c53..947cae7 100644
+--- a/lib/Math/GSL/Fit.pm
++++ b/lib/Math/GSL/Fit.pm
+@@ -169,7 +169,7 @@ and y_err.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Heapsort.pm b/lib/Math/GSL/Heapsort.pm
+index 31d00d8..64d7534 100644
+--- a/lib/Math/GSL/Heapsort.pm
++++ b/lib/Math/GSL/Heapsort.pm
+@@ -159,7 +159,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Integration.pm b/lib/Math/GSL/Integration.pm
+index 9332455..497409c 100644
+--- a/lib/Math/GSL/Integration.pm
++++ b/lib/Math/GSL/Integration.pm
+@@ -781,7 +781,7 @@ The integral is divergent, or too slowly convergent to be integrated numerically
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/lib/Math/GSL/Linalg.pm b/lib/Math/GSL/Linalg.pm
+index f017caf..3d486a1 100644
+--- a/lib/Math/GSL/Linalg.pm
++++ b/lib/Math/GSL/Linalg.pm
+@@ -758,7 +758,7 @@ Here is a list of all the functions included in this module :
+
+ You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+ =back
+diff --git a/lib/Math/GSL/Matrix.pm b/lib/Math/GSL/Matrix.pm
+index 5b83f35..1fa72f0 100644
+--- a/lib/Math/GSL/Matrix.pm
++++ b/lib/Math/GSL/Matrix.pm
+@@ -2369,11 +2369,11 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_swap($m1, $m2)> - Exchange the elements of the matrices $m1 and $m2 by copying. The two matrices must have the same size.
+
+-=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_matrix_transpose($m)> - This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.
+
+@@ -2393,7 +2393,7 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_isnull($m)> - Return 1 if all the elements of the matrix $m are zero, 0 otherwise
+
+-=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positve, 0 otherwise
++=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positive, 0 otherwise
+
+ =item C<gsl_matrix_isneg($m)> - Return 1 if all the elements of the matrix $m are strictly negative, 0 otherwise
+
+@@ -2413,13 +2413,13 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_add_diagonal($a, $x)> - Add the constant value $x to the elements of the diagonal of the matrix $a
+
+-=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+ =back
+
+@@ -2721,7 +2721,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/MatrixComplex.pm b/lib/Math/GSL/MatrixComplex.pm
+index 3b4ec33..48af7c8 100644
+--- a/lib/Math/GSL/MatrixComplex.pm
++++ b/lib/Math/GSL/MatrixComplex.pm
+@@ -1232,7 +1232,7 @@ sub lndet($)
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Min.pm b/lib/Math/GSL/Min.pm
+index ce5a43f..2e7f01c 100644
+--- a/lib/Math/GSL/Min.pm
++++ b/lib/Math/GSL/Min.pm
+@@ -441,7 +441,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/lib/Math/GSL/Monte.pm b/lib/Math/GSL/Monte.pm
+index 4d1c795..fa84c73 100644
+--- a/lib/Math/GSL/Monte.pm
++++ b/lib/Math/GSL/Monte.pm
+@@ -559,7 +559,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/lib/Math/GSL/Multifit.pm b/lib/Math/GSL/Multifit.pm
+index 75d534f..3e25c15 100644
+--- a/lib/Math/GSL/Multifit.pm
++++ b/lib/Math/GSL/Multifit.pm
+@@ -772,7 +772,7 @@ The following functions are not yet implemented. Patches Welcome!
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Multimin.pm b/lib/Math/GSL/Multimin.pm
+index 63c9fb1..6ab5369 100644
+--- a/lib/Math/GSL/Multimin.pm
++++ b/lib/Math/GSL/Multimin.pm
+@@ -516,7 +516,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Multiroots.pm b/lib/Math/GSL/Multiroots.pm
+index 5d7fcd9..ae5bc2b 100644
+--- a/lib/Math/GSL/Multiroots.pm
++++ b/lib/Math/GSL/Multiroots.pm
+@@ -500,7 +500,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/lib/Math/GSL/NTuple.pm b/lib/Math/GSL/NTuple.pm
+index 78965ab..cb68618 100644
+--- a/lib/Math/GSL/NTuple.pm
++++ b/lib/Math/GSL/NTuple.pm
+@@ -407,7 +407,7 @@ memory.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/lib/Math/GSL/ODEIV.pm b/lib/Math/GSL/ODEIV.pm
+index d418899..c140fb5 100644
+--- a/lib/Math/GSL/ODEIV.pm
++++ b/lib/Math/GSL/ODEIV.pm
+@@ -554,7 +554,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Permutation.pm b/lib/Math/GSL/Permutation.pm
+index c83b255..eede16c 100644
+--- a/lib/Math/GSL/Permutation.pm
++++ b/lib/Math/GSL/Permutation.pm
+@@ -205,7 +205,7 @@ Math::GSL::Permutation - functions for creating and manipulating permutations
+
+ use Math::GSL::Permutation qw/:all/;
+ my $permutation = Math::GSL::Permutation->new(30); # allocate and initialize a permutation of size 30
+- my $lenght = $permutation->lenght; # returns the lenght of the permutation object, here it is 30
++ my $length = $permutation->length; # returns the length of the permutation object, here it is 30
+ gsl_permutation_swap($permutation->raw, 2,7);
+ # the raw method is made to use the underlying permutation structure of the permutation object
+ my $value = $permutation->get(2); # returns the third value (starting from 0) of the permutation
+@@ -226,7 +226,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_free($p) - free all the memory use by the permutaion $p
+
+-=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same lenght and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same length and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_fread($stream, $p) - This function reads into the permutation $p from the open stream $stream (opened with the gsl_fopen function from the Math::GSL module) in binary format. The permutation $p must be preallocated with the correct length since the function uses the size of $p to determine how many bytes to read. The function returns 1 if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same arc [...]
+
+@@ -242,7 +242,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_get($p, $i) - return the $i-th element of the permutation $p, return 0 if $i is outside the range of 0 to n-1
+
+-=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_valid($p) - return 0 if the permutation $p is valid (if the n elements contain each of the numbers 0 to n-1 once and only once), 1 otherwise
+
+@@ -252,13 +252,13 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_next($p) - advance the permutation $p to the next permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_inversions($p) - return the number of inversions in the permutation $p
+
+@@ -285,7 +285,7 @@ Here is a list of all the functions included in this module :
+ You have to add the functions you want to use inside the qw/put_funtion_here/ with spaces between each function.
+ You can also write use Math::GSL::CDF qw/:all/ to use all avaible functions of the module.
+ Other tags are also avaible, here is a complete list of all tags for this module.
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Poly.pm b/lib/Math/GSL/Poly.pm
+index 047bd2f..c687663 100644
+--- a/lib/Math/GSL/Poly.pm
++++ b/lib/Math/GSL/Poly.pm
+@@ -387,7 +387,7 @@ This function frees all the memory associated with the workspace $w.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/lib/Math/GSL/QRNG.pm b/lib/Math/GSL/QRNG.pm
+index e274589..1144570 100644
+--- a/lib/Math/GSL/QRNG.pm
++++ b/lib/Math/GSL/QRNG.pm
+@@ -349,7 +349,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/lib/Math/GSL/RNG.pm b/lib/Math/GSL/RNG.pm
+index ad41366..e379197 100644
+--- a/lib/Math/GSL/RNG.pm
++++ b/lib/Math/GSL/RNG.pm
+@@ -886,7 +886,7 @@ __END__
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+diff --git a/lib/Math/GSL/Randist.pm b/lib/Math/GSL/Randist.pm
+index 6aebd10..2b9eeed 100644
+--- a/lib/Math/GSL/Randist.pm
++++ b/lib/Math/GSL/Randist.pm
+@@ -1035,7 +1035,7 @@ De-allocates the gsl_ran_discrete pointed to by g.
+
+ For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/SF.pm b/lib/Math/GSL/SF.pm
+index 480d7c8..6585bdf 100644
+--- a/lib/Math/GSL/SF.pm
++++ b/lib/Math/GSL/SF.pm
+@@ -3843,7 +3843,7 @@ This module also contains the following constants used as mode in various of tho
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Siman.pm b/lib/Math/GSL/Siman.pm
+index 03e0f88..55e3e20 100644
+--- a/lib/Math/GSL/Siman.pm
++++ b/lib/Math/GSL/Siman.pm
+@@ -145,7 +145,7 @@ Here is a list of all the functions in this module :
+ =back
+
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Sort.pm b/lib/Math/GSL/Sort.pm
+index 133e990..dde1b56 100644
+--- a/lib/Math/GSL/Sort.pm
++++ b/lib/Math/GSL/Sort.pm
+@@ -286,7 +286,7 @@ should be removed in further versions.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 PERFORMANCE
+diff --git a/lib/Math/GSL/Spline.pm b/lib/Math/GSL/Spline.pm
+index c3cddca..6216526 100644
+--- a/lib/Math/GSL/Spline.pm
++++ b/lib/Math/GSL/Spline.pm
+@@ -184,7 +184,7 @@ ya as arguments on each evaluation.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Statistics.pm b/lib/Math/GSL/Statistics.pm
+index 1590fa3..f7ff739 100644
+--- a/lib/Math/GSL/Statistics.pm
++++ b/lib/Math/GSL/Statistics.pm
+@@ -364,7 +364,7 @@ These functions return the total sum of squares (TSS) of data about the mean. Fo
+
+ =item * C<gsl_stats_variance_m($data, $stride, $n, $mean)> - This function returns the sample variance of $data, an array reference, relative to the given value of $mean. The function is computed with \Hat\mu replaced by the value of mean that you supply, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
+
+-=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array refrence, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
++=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array reference, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
+
+ =item * C<gsl_stats_wmean($w, $wstride, $data, $stride, $n)> - This function returns the weighted mean of the dataset $data array reference with stride $stride and length $n, using the set of weights $w, which is an array reference, with stride $wstride and length $n. The weighted mean is defined as, \Hat\mu = (\sum w_i x_i) / (\sum w_i)
+
+@@ -558,7 +558,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/lib/Math/GSL/Sys.pm b/lib/Math/GSL/Sys.pm
+index f2a7bc8..00a1484 100644
+--- a/lib/Math/GSL/Sys.pm
++++ b/lib/Math/GSL/Sys.pm
+@@ -218,7 +218,7 @@ zero. The implementation is based on the package fcmp by T.C. Belding.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/lib/Math/GSL/Vector.pm b/lib/Math/GSL/Vector.pm
+index 8f0723d..c4883c5 100644
+--- a/lib/Math/GSL/Vector.pm
++++ b/lib/Math/GSL/Vector.pm
+@@ -1380,7 +1380,7 @@ leaving the odd elements untouched :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 EXAMPLES
+diff --git a/pm/Math/GSL/BLAS.pm.1.11 b/pm/Math/GSL/BLAS.pm.1.11
+index 881d7b5..d76f30e 100644
+--- a/pm/Math/GSL/BLAS.pm.1.11
++++ b/pm/Math/GSL/BLAS.pm.1.11
+@@ -266,7 +266,7 @@ The functions of this module are divised into 3 levels:
+ =item C<gsl_blas_ddot($x, $y)>
+
+ This function computes the scalar product x^T y for the vectors $x and $y. The
+-function returns two values, the first is 0 if the operation suceeded, 1
++function returns two values, the first is 0 if the operation succeeded, 1
+ otherwise and the second value is the result of the computation.
+
+ =item C<gsl_blas_cdotu>
+@@ -277,13 +277,13 @@ otherwise and the second value is the result of the computation.
+
+ This function computes the complex scalar product x^T y for the complex vectors
+ $x and $y, returning the result in the complex number $dotu. The function
+-returns 0 if the operation suceeded, 1 otherwise.
++returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zdotc($x, $y, $dotc)>
+
+ This function computes the complex conjugate scalar product x^H y for the
+ complex vectors $x and $y, returning the result in the complex number $dotc.
+-The function returns 0 if the operation suceeded, 1 otherwise.
++The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_snrm2>
+ =item C<gsl_blas_sasum>
+@@ -328,11 +328,11 @@ This function computes the sum of the magnitudes of the real and imaginary parts
+
+ =item C<gsl_blas_dswap($x, $y)>
+
+-This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dcopy($x, $y)>
+
+-This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_daxpy($alpha, $x, $y)>
+
+@@ -394,11 +394,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsv>
+
+-=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
++=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
+
+-=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
++=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
+
+ =item C<gsl_blas_cgemv >
+
+@@ -422,9 +422,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_dsymv>
+
+-=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)> - This function computes the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used.
+
+@@ -440,11 +440,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemv >
+
+-=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zgerc>
+
+-=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
++=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
+
+
+ =item C<gsl_blas_zher2 >
+@@ -467,17 +467,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsm>
+
+-=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_cgemm>
+
+@@ -491,17 +491,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_ctrsm>
+
+-=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise. $A, $B and $C are complex matrices
++=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices
+
+-=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
++=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
+
+-=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
++=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
+
+-=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_chemm>
+
+@@ -511,9 +511,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.
+
+-=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
++=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
+
+ =back
+
+@@ -531,7 +531,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+
+diff --git a/pm/Math/GSL/BLAS.pm.1.12 b/pm/Math/GSL/BLAS.pm.1.12
+index 881d7b5..d76f30e 100644
+--- a/pm/Math/GSL/BLAS.pm.1.12
++++ b/pm/Math/GSL/BLAS.pm.1.12
+@@ -266,7 +266,7 @@ The functions of this module are divised into 3 levels:
+ =item C<gsl_blas_ddot($x, $y)>
+
+ This function computes the scalar product x^T y for the vectors $x and $y. The
+-function returns two values, the first is 0 if the operation suceeded, 1
++function returns two values, the first is 0 if the operation succeeded, 1
+ otherwise and the second value is the result of the computation.
+
+ =item C<gsl_blas_cdotu>
+@@ -277,13 +277,13 @@ otherwise and the second value is the result of the computation.
+
+ This function computes the complex scalar product x^T y for the complex vectors
+ $x and $y, returning the result in the complex number $dotu. The function
+-returns 0 if the operation suceeded, 1 otherwise.
++returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zdotc($x, $y, $dotc)>
+
+ This function computes the complex conjugate scalar product x^H y for the
+ complex vectors $x and $y, returning the result in the complex number $dotc.
+-The function returns 0 if the operation suceeded, 1 otherwise.
++The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_snrm2>
+ =item C<gsl_blas_sasum>
+@@ -328,11 +328,11 @@ This function computes the sum of the magnitudes of the real and imaginary parts
+
+ =item C<gsl_blas_dswap($x, $y)>
+
+-This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dcopy($x, $y)>
+
+-This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_daxpy($alpha, $x, $y)>
+
+@@ -394,11 +394,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsv>
+
+-=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
++=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
+
+-=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
++=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
+
+ =item C<gsl_blas_cgemv >
+
+@@ -422,9 +422,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_dsymv>
+
+-=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)> - This function computes the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used.
+
+@@ -440,11 +440,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemv >
+
+-=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zgerc>
+
+-=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
++=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
+
+
+ =item C<gsl_blas_zher2 >
+@@ -467,17 +467,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsm>
+
+-=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_cgemm>
+
+@@ -491,17 +491,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_ctrsm>
+
+-=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise. $A, $B and $C are complex matrices
++=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices
+
+-=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
++=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
+
+-=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
++=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
+
+-=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_chemm>
+
+@@ -511,9 +511,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.
+
+-=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
++=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
+
+ =back
+
+@@ -531,7 +531,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+
+diff --git a/pm/Math/GSL/BLAS.pm.1.13 b/pm/Math/GSL/BLAS.pm.1.13
+index 881d7b5..d76f30e 100644
+--- a/pm/Math/GSL/BLAS.pm.1.13
++++ b/pm/Math/GSL/BLAS.pm.1.13
+@@ -266,7 +266,7 @@ The functions of this module are divised into 3 levels:
+ =item C<gsl_blas_ddot($x, $y)>
+
+ This function computes the scalar product x^T y for the vectors $x and $y. The
+-function returns two values, the first is 0 if the operation suceeded, 1
++function returns two values, the first is 0 if the operation succeeded, 1
+ otherwise and the second value is the result of the computation.
+
+ =item C<gsl_blas_cdotu>
+@@ -277,13 +277,13 @@ otherwise and the second value is the result of the computation.
+
+ This function computes the complex scalar product x^T y for the complex vectors
+ $x and $y, returning the result in the complex number $dotu. The function
+-returns 0 if the operation suceeded, 1 otherwise.
++returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zdotc($x, $y, $dotc)>
+
+ This function computes the complex conjugate scalar product x^H y for the
+ complex vectors $x and $y, returning the result in the complex number $dotc.
+-The function returns 0 if the operation suceeded, 1 otherwise.
++The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_snrm2>
+ =item C<gsl_blas_sasum>
+@@ -328,11 +328,11 @@ This function computes the sum of the magnitudes of the real and imaginary parts
+
+ =item C<gsl_blas_dswap($x, $y)>
+
+-This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dcopy($x, $y)>
+
+-This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_daxpy($alpha, $x, $y)>
+
+@@ -394,11 +394,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsv>
+
+-=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
++=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
+
+-=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
++=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
+
+ =item C<gsl_blas_cgemv >
+
+@@ -422,9 +422,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_dsymv>
+
+-=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)> - This function computes the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used.
+
+@@ -440,11 +440,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemv >
+
+-=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zgerc>
+
+-=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
++=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
+
+
+ =item C<gsl_blas_zher2 >
+@@ -467,17 +467,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsm>
+
+-=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_cgemm>
+
+@@ -491,17 +491,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_ctrsm>
+
+-=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise. $A, $B and $C are complex matrices
++=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices
+
+-=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
++=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
+
+-=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
++=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
+
+-=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_chemm>
+
+@@ -511,9 +511,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.
+
+-=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
++=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
+
+ =back
+
+@@ -531,7 +531,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+
+diff --git a/pm/Math/GSL/BLAS.pm.1.14 b/pm/Math/GSL/BLAS.pm.1.14
+index 881d7b5..d76f30e 100644
+--- a/pm/Math/GSL/BLAS.pm.1.14
++++ b/pm/Math/GSL/BLAS.pm.1.14
+@@ -266,7 +266,7 @@ The functions of this module are divised into 3 levels:
+ =item C<gsl_blas_ddot($x, $y)>
+
+ This function computes the scalar product x^T y for the vectors $x and $y. The
+-function returns two values, the first is 0 if the operation suceeded, 1
++function returns two values, the first is 0 if the operation succeeded, 1
+ otherwise and the second value is the result of the computation.
+
+ =item C<gsl_blas_cdotu>
+@@ -277,13 +277,13 @@ otherwise and the second value is the result of the computation.
+
+ This function computes the complex scalar product x^T y for the complex vectors
+ $x and $y, returning the result in the complex number $dotu. The function
+-returns 0 if the operation suceeded, 1 otherwise.
++returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zdotc($x, $y, $dotc)>
+
+ This function computes the complex conjugate scalar product x^H y for the
+ complex vectors $x and $y, returning the result in the complex number $dotc.
+-The function returns 0 if the operation suceeded, 1 otherwise.
++The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_snrm2>
+ =item C<gsl_blas_sasum>
+@@ -328,11 +328,11 @@ This function computes the sum of the magnitudes of the real and imaginary parts
+
+ =item C<gsl_blas_dswap($x, $y)>
+
+-This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dcopy($x, $y)>
+
+-This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_daxpy($alpha, $x, $y)>
+
+@@ -394,11 +394,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsv>
+
+-=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
++=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
+
+-=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
++=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
+
+ =item C<gsl_blas_cgemv >
+
+@@ -422,9 +422,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_dsymv>
+
+-=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)> - This function computes the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used.
+
+@@ -440,11 +440,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemv >
+
+-=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zgerc>
+
+-=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
++=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
+
+
+ =item C<gsl_blas_zher2 >
+@@ -467,17 +467,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsm>
+
+-=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_cgemm>
+
+@@ -491,17 +491,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_ctrsm>
+
+-=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise. $A, $B and $C are complex matrices
++=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices
+
+-=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
++=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
+
+-=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
++=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
+
+-=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_chemm>
+
+@@ -511,9 +511,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.
+
+-=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
++=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
+
+ =back
+
+@@ -531,7 +531,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+
+diff --git a/pm/Math/GSL/BLAS.pm.1.15 b/pm/Math/GSL/BLAS.pm.1.15
+index 881d7b5..d76f30e 100644
+--- a/pm/Math/GSL/BLAS.pm.1.15
++++ b/pm/Math/GSL/BLAS.pm.1.15
+@@ -266,7 +266,7 @@ The functions of this module are divised into 3 levels:
+ =item C<gsl_blas_ddot($x, $y)>
+
+ This function computes the scalar product x^T y for the vectors $x and $y. The
+-function returns two values, the first is 0 if the operation suceeded, 1
++function returns two values, the first is 0 if the operation succeeded, 1
+ otherwise and the second value is the result of the computation.
+
+ =item C<gsl_blas_cdotu>
+@@ -277,13 +277,13 @@ otherwise and the second value is the result of the computation.
+
+ This function computes the complex scalar product x^T y for the complex vectors
+ $x and $y, returning the result in the complex number $dotu. The function
+-returns 0 if the operation suceeded, 1 otherwise.
++returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zdotc($x, $y, $dotc)>
+
+ This function computes the complex conjugate scalar product x^H y for the
+ complex vectors $x and $y, returning the result in the complex number $dotc.
+-The function returns 0 if the operation suceeded, 1 otherwise.
++The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_snrm2>
+ =item C<gsl_blas_sasum>
+@@ -328,11 +328,11 @@ This function computes the sum of the magnitudes of the real and imaginary parts
+
+ =item C<gsl_blas_dswap($x, $y)>
+
+-This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dcopy($x, $y)>
+
+-This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_daxpy($alpha, $x, $y)>
+
+@@ -394,11 +394,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsv>
+
+-=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
++=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
+
+-=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
++=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
+
+ =item C<gsl_blas_cgemv >
+
+@@ -422,9 +422,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_dsymv>
+
+-=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)> - This function computes the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used.
+
+@@ -440,11 +440,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemv >
+
+-=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zgerc>
+
+-=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
++=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
+
+
+ =item C<gsl_blas_zher2 >
+@@ -467,17 +467,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsm>
+
+-=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_cgemm>
+
+@@ -491,17 +491,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_ctrsm>
+
+-=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise. $A, $B and $C are complex matrices
++=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices
+
+-=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
++=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
+
+-=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
++=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
+
+-=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_chemm>
+
+@@ -511,9 +511,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.
+
+-=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
++=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
+
+ =back
+
+@@ -531,7 +531,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+
+diff --git a/pm/Math/GSL/BLAS.pm.1.16 b/pm/Math/GSL/BLAS.pm.1.16
+index 881d7b5..d76f30e 100644
+--- a/pm/Math/GSL/BLAS.pm.1.16
++++ b/pm/Math/GSL/BLAS.pm.1.16
+@@ -266,7 +266,7 @@ The functions of this module are divised into 3 levels:
+ =item C<gsl_blas_ddot($x, $y)>
+
+ This function computes the scalar product x^T y for the vectors $x and $y. The
+-function returns two values, the first is 0 if the operation suceeded, 1
++function returns two values, the first is 0 if the operation succeeded, 1
+ otherwise and the second value is the result of the computation.
+
+ =item C<gsl_blas_cdotu>
+@@ -277,13 +277,13 @@ otherwise and the second value is the result of the computation.
+
+ This function computes the complex scalar product x^T y for the complex vectors
+ $x and $y, returning the result in the complex number $dotu. The function
+-returns 0 if the operation suceeded, 1 otherwise.
++returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zdotc($x, $y, $dotc)>
+
+ This function computes the complex conjugate scalar product x^H y for the
+ complex vectors $x and $y, returning the result in the complex number $dotc.
+-The function returns 0 if the operation suceeded, 1 otherwise.
++The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_snrm2>
+ =item C<gsl_blas_sasum>
+@@ -328,11 +328,11 @@ This function computes the sum of the magnitudes of the real and imaginary parts
+
+ =item C<gsl_blas_dswap($x, $y)>
+
+-This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dcopy($x, $y)>
+
+-This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_daxpy($alpha, $x, $y)>
+
+@@ -394,11 +394,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsv>
+
+-=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
++=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
+
+-=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
++=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
+
+ =item C<gsl_blas_cgemv >
+
+@@ -422,9 +422,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_dsymv>
+
+-=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)> - This function computes the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used.
+
+@@ -440,11 +440,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemv >
+
+-=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zgerc>
+
+-=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
++=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
+
+
+ =item C<gsl_blas_zher2 >
+@@ -467,17 +467,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsm>
+
+-=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_cgemm>
+
+@@ -491,17 +491,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_ctrsm>
+
+-=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise. $A, $B and $C are complex matrices
++=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices
+
+-=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
++=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
+
+-=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
++=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
+
+-=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_chemm>
+
+@@ -511,9 +511,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.
+
+-=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
++=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
+
+ =back
+
+@@ -531,7 +531,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+
+diff --git a/pm/Math/GSL/BSpline.pm.1.11 b/pm/Math/GSL/BSpline.pm.1.11
+index f608af2..7744689 100644
+--- a/pm/Math/GSL/BSpline.pm.1.11
++++ b/pm/Math/GSL/BSpline.pm.1.11
+@@ -192,7 +192,7 @@ gsl_bspline_ncoeffs. It is far more efficient to compute all of the basis
+ functions at once than to compute them individually, due to the nature of the
+ defining recurrence relation.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ http://www.gnu.org/software/gsl/manual/html_node/
+
+ =back
+diff --git a/pm/Math/GSL/BSpline.pm.1.12 b/pm/Math/GSL/BSpline.pm.1.12
+index f608af2..7744689 100644
+--- a/pm/Math/GSL/BSpline.pm.1.12
++++ b/pm/Math/GSL/BSpline.pm.1.12
+@@ -192,7 +192,7 @@ gsl_bspline_ncoeffs. It is far more efficient to compute all of the basis
+ functions at once than to compute them individually, due to the nature of the
+ defining recurrence relation.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ http://www.gnu.org/software/gsl/manual/html_node/
+
+ =back
+diff --git a/pm/Math/GSL/BSpline.pm.1.13 b/pm/Math/GSL/BSpline.pm.1.13
+index 42821f7..6b31117 100644
+--- a/pm/Math/GSL/BSpline.pm.1.13
++++ b/pm/Math/GSL/BSpline.pm.1.13
+@@ -193,7 +193,7 @@ gsl_bspline_ncoeffs. It is far more efficient to compute all of the basis
+ functions at once than to compute them individually, due to the nature of the
+ defining recurrence relation.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ http://www.gnu.org/software/gsl/manual/html_node/
+
+ =back
+diff --git a/pm/Math/GSL/BSpline.pm.1.14 b/pm/Math/GSL/BSpline.pm.1.14
+index 42821f7..6b31117 100644
+--- a/pm/Math/GSL/BSpline.pm.1.14
++++ b/pm/Math/GSL/BSpline.pm.1.14
+@@ -193,7 +193,7 @@ gsl_bspline_ncoeffs. It is far more efficient to compute all of the basis
+ functions at once than to compute them individually, due to the nature of the
+ defining recurrence relation.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ http://www.gnu.org/software/gsl/manual/html_node/
+
+ =back
+diff --git a/pm/Math/GSL/BSpline.pm.1.15 b/pm/Math/GSL/BSpline.pm.1.15
+index 3a2c67e..5e6a45b 100644
+--- a/pm/Math/GSL/BSpline.pm.1.15
++++ b/pm/Math/GSL/BSpline.pm.1.15
+@@ -241,7 +241,7 @@ gsl_bspline_ncoeffs. It is far more efficient to compute all of the basis
+ functions at once than to compute them individually, due to the nature of the
+ defining recurrence relation.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ http://www.gnu.org/software/gsl/manual/html_node/
+
+ =back
+diff --git a/pm/Math/GSL/BSpline.pm.1.16 b/pm/Math/GSL/BSpline.pm.1.16
+index 3a2c67e..5e6a45b 100644
+--- a/pm/Math/GSL/BSpline.pm.1.16
++++ b/pm/Math/GSL/BSpline.pm.1.16
+@@ -241,7 +241,7 @@ gsl_bspline_ncoeffs. It is far more efficient to compute all of the basis
+ functions at once than to compute them individually, due to the nature of the
+ defining recurrence relation.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ http://www.gnu.org/software/gsl/manual/html_node/
+
+ =back
+diff --git a/pm/Math/GSL/CBLAS.pm.1.11 b/pm/Math/GSL/CBLAS.pm.1.11
+index da59ab1..d2dc76e 100644
+--- a/pm/Math/GSL/CBLAS.pm.1.11
++++ b/pm/Math/GSL/CBLAS.pm.1.11
+@@ -704,7 +704,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/CBLAS.pm.1.12 b/pm/Math/GSL/CBLAS.pm.1.12
+index da59ab1..d2dc76e 100644
+--- a/pm/Math/GSL/CBLAS.pm.1.12
++++ b/pm/Math/GSL/CBLAS.pm.1.12
+@@ -704,7 +704,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/CBLAS.pm.1.13 b/pm/Math/GSL/CBLAS.pm.1.13
+index da59ab1..d2dc76e 100644
+--- a/pm/Math/GSL/CBLAS.pm.1.13
++++ b/pm/Math/GSL/CBLAS.pm.1.13
+@@ -704,7 +704,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/CBLAS.pm.1.14 b/pm/Math/GSL/CBLAS.pm.1.14
+index da59ab1..d2dc76e 100644
+--- a/pm/Math/GSL/CBLAS.pm.1.14
++++ b/pm/Math/GSL/CBLAS.pm.1.14
+@@ -704,7 +704,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/CBLAS.pm.1.15 b/pm/Math/GSL/CBLAS.pm.1.15
+index da59ab1..d2dc76e 100644
+--- a/pm/Math/GSL/CBLAS.pm.1.15
++++ b/pm/Math/GSL/CBLAS.pm.1.15
+@@ -704,7 +704,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/CBLAS.pm.1.16 b/pm/Math/GSL/CBLAS.pm.1.16
+index da59ab1..d2dc76e 100644
+--- a/pm/Math/GSL/CBLAS.pm.1.16
++++ b/pm/Math/GSL/CBLAS.pm.1.16
+@@ -704,7 +704,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/CDF.pm.1.11 b/pm/Math/GSL/CDF.pm.1.11
+index d0642e5..a7afa98 100644
+--- a/pm/Math/GSL/CDF.pm.1.11
++++ b/pm/Math/GSL/CDF.pm.1.11
+@@ -516,7 +516,7 @@ This is the list of available import tags:
+ For example the beta tag contains theses functions : gsl_cdf_beta_P,
+ gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv .
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/CDF.pm.1.12 b/pm/Math/GSL/CDF.pm.1.12
+index d0642e5..a7afa98 100644
+--- a/pm/Math/GSL/CDF.pm.1.12
++++ b/pm/Math/GSL/CDF.pm.1.12
+@@ -516,7 +516,7 @@ This is the list of available import tags:
+ For example the beta tag contains theses functions : gsl_cdf_beta_P,
+ gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv .
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/CDF.pm.1.13 b/pm/Math/GSL/CDF.pm.1.13
+index d0642e5..a7afa98 100644
+--- a/pm/Math/GSL/CDF.pm.1.13
++++ b/pm/Math/GSL/CDF.pm.1.13
+@@ -516,7 +516,7 @@ This is the list of available import tags:
+ For example the beta tag contains theses functions : gsl_cdf_beta_P,
+ gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv .
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/CDF.pm.1.14 b/pm/Math/GSL/CDF.pm.1.14
+index d0642e5..a7afa98 100644
+--- a/pm/Math/GSL/CDF.pm.1.14
++++ b/pm/Math/GSL/CDF.pm.1.14
+@@ -516,7 +516,7 @@ This is the list of available import tags:
+ For example the beta tag contains theses functions : gsl_cdf_beta_P,
+ gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv .
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/CDF.pm.1.15 b/pm/Math/GSL/CDF.pm.1.15
+index d0642e5..a7afa98 100644
+--- a/pm/Math/GSL/CDF.pm.1.15
++++ b/pm/Math/GSL/CDF.pm.1.15
+@@ -516,7 +516,7 @@ This is the list of available import tags:
+ For example the beta tag contains theses functions : gsl_cdf_beta_P,
+ gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv .
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/CDF.pm.1.16 b/pm/Math/GSL/CDF.pm.1.16
+index d0642e5..a7afa98 100644
+--- a/pm/Math/GSL/CDF.pm.1.16
++++ b/pm/Math/GSL/CDF.pm.1.16
+@@ -516,7 +516,7 @@ This is the list of available import tags:
+ For example the beta tag contains theses functions : gsl_cdf_beta_P,
+ gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv .
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Chebyshev.pm.1.11 b/pm/Math/GSL/Chebyshev.pm.1.11
+index 2dc42c2..b7066e6 100644
+--- a/pm/Math/GSL/Chebyshev.pm.1.11
++++ b/pm/Math/GSL/Chebyshev.pm.1.11
+@@ -361,7 +361,7 @@ in $deriv, which must be pre-allocated. Returns a GSL status code.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Chebyshev.pm.1.12 b/pm/Math/GSL/Chebyshev.pm.1.12
+index 2dc42c2..b7066e6 100644
+--- a/pm/Math/GSL/Chebyshev.pm.1.12
++++ b/pm/Math/GSL/Chebyshev.pm.1.12
+@@ -361,7 +361,7 @@ in $deriv, which must be pre-allocated. Returns a GSL status code.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Chebyshev.pm.1.13 b/pm/Math/GSL/Chebyshev.pm.1.13
+index 2dc42c2..b7066e6 100644
+--- a/pm/Math/GSL/Chebyshev.pm.1.13
++++ b/pm/Math/GSL/Chebyshev.pm.1.13
+@@ -361,7 +361,7 @@ in $deriv, which must be pre-allocated. Returns a GSL status code.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Chebyshev.pm.1.14 b/pm/Math/GSL/Chebyshev.pm.1.14
+index 2dc42c2..b7066e6 100644
+--- a/pm/Math/GSL/Chebyshev.pm.1.14
++++ b/pm/Math/GSL/Chebyshev.pm.1.14
+@@ -361,7 +361,7 @@ in $deriv, which must be pre-allocated. Returns a GSL status code.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Chebyshev.pm.1.15 b/pm/Math/GSL/Chebyshev.pm.1.15
+index 5cd6c45..0d0e881 100644
+--- a/pm/Math/GSL/Chebyshev.pm.1.15
++++ b/pm/Math/GSL/Chebyshev.pm.1.15
+@@ -364,7 +364,7 @@ in $deriv, which must be pre-allocated. Returns a GSL status code.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Chebyshev.pm.1.16 b/pm/Math/GSL/Chebyshev.pm.1.16
+index 5cd6c45..0d0e881 100644
+--- a/pm/Math/GSL/Chebyshev.pm.1.16
++++ b/pm/Math/GSL/Chebyshev.pm.1.16
+@@ -364,7 +364,7 @@ in $deriv, which must be pre-allocated. Returns a GSL status code.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Combination.pm.1.11 b/pm/Math/GSL/Combination.pm.1.11
+index 1b82012..30497d0 100644
+--- a/pm/Math/GSL/Combination.pm.1.11
++++ b/pm/Math/GSL/Combination.pm.1.11
+@@ -325,7 +325,7 @@ sub prev {
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Combination.pm.1.12 b/pm/Math/GSL/Combination.pm.1.12
+index 1b82012..30497d0 100644
+--- a/pm/Math/GSL/Combination.pm.1.12
++++ b/pm/Math/GSL/Combination.pm.1.12
+@@ -325,7 +325,7 @@ sub prev {
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Combination.pm.1.13 b/pm/Math/GSL/Combination.pm.1.13
+index 1b82012..30497d0 100644
+--- a/pm/Math/GSL/Combination.pm.1.13
++++ b/pm/Math/GSL/Combination.pm.1.13
+@@ -325,7 +325,7 @@ sub prev {
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Combination.pm.1.14 b/pm/Math/GSL/Combination.pm.1.14
+index 1b82012..30497d0 100644
+--- a/pm/Math/GSL/Combination.pm.1.14
++++ b/pm/Math/GSL/Combination.pm.1.14
+@@ -325,7 +325,7 @@ sub prev {
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Combination.pm.1.15 b/pm/Math/GSL/Combination.pm.1.15
+index 1b82012..30497d0 100644
+--- a/pm/Math/GSL/Combination.pm.1.15
++++ b/pm/Math/GSL/Combination.pm.1.15
+@@ -325,7 +325,7 @@ sub prev {
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Combination.pm.1.16 b/pm/Math/GSL/Combination.pm.1.16
+index 1b82012..30497d0 100644
+--- a/pm/Math/GSL/Combination.pm.1.16
++++ b/pm/Math/GSL/Combination.pm.1.16
+@@ -325,7 +325,7 @@ sub prev {
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Deriv.pm.1.11 b/pm/Math/GSL/Deriv.pm.1.11
+index 1a29db6..c3ead42 100644
+--- a/pm/Math/GSL/Deriv.pm.1.11
++++ b/pm/Math/GSL/Deriv.pm.1.11
+@@ -291,7 +291,7 @@ function is evaluated at $x and $x+$h.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Deriv.pm.1.12 b/pm/Math/GSL/Deriv.pm.1.12
+index 1a29db6..c3ead42 100644
+--- a/pm/Math/GSL/Deriv.pm.1.12
++++ b/pm/Math/GSL/Deriv.pm.1.12
+@@ -291,7 +291,7 @@ function is evaluated at $x and $x+$h.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Deriv.pm.1.13 b/pm/Math/GSL/Deriv.pm.1.13
+index 1a29db6..c3ead42 100644
+--- a/pm/Math/GSL/Deriv.pm.1.13
++++ b/pm/Math/GSL/Deriv.pm.1.13
+@@ -291,7 +291,7 @@ function is evaluated at $x and $x+$h.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Deriv.pm.1.14 b/pm/Math/GSL/Deriv.pm.1.14
+index 1a29db6..c3ead42 100644
+--- a/pm/Math/GSL/Deriv.pm.1.14
++++ b/pm/Math/GSL/Deriv.pm.1.14
+@@ -291,7 +291,7 @@ function is evaluated at $x and $x+$h.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Deriv.pm.1.15 b/pm/Math/GSL/Deriv.pm.1.15
+index 1a29db6..c3ead42 100644
+--- a/pm/Math/GSL/Deriv.pm.1.15
++++ b/pm/Math/GSL/Deriv.pm.1.15
+@@ -291,7 +291,7 @@ function is evaluated at $x and $x+$h.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Deriv.pm.1.16 b/pm/Math/GSL/Deriv.pm.1.16
+index 1a29db6..c3ead42 100644
+--- a/pm/Math/GSL/Deriv.pm.1.16
++++ b/pm/Math/GSL/Deriv.pm.1.16
+@@ -291,7 +291,7 @@ function is evaluated at $x and $x+$h.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Eigen.pm.1.11 b/pm/Math/GSL/Eigen.pm.1.11
+index 9d4a436..4fed7e0 100644
+--- a/pm/Math/GSL/Eigen.pm.1.11
++++ b/pm/Math/GSL/Eigen.pm.1.11
+@@ -1047,7 +1047,7 @@ This module also includes these constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Eigen.pm.1.12 b/pm/Math/GSL/Eigen.pm.1.12
+index 9d4a436..4fed7e0 100644
+--- a/pm/Math/GSL/Eigen.pm.1.12
++++ b/pm/Math/GSL/Eigen.pm.1.12
+@@ -1047,7 +1047,7 @@ This module also includes these constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Eigen.pm.1.13 b/pm/Math/GSL/Eigen.pm.1.13
+index 9d4a436..4fed7e0 100644
+--- a/pm/Math/GSL/Eigen.pm.1.13
++++ b/pm/Math/GSL/Eigen.pm.1.13
+@@ -1047,7 +1047,7 @@ This module also includes these constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Eigen.pm.1.14 b/pm/Math/GSL/Eigen.pm.1.14
+index 9d4a436..4fed7e0 100644
+--- a/pm/Math/GSL/Eigen.pm.1.14
++++ b/pm/Math/GSL/Eigen.pm.1.14
+@@ -1047,7 +1047,7 @@ This module also includes these constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Eigen.pm.1.15 b/pm/Math/GSL/Eigen.pm.1.15
+index facd9d4..7414b7c 100644
+--- a/pm/Math/GSL/Eigen.pm.1.15
++++ b/pm/Math/GSL/Eigen.pm.1.15
+@@ -1048,7 +1048,7 @@ This module also includes these constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Eigen.pm.1.16 b/pm/Math/GSL/Eigen.pm.1.16
+index facd9d4..7414b7c 100644
+--- a/pm/Math/GSL/Eigen.pm.1.16
++++ b/pm/Math/GSL/Eigen.pm.1.16
+@@ -1048,7 +1048,7 @@ This module also includes these constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/FFT.pm.1.11 b/pm/Math/GSL/FFT.pm.1.11
+index a70df43..417f8aa 100644
+--- a/pm/Math/GSL/FFT.pm.1.11
++++ b/pm/Math/GSL/FFT.pm.1.11
+@@ -942,7 +942,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/FFT.pm.1.12 b/pm/Math/GSL/FFT.pm.1.12
+index a70df43..417f8aa 100644
+--- a/pm/Math/GSL/FFT.pm.1.12
++++ b/pm/Math/GSL/FFT.pm.1.12
+@@ -942,7 +942,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/FFT.pm.1.13 b/pm/Math/GSL/FFT.pm.1.13
+index a70df43..417f8aa 100644
+--- a/pm/Math/GSL/FFT.pm.1.13
++++ b/pm/Math/GSL/FFT.pm.1.13
+@@ -942,7 +942,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/FFT.pm.1.14 b/pm/Math/GSL/FFT.pm.1.14
+index a70df43..417f8aa 100644
+--- a/pm/Math/GSL/FFT.pm.1.14
++++ b/pm/Math/GSL/FFT.pm.1.14
+@@ -942,7 +942,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/FFT.pm.1.15 b/pm/Math/GSL/FFT.pm.1.15
+index 8acb44a..408ff60 100644
+--- a/pm/Math/GSL/FFT.pm.1.15
++++ b/pm/Math/GSL/FFT.pm.1.15
+@@ -943,7 +943,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/FFT.pm.1.16 b/pm/Math/GSL/FFT.pm.1.16
+index 8acb44a..408ff60 100644
+--- a/pm/Math/GSL/FFT.pm.1.16
++++ b/pm/Math/GSL/FFT.pm.1.16
+@@ -943,7 +943,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Fit.pm.1.11 b/pm/Math/GSL/Fit.pm.1.11
+index f2b0c53..947cae7 100644
+--- a/pm/Math/GSL/Fit.pm.1.11
++++ b/pm/Math/GSL/Fit.pm.1.11
+@@ -169,7 +169,7 @@ and y_err.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Fit.pm.1.12 b/pm/Math/GSL/Fit.pm.1.12
+index f2b0c53..947cae7 100644
+--- a/pm/Math/GSL/Fit.pm.1.12
++++ b/pm/Math/GSL/Fit.pm.1.12
+@@ -169,7 +169,7 @@ and y_err.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Fit.pm.1.13 b/pm/Math/GSL/Fit.pm.1.13
+index f2b0c53..947cae7 100644
+--- a/pm/Math/GSL/Fit.pm.1.13
++++ b/pm/Math/GSL/Fit.pm.1.13
+@@ -169,7 +169,7 @@ and y_err.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Fit.pm.1.14 b/pm/Math/GSL/Fit.pm.1.14
+index f2b0c53..947cae7 100644
+--- a/pm/Math/GSL/Fit.pm.1.14
++++ b/pm/Math/GSL/Fit.pm.1.14
+@@ -169,7 +169,7 @@ and y_err.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Fit.pm.1.15 b/pm/Math/GSL/Fit.pm.1.15
+index f2b0c53..947cae7 100644
+--- a/pm/Math/GSL/Fit.pm.1.15
++++ b/pm/Math/GSL/Fit.pm.1.15
+@@ -169,7 +169,7 @@ and y_err.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Fit.pm.1.16 b/pm/Math/GSL/Fit.pm.1.16
+index f2b0c53..947cae7 100644
+--- a/pm/Math/GSL/Fit.pm.1.16
++++ b/pm/Math/GSL/Fit.pm.1.16
+@@ -169,7 +169,7 @@ and y_err.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Heapsort.pm.1.11 b/pm/Math/GSL/Heapsort.pm.1.11
+index 31d00d8..64d7534 100644
+--- a/pm/Math/GSL/Heapsort.pm.1.11
++++ b/pm/Math/GSL/Heapsort.pm.1.11
+@@ -159,7 +159,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Heapsort.pm.1.12 b/pm/Math/GSL/Heapsort.pm.1.12
+index 31d00d8..64d7534 100644
+--- a/pm/Math/GSL/Heapsort.pm.1.12
++++ b/pm/Math/GSL/Heapsort.pm.1.12
+@@ -159,7 +159,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Heapsort.pm.1.13 b/pm/Math/GSL/Heapsort.pm.1.13
+index 31d00d8..64d7534 100644
+--- a/pm/Math/GSL/Heapsort.pm.1.13
++++ b/pm/Math/GSL/Heapsort.pm.1.13
+@@ -159,7 +159,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Heapsort.pm.1.14 b/pm/Math/GSL/Heapsort.pm.1.14
+index 31d00d8..64d7534 100644
+--- a/pm/Math/GSL/Heapsort.pm.1.14
++++ b/pm/Math/GSL/Heapsort.pm.1.14
+@@ -159,7 +159,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Heapsort.pm.1.15 b/pm/Math/GSL/Heapsort.pm.1.15
+index 31d00d8..64d7534 100644
+--- a/pm/Math/GSL/Heapsort.pm.1.15
++++ b/pm/Math/GSL/Heapsort.pm.1.15
+@@ -159,7 +159,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Heapsort.pm.1.16 b/pm/Math/GSL/Heapsort.pm.1.16
+index 31d00d8..64d7534 100644
+--- a/pm/Math/GSL/Heapsort.pm.1.16
++++ b/pm/Math/GSL/Heapsort.pm.1.16
+@@ -159,7 +159,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Integration.pm.1.11 b/pm/Math/GSL/Integration.pm.1.11
+index d10fcb3..494f27a 100644
+--- a/pm/Math/GSL/Integration.pm.1.11
++++ b/pm/Math/GSL/Integration.pm.1.11
+@@ -631,7 +631,7 @@ The integral is divergent, or too slowly convergent to be integrated numerically
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Integration.pm.1.12 b/pm/Math/GSL/Integration.pm.1.12
+index d10fcb3..494f27a 100644
+--- a/pm/Math/GSL/Integration.pm.1.12
++++ b/pm/Math/GSL/Integration.pm.1.12
+@@ -631,7 +631,7 @@ The integral is divergent, or too slowly convergent to be integrated numerically
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Integration.pm.1.13 b/pm/Math/GSL/Integration.pm.1.13
+index d10fcb3..494f27a 100644
+--- a/pm/Math/GSL/Integration.pm.1.13
++++ b/pm/Math/GSL/Integration.pm.1.13
+@@ -631,7 +631,7 @@ The integral is divergent, or too slowly convergent to be integrated numerically
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Integration.pm.1.14 b/pm/Math/GSL/Integration.pm.1.14
+index 28b1da7..f2cfb1a 100644
+--- a/pm/Math/GSL/Integration.pm.1.14
++++ b/pm/Math/GSL/Integration.pm.1.14
+@@ -679,7 +679,7 @@ The integral is divergent, or too slowly convergent to be integrated numerically
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Integration.pm.1.15 b/pm/Math/GSL/Integration.pm.1.15
+index 9332455..497409c 100644
+--- a/pm/Math/GSL/Integration.pm.1.15
++++ b/pm/Math/GSL/Integration.pm.1.15
+@@ -781,7 +781,7 @@ The integral is divergent, or too slowly convergent to be integrated numerically
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Integration.pm.1.16 b/pm/Math/GSL/Integration.pm.1.16
+index 9332455..497409c 100644
+--- a/pm/Math/GSL/Integration.pm.1.16
++++ b/pm/Math/GSL/Integration.pm.1.16
+@@ -781,7 +781,7 @@ The integral is divergent, or too slowly convergent to be integrated numerically
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Linalg.pm.1.11 b/pm/Math/GSL/Linalg.pm.1.11
+index 07e58e5..88e76a9 100644
+--- a/pm/Math/GSL/Linalg.pm.1.11
++++ b/pm/Math/GSL/Linalg.pm.1.11
+@@ -756,7 +756,7 @@ Here is a list of all the functions included in this module :
+
+ You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+ =back
+diff --git a/pm/Math/GSL/Linalg.pm.1.12 b/pm/Math/GSL/Linalg.pm.1.12
+index cef0d0f..858e077 100644
+--- a/pm/Math/GSL/Linalg.pm.1.12
++++ b/pm/Math/GSL/Linalg.pm.1.12
+@@ -757,7 +757,7 @@ Here is a list of all the functions included in this module :
+
+ You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+ =back
+diff --git a/pm/Math/GSL/Linalg.pm.1.13 b/pm/Math/GSL/Linalg.pm.1.13
+index cef0d0f..858e077 100644
+--- a/pm/Math/GSL/Linalg.pm.1.13
++++ b/pm/Math/GSL/Linalg.pm.1.13
+@@ -757,7 +757,7 @@ Here is a list of all the functions included in this module :
+
+ You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+ =back
+diff --git a/pm/Math/GSL/Linalg.pm.1.14 b/pm/Math/GSL/Linalg.pm.1.14
+index cef0d0f..858e077 100644
+--- a/pm/Math/GSL/Linalg.pm.1.14
++++ b/pm/Math/GSL/Linalg.pm.1.14
+@@ -757,7 +757,7 @@ Here is a list of all the functions included in this module :
+
+ You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+ =back
+diff --git a/pm/Math/GSL/Linalg.pm.1.15 b/pm/Math/GSL/Linalg.pm.1.15
+index f017caf..3d486a1 100644
+--- a/pm/Math/GSL/Linalg.pm.1.15
++++ b/pm/Math/GSL/Linalg.pm.1.15
+@@ -758,7 +758,7 @@ Here is a list of all the functions included in this module :
+
+ You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+ =back
+diff --git a/pm/Math/GSL/Linalg.pm.1.16 b/pm/Math/GSL/Linalg.pm.1.16
+index f017caf..3d486a1 100644
+--- a/pm/Math/GSL/Linalg.pm.1.16
++++ b/pm/Math/GSL/Linalg.pm.1.16
+@@ -758,7 +758,7 @@ Here is a list of all the functions included in this module :
+
+ You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+ =back
+diff --git a/pm/Math/GSL/Matrix.pm.1.11 b/pm/Math/GSL/Matrix.pm.1.11
+index 7e142c6..d031421 100644
+--- a/pm/Math/GSL/Matrix.pm.1.11
++++ b/pm/Math/GSL/Matrix.pm.1.11
+@@ -2363,11 +2363,11 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_swap($m1, $m2)> - Exchange the elements of the matrices $m1 and $m2 by copying. The two matrices must have the same size.
+
+-=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_matrix_transpose($m)> - This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.
+
+@@ -2387,7 +2387,7 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_isnull($m)> - Return 1 if all the elements of the matrix $m are zero, 0 otherwise
+
+-=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positve, 0 otherwise
++=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positive, 0 otherwise
+
+ =item C<gsl_matrix_isneg($m)> - Return 1 if all the elements of the matrix $m are strictly negative, 0 otherwise
+
+@@ -2407,13 +2407,13 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_add_diagonal($a, $x)> - Add the constant value $x to the elements of the diagonal of the matrix $a
+
+-=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+ =back
+
+@@ -2715,7 +2715,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Matrix.pm.1.12 b/pm/Math/GSL/Matrix.pm.1.12
+index eebb1be..55f99e5 100644
+--- a/pm/Math/GSL/Matrix.pm.1.12
++++ b/pm/Math/GSL/Matrix.pm.1.12
+@@ -2364,11 +2364,11 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_swap($m1, $m2)> - Exchange the elements of the matrices $m1 and $m2 by copying. The two matrices must have the same size.
+
+-=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_matrix_transpose($m)> - This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.
+
+@@ -2388,7 +2388,7 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_isnull($m)> - Return 1 if all the elements of the matrix $m are zero, 0 otherwise
+
+-=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positve, 0 otherwise
++=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positive, 0 otherwise
+
+ =item C<gsl_matrix_isneg($m)> - Return 1 if all the elements of the matrix $m are strictly negative, 0 otherwise
+
+@@ -2408,13 +2408,13 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_add_diagonal($a, $x)> - Add the constant value $x to the elements of the diagonal of the matrix $a
+
+-=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+ =back
+
+@@ -2716,7 +2716,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Matrix.pm.1.13 b/pm/Math/GSL/Matrix.pm.1.13
+index eebb1be..55f99e5 100644
+--- a/pm/Math/GSL/Matrix.pm.1.13
++++ b/pm/Math/GSL/Matrix.pm.1.13
+@@ -2364,11 +2364,11 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_swap($m1, $m2)> - Exchange the elements of the matrices $m1 and $m2 by copying. The two matrices must have the same size.
+
+-=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_matrix_transpose($m)> - This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.
+
+@@ -2388,7 +2388,7 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_isnull($m)> - Return 1 if all the elements of the matrix $m are zero, 0 otherwise
+
+-=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positve, 0 otherwise
++=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positive, 0 otherwise
+
+ =item C<gsl_matrix_isneg($m)> - Return 1 if all the elements of the matrix $m are strictly negative, 0 otherwise
+
+@@ -2408,13 +2408,13 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_add_diagonal($a, $x)> - Add the constant value $x to the elements of the diagonal of the matrix $a
+
+-=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+ =back
+
+@@ -2716,7 +2716,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Matrix.pm.1.14 b/pm/Math/GSL/Matrix.pm.1.14
+index eebb1be..55f99e5 100644
+--- a/pm/Math/GSL/Matrix.pm.1.14
++++ b/pm/Math/GSL/Matrix.pm.1.14
+@@ -2364,11 +2364,11 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_swap($m1, $m2)> - Exchange the elements of the matrices $m1 and $m2 by copying. The two matrices must have the same size.
+
+-=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_matrix_transpose($m)> - This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.
+
+@@ -2388,7 +2388,7 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_isnull($m)> - Return 1 if all the elements of the matrix $m are zero, 0 otherwise
+
+-=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positve, 0 otherwise
++=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positive, 0 otherwise
+
+ =item C<gsl_matrix_isneg($m)> - Return 1 if all the elements of the matrix $m are strictly negative, 0 otherwise
+
+@@ -2408,13 +2408,13 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_add_diagonal($a, $x)> - Add the constant value $x to the elements of the diagonal of the matrix $a
+
+-=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+ =back
+
+@@ -2716,7 +2716,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Matrix.pm.1.15 b/pm/Math/GSL/Matrix.pm.1.15
+index 5b83f35..1fa72f0 100644
+--- a/pm/Math/GSL/Matrix.pm.1.15
++++ b/pm/Math/GSL/Matrix.pm.1.15
+@@ -2369,11 +2369,11 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_swap($m1, $m2)> - Exchange the elements of the matrices $m1 and $m2 by copying. The two matrices must have the same size.
+
+-=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_matrix_transpose($m)> - This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.
+
+@@ -2393,7 +2393,7 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_isnull($m)> - Return 1 if all the elements of the matrix $m are zero, 0 otherwise
+
+-=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positve, 0 otherwise
++=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positive, 0 otherwise
+
+ =item C<gsl_matrix_isneg($m)> - Return 1 if all the elements of the matrix $m are strictly negative, 0 otherwise
+
+@@ -2413,13 +2413,13 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_add_diagonal($a, $x)> - Add the constant value $x to the elements of the diagonal of the matrix $a
+
+-=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+ =back
+
+@@ -2721,7 +2721,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Matrix.pm.1.16 b/pm/Math/GSL/Matrix.pm.1.16
+index 5b83f35..1fa72f0 100644
+--- a/pm/Math/GSL/Matrix.pm.1.16
++++ b/pm/Math/GSL/Matrix.pm.1.16
+@@ -2369,11 +2369,11 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_swap($m1, $m2)> - Exchange the elements of the matrices $m1 and $m2 by copying. The two matrices must have the same size.
+
+-=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_matrix_transpose($m)> - This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.
+
+@@ -2393,7 +2393,7 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_isnull($m)> - Return 1 if all the elements of the matrix $m are zero, 0 otherwise
+
+-=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positve, 0 otherwise
++=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positive, 0 otherwise
+
+ =item C<gsl_matrix_isneg($m)> - Return 1 if all the elements of the matrix $m are strictly negative, 0 otherwise
+
+@@ -2413,13 +2413,13 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_add_diagonal($a, $x)> - Add the constant value $x to the elements of the diagonal of the matrix $a
+
+-=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+ =back
+
+@@ -2721,7 +2721,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/MatrixComplex.pm.1.11 b/pm/Math/GSL/MatrixComplex.pm.1.11
+index f87a130..b112aa9 100644
+--- a/pm/Math/GSL/MatrixComplex.pm.1.11
++++ b/pm/Math/GSL/MatrixComplex.pm.1.11
+@@ -1229,7 +1229,7 @@ sub lndet($)
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/MatrixComplex.pm.1.12 b/pm/Math/GSL/MatrixComplex.pm.1.12
+index 66ac9dd..6def949 100644
+--- a/pm/Math/GSL/MatrixComplex.pm.1.12
++++ b/pm/Math/GSL/MatrixComplex.pm.1.12
+@@ -1230,7 +1230,7 @@ sub lndet($)
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/MatrixComplex.pm.1.13 b/pm/Math/GSL/MatrixComplex.pm.1.13
+index 66ac9dd..6def949 100644
+--- a/pm/Math/GSL/MatrixComplex.pm.1.13
++++ b/pm/Math/GSL/MatrixComplex.pm.1.13
+@@ -1230,7 +1230,7 @@ sub lndet($)
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/MatrixComplex.pm.1.14 b/pm/Math/GSL/MatrixComplex.pm.1.14
+index 66ac9dd..6def949 100644
+--- a/pm/Math/GSL/MatrixComplex.pm.1.14
++++ b/pm/Math/GSL/MatrixComplex.pm.1.14
+@@ -1230,7 +1230,7 @@ sub lndet($)
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/MatrixComplex.pm.1.15 b/pm/Math/GSL/MatrixComplex.pm.1.15
+index 3b4ec33..48af7c8 100644
+--- a/pm/Math/GSL/MatrixComplex.pm.1.15
++++ b/pm/Math/GSL/MatrixComplex.pm.1.15
+@@ -1232,7 +1232,7 @@ sub lndet($)
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/MatrixComplex.pm.1.16 b/pm/Math/GSL/MatrixComplex.pm.1.16
+index 3b4ec33..48af7c8 100644
+--- a/pm/Math/GSL/MatrixComplex.pm.1.16
++++ b/pm/Math/GSL/MatrixComplex.pm.1.16
+@@ -1232,7 +1232,7 @@ sub lndet($)
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Min.pm.1.11 b/pm/Math/GSL/Min.pm.1.11
+index 18baaba..5a6afb9 100644
+--- a/pm/Math/GSL/Min.pm.1.11
++++ b/pm/Math/GSL/Min.pm.1.11
+@@ -436,7 +436,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Min.pm.1.12 b/pm/Math/GSL/Min.pm.1.12
+index 18baaba..5a6afb9 100644
+--- a/pm/Math/GSL/Min.pm.1.12
++++ b/pm/Math/GSL/Min.pm.1.12
+@@ -436,7 +436,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Min.pm.1.13 b/pm/Math/GSL/Min.pm.1.13
+index ce5a43f..2e7f01c 100644
+--- a/pm/Math/GSL/Min.pm.1.13
++++ b/pm/Math/GSL/Min.pm.1.13
+@@ -441,7 +441,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Min.pm.1.14 b/pm/Math/GSL/Min.pm.1.14
+index ce5a43f..2e7f01c 100644
+--- a/pm/Math/GSL/Min.pm.1.14
++++ b/pm/Math/GSL/Min.pm.1.14
+@@ -441,7 +441,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Min.pm.1.15 b/pm/Math/GSL/Min.pm.1.15
+index ce5a43f..2e7f01c 100644
+--- a/pm/Math/GSL/Min.pm.1.15
++++ b/pm/Math/GSL/Min.pm.1.15
+@@ -441,7 +441,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Min.pm.1.16 b/pm/Math/GSL/Min.pm.1.16
+index ce5a43f..2e7f01c 100644
+--- a/pm/Math/GSL/Min.pm.1.16
++++ b/pm/Math/GSL/Min.pm.1.16
+@@ -441,7 +441,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Monte.pm.1.11 b/pm/Math/GSL/Monte.pm.1.11
+index 5f3a1d0..bc63767 100644
+--- a/pm/Math/GSL/Monte.pm.1.11
++++ b/pm/Math/GSL/Monte.pm.1.11
+@@ -457,7 +457,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Monte.pm.1.12 b/pm/Math/GSL/Monte.pm.1.12
+index 5f3a1d0..bc63767 100644
+--- a/pm/Math/GSL/Monte.pm.1.12
++++ b/pm/Math/GSL/Monte.pm.1.12
+@@ -457,7 +457,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Monte.pm.1.13 b/pm/Math/GSL/Monte.pm.1.13
+index 4d1c795..fa84c73 100644
+--- a/pm/Math/GSL/Monte.pm.1.13
++++ b/pm/Math/GSL/Monte.pm.1.13
+@@ -559,7 +559,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Monte.pm.1.14 b/pm/Math/GSL/Monte.pm.1.14
+index 4d1c795..fa84c73 100644
+--- a/pm/Math/GSL/Monte.pm.1.14
++++ b/pm/Math/GSL/Monte.pm.1.14
+@@ -559,7 +559,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Monte.pm.1.15 b/pm/Math/GSL/Monte.pm.1.15
+index 4d1c795..fa84c73 100644
+--- a/pm/Math/GSL/Monte.pm.1.15
++++ b/pm/Math/GSL/Monte.pm.1.15
+@@ -559,7 +559,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Monte.pm.1.16 b/pm/Math/GSL/Monte.pm.1.16
+index 4d1c795..fa84c73 100644
+--- a/pm/Math/GSL/Monte.pm.1.16
++++ b/pm/Math/GSL/Monte.pm.1.16
+@@ -559,7 +559,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Multifit.pm.1.11 b/pm/Math/GSL/Multifit.pm.1.11
+index f55aa3e..ccd92bc 100644
+--- a/pm/Math/GSL/Multifit.pm.1.11
++++ b/pm/Math/GSL/Multifit.pm.1.11
+@@ -547,7 +547,7 @@ The following functions are not yet implemented. Patches Welcome!
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multifit.pm.1.12 b/pm/Math/GSL/Multifit.pm.1.12
+index f55aa3e..ccd92bc 100644
+--- a/pm/Math/GSL/Multifit.pm.1.12
++++ b/pm/Math/GSL/Multifit.pm.1.12
+@@ -547,7 +547,7 @@ The following functions are not yet implemented. Patches Welcome!
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multifit.pm.1.13 b/pm/Math/GSL/Multifit.pm.1.13
+index f55aa3e..ccd92bc 100644
+--- a/pm/Math/GSL/Multifit.pm.1.13
++++ b/pm/Math/GSL/Multifit.pm.1.13
+@@ -547,7 +547,7 @@ The following functions are not yet implemented. Patches Welcome!
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multifit.pm.1.14 b/pm/Math/GSL/Multifit.pm.1.14
+index c835441..d97ab70 100644
+--- a/pm/Math/GSL/Multifit.pm.1.14
++++ b/pm/Math/GSL/Multifit.pm.1.14
+@@ -549,7 +549,7 @@ The following functions are not yet implemented. Patches Welcome!
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multifit.pm.1.15 b/pm/Math/GSL/Multifit.pm.1.15
+index c835441..d97ab70 100644
+--- a/pm/Math/GSL/Multifit.pm.1.15
++++ b/pm/Math/GSL/Multifit.pm.1.15
+@@ -549,7 +549,7 @@ The following functions are not yet implemented. Patches Welcome!
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multifit.pm.1.16 b/pm/Math/GSL/Multifit.pm.1.16
+index 75d534f..3e25c15 100644
+--- a/pm/Math/GSL/Multifit.pm.1.16
++++ b/pm/Math/GSL/Multifit.pm.1.16
+@@ -772,7 +772,7 @@ The following functions are not yet implemented. Patches Welcome!
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multimin.pm.1.11 b/pm/Math/GSL/Multimin.pm.1.11
+index 45ad4b6..59f0609 100644
+--- a/pm/Math/GSL/Multimin.pm.1.11
++++ b/pm/Math/GSL/Multimin.pm.1.11
+@@ -506,7 +506,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multimin.pm.1.12 b/pm/Math/GSL/Multimin.pm.1.12
+index 63c9fb1..6ab5369 100644
+--- a/pm/Math/GSL/Multimin.pm.1.12
++++ b/pm/Math/GSL/Multimin.pm.1.12
+@@ -516,7 +516,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multimin.pm.1.13 b/pm/Math/GSL/Multimin.pm.1.13
+index 63c9fb1..6ab5369 100644
+--- a/pm/Math/GSL/Multimin.pm.1.13
++++ b/pm/Math/GSL/Multimin.pm.1.13
+@@ -516,7 +516,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multimin.pm.1.14 b/pm/Math/GSL/Multimin.pm.1.14
+index 63c9fb1..6ab5369 100644
+--- a/pm/Math/GSL/Multimin.pm.1.14
++++ b/pm/Math/GSL/Multimin.pm.1.14
+@@ -516,7 +516,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multimin.pm.1.15 b/pm/Math/GSL/Multimin.pm.1.15
+index 63c9fb1..6ab5369 100644
+--- a/pm/Math/GSL/Multimin.pm.1.15
++++ b/pm/Math/GSL/Multimin.pm.1.15
+@@ -516,7 +516,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multimin.pm.1.16 b/pm/Math/GSL/Multimin.pm.1.16
+index 63c9fb1..6ab5369 100644
+--- a/pm/Math/GSL/Multimin.pm.1.16
++++ b/pm/Math/GSL/Multimin.pm.1.16
+@@ -516,7 +516,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Multiroots.pm.1.11 b/pm/Math/GSL/Multiroots.pm.1.11
+index 5d7fcd9..ae5bc2b 100644
+--- a/pm/Math/GSL/Multiroots.pm.1.11
++++ b/pm/Math/GSL/Multiroots.pm.1.11
+@@ -500,7 +500,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Multiroots.pm.1.12 b/pm/Math/GSL/Multiroots.pm.1.12
+index 5d7fcd9..ae5bc2b 100644
+--- a/pm/Math/GSL/Multiroots.pm.1.12
++++ b/pm/Math/GSL/Multiroots.pm.1.12
+@@ -500,7 +500,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Multiroots.pm.1.13 b/pm/Math/GSL/Multiroots.pm.1.13
+index 5d7fcd9..ae5bc2b 100644
+--- a/pm/Math/GSL/Multiroots.pm.1.13
++++ b/pm/Math/GSL/Multiroots.pm.1.13
+@@ -500,7 +500,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Multiroots.pm.1.14 b/pm/Math/GSL/Multiroots.pm.1.14
+index 5d7fcd9..ae5bc2b 100644
+--- a/pm/Math/GSL/Multiroots.pm.1.14
++++ b/pm/Math/GSL/Multiroots.pm.1.14
+@@ -500,7 +500,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Multiroots.pm.1.15 b/pm/Math/GSL/Multiroots.pm.1.15
+index 5d7fcd9..ae5bc2b 100644
+--- a/pm/Math/GSL/Multiroots.pm.1.15
++++ b/pm/Math/GSL/Multiroots.pm.1.15
+@@ -500,7 +500,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Multiroots.pm.1.16 b/pm/Math/GSL/Multiroots.pm.1.16
+index 5d7fcd9..ae5bc2b 100644
+--- a/pm/Math/GSL/Multiroots.pm.1.16
++++ b/pm/Math/GSL/Multiroots.pm.1.16
+@@ -500,7 +500,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/NTuple.pm.1.11 b/pm/Math/GSL/NTuple.pm.1.11
+index 78965ab..cb68618 100644
+--- a/pm/Math/GSL/NTuple.pm.1.11
++++ b/pm/Math/GSL/NTuple.pm.1.11
+@@ -407,7 +407,7 @@ memory.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/NTuple.pm.1.12 b/pm/Math/GSL/NTuple.pm.1.12
+index 78965ab..cb68618 100644
+--- a/pm/Math/GSL/NTuple.pm.1.12
++++ b/pm/Math/GSL/NTuple.pm.1.12
+@@ -407,7 +407,7 @@ memory.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/NTuple.pm.1.13 b/pm/Math/GSL/NTuple.pm.1.13
+index 78965ab..cb68618 100644
+--- a/pm/Math/GSL/NTuple.pm.1.13
++++ b/pm/Math/GSL/NTuple.pm.1.13
+@@ -407,7 +407,7 @@ memory.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/NTuple.pm.1.14 b/pm/Math/GSL/NTuple.pm.1.14
+index 78965ab..cb68618 100644
+--- a/pm/Math/GSL/NTuple.pm.1.14
++++ b/pm/Math/GSL/NTuple.pm.1.14
+@@ -407,7 +407,7 @@ memory.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/NTuple.pm.1.15 b/pm/Math/GSL/NTuple.pm.1.15
+index 78965ab..cb68618 100644
+--- a/pm/Math/GSL/NTuple.pm.1.15
++++ b/pm/Math/GSL/NTuple.pm.1.15
+@@ -407,7 +407,7 @@ memory.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/NTuple.pm.1.16 b/pm/Math/GSL/NTuple.pm.1.16
+index 78965ab..cb68618 100644
+--- a/pm/Math/GSL/NTuple.pm.1.16
++++ b/pm/Math/GSL/NTuple.pm.1.16
+@@ -407,7 +407,7 @@ memory.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/ODEIV.pm.1.11 b/pm/Math/GSL/ODEIV.pm.1.11
+index d418899..c140fb5 100644
+--- a/pm/Math/GSL/ODEIV.pm.1.11
++++ b/pm/Math/GSL/ODEIV.pm.1.11
+@@ -554,7 +554,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/ODEIV.pm.1.12 b/pm/Math/GSL/ODEIV.pm.1.12
+index d418899..c140fb5 100644
+--- a/pm/Math/GSL/ODEIV.pm.1.12
++++ b/pm/Math/GSL/ODEIV.pm.1.12
+@@ -554,7 +554,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/ODEIV.pm.1.13 b/pm/Math/GSL/ODEIV.pm.1.13
+index d418899..c140fb5 100644
+--- a/pm/Math/GSL/ODEIV.pm.1.13
++++ b/pm/Math/GSL/ODEIV.pm.1.13
+@@ -554,7 +554,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/ODEIV.pm.1.14 b/pm/Math/GSL/ODEIV.pm.1.14
+index d418899..c140fb5 100644
+--- a/pm/Math/GSL/ODEIV.pm.1.14
++++ b/pm/Math/GSL/ODEIV.pm.1.14
+@@ -554,7 +554,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/ODEIV.pm.1.15 b/pm/Math/GSL/ODEIV.pm.1.15
+index d418899..c140fb5 100644
+--- a/pm/Math/GSL/ODEIV.pm.1.15
++++ b/pm/Math/GSL/ODEIV.pm.1.15
+@@ -554,7 +554,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/ODEIV.pm.1.16 b/pm/Math/GSL/ODEIV.pm.1.16
+index d418899..c140fb5 100644
+--- a/pm/Math/GSL/ODEIV.pm.1.16
++++ b/pm/Math/GSL/ODEIV.pm.1.16
+@@ -554,7 +554,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Permutation.pm.1.11 b/pm/Math/GSL/Permutation.pm.1.11
+index c83b255..eede16c 100644
+--- a/pm/Math/GSL/Permutation.pm.1.11
++++ b/pm/Math/GSL/Permutation.pm.1.11
+@@ -205,7 +205,7 @@ Math::GSL::Permutation - functions for creating and manipulating permutations
+
+ use Math::GSL::Permutation qw/:all/;
+ my $permutation = Math::GSL::Permutation->new(30); # allocate and initialize a permutation of size 30
+- my $lenght = $permutation->lenght; # returns the lenght of the permutation object, here it is 30
++ my $length = $permutation->length; # returns the length of the permutation object, here it is 30
+ gsl_permutation_swap($permutation->raw, 2,7);
+ # the raw method is made to use the underlying permutation structure of the permutation object
+ my $value = $permutation->get(2); # returns the third value (starting from 0) of the permutation
+@@ -226,7 +226,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_free($p) - free all the memory use by the permutaion $p
+
+-=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same lenght and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same length and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_fread($stream, $p) - This function reads into the permutation $p from the open stream $stream (opened with the gsl_fopen function from the Math::GSL module) in binary format. The permutation $p must be preallocated with the correct length since the function uses the size of $p to determine how many bytes to read. The function returns 1 if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same arc [...]
+
+@@ -242,7 +242,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_get($p, $i) - return the $i-th element of the permutation $p, return 0 if $i is outside the range of 0 to n-1
+
+-=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_valid($p) - return 0 if the permutation $p is valid (if the n elements contain each of the numbers 0 to n-1 once and only once), 1 otherwise
+
+@@ -252,13 +252,13 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_next($p) - advance the permutation $p to the next permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_inversions($p) - return the number of inversions in the permutation $p
+
+@@ -285,7 +285,7 @@ Here is a list of all the functions included in this module :
+ You have to add the functions you want to use inside the qw/put_funtion_here/ with spaces between each function.
+ You can also write use Math::GSL::CDF qw/:all/ to use all avaible functions of the module.
+ Other tags are also avaible, here is a complete list of all tags for this module.
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Permutation.pm.1.12 b/pm/Math/GSL/Permutation.pm.1.12
+index c83b255..eede16c 100644
+--- a/pm/Math/GSL/Permutation.pm.1.12
++++ b/pm/Math/GSL/Permutation.pm.1.12
+@@ -205,7 +205,7 @@ Math::GSL::Permutation - functions for creating and manipulating permutations
+
+ use Math::GSL::Permutation qw/:all/;
+ my $permutation = Math::GSL::Permutation->new(30); # allocate and initialize a permutation of size 30
+- my $lenght = $permutation->lenght; # returns the lenght of the permutation object, here it is 30
++ my $length = $permutation->length; # returns the length of the permutation object, here it is 30
+ gsl_permutation_swap($permutation->raw, 2,7);
+ # the raw method is made to use the underlying permutation structure of the permutation object
+ my $value = $permutation->get(2); # returns the third value (starting from 0) of the permutation
+@@ -226,7 +226,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_free($p) - free all the memory use by the permutaion $p
+
+-=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same lenght and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same length and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_fread($stream, $p) - This function reads into the permutation $p from the open stream $stream (opened with the gsl_fopen function from the Math::GSL module) in binary format. The permutation $p must be preallocated with the correct length since the function uses the size of $p to determine how many bytes to read. The function returns 1 if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same arc [...]
+
+@@ -242,7 +242,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_get($p, $i) - return the $i-th element of the permutation $p, return 0 if $i is outside the range of 0 to n-1
+
+-=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_valid($p) - return 0 if the permutation $p is valid (if the n elements contain each of the numbers 0 to n-1 once and only once), 1 otherwise
+
+@@ -252,13 +252,13 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_next($p) - advance the permutation $p to the next permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_inversions($p) - return the number of inversions in the permutation $p
+
+@@ -285,7 +285,7 @@ Here is a list of all the functions included in this module :
+ You have to add the functions you want to use inside the qw/put_funtion_here/ with spaces between each function.
+ You can also write use Math::GSL::CDF qw/:all/ to use all avaible functions of the module.
+ Other tags are also avaible, here is a complete list of all tags for this module.
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Permutation.pm.1.13 b/pm/Math/GSL/Permutation.pm.1.13
+index c83b255..eede16c 100644
+--- a/pm/Math/GSL/Permutation.pm.1.13
++++ b/pm/Math/GSL/Permutation.pm.1.13
+@@ -205,7 +205,7 @@ Math::GSL::Permutation - functions for creating and manipulating permutations
+
+ use Math::GSL::Permutation qw/:all/;
+ my $permutation = Math::GSL::Permutation->new(30); # allocate and initialize a permutation of size 30
+- my $lenght = $permutation->lenght; # returns the lenght of the permutation object, here it is 30
++ my $length = $permutation->length; # returns the length of the permutation object, here it is 30
+ gsl_permutation_swap($permutation->raw, 2,7);
+ # the raw method is made to use the underlying permutation structure of the permutation object
+ my $value = $permutation->get(2); # returns the third value (starting from 0) of the permutation
+@@ -226,7 +226,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_free($p) - free all the memory use by the permutaion $p
+
+-=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same lenght and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same length and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_fread($stream, $p) - This function reads into the permutation $p from the open stream $stream (opened with the gsl_fopen function from the Math::GSL module) in binary format. The permutation $p must be preallocated with the correct length since the function uses the size of $p to determine how many bytes to read. The function returns 1 if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same arc [...]
+
+@@ -242,7 +242,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_get($p, $i) - return the $i-th element of the permutation $p, return 0 if $i is outside the range of 0 to n-1
+
+-=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_valid($p) - return 0 if the permutation $p is valid (if the n elements contain each of the numbers 0 to n-1 once and only once), 1 otherwise
+
+@@ -252,13 +252,13 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_next($p) - advance the permutation $p to the next permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_inversions($p) - return the number of inversions in the permutation $p
+
+@@ -285,7 +285,7 @@ Here is a list of all the functions included in this module :
+ You have to add the functions you want to use inside the qw/put_funtion_here/ with spaces between each function.
+ You can also write use Math::GSL::CDF qw/:all/ to use all avaible functions of the module.
+ Other tags are also avaible, here is a complete list of all tags for this module.
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Permutation.pm.1.14 b/pm/Math/GSL/Permutation.pm.1.14
+index c83b255..eede16c 100644
+--- a/pm/Math/GSL/Permutation.pm.1.14
++++ b/pm/Math/GSL/Permutation.pm.1.14
+@@ -205,7 +205,7 @@ Math::GSL::Permutation - functions for creating and manipulating permutations
+
+ use Math::GSL::Permutation qw/:all/;
+ my $permutation = Math::GSL::Permutation->new(30); # allocate and initialize a permutation of size 30
+- my $lenght = $permutation->lenght; # returns the lenght of the permutation object, here it is 30
++ my $length = $permutation->length; # returns the length of the permutation object, here it is 30
+ gsl_permutation_swap($permutation->raw, 2,7);
+ # the raw method is made to use the underlying permutation structure of the permutation object
+ my $value = $permutation->get(2); # returns the third value (starting from 0) of the permutation
+@@ -226,7 +226,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_free($p) - free all the memory use by the permutaion $p
+
+-=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same lenght and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same length and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_fread($stream, $p) - This function reads into the permutation $p from the open stream $stream (opened with the gsl_fopen function from the Math::GSL module) in binary format. The permutation $p must be preallocated with the correct length since the function uses the size of $p to determine how many bytes to read. The function returns 1 if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same arc [...]
+
+@@ -242,7 +242,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_get($p, $i) - return the $i-th element of the permutation $p, return 0 if $i is outside the range of 0 to n-1
+
+-=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_valid($p) - return 0 if the permutation $p is valid (if the n elements contain each of the numbers 0 to n-1 once and only once), 1 otherwise
+
+@@ -252,13 +252,13 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_next($p) - advance the permutation $p to the next permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_inversions($p) - return the number of inversions in the permutation $p
+
+@@ -285,7 +285,7 @@ Here is a list of all the functions included in this module :
+ You have to add the functions you want to use inside the qw/put_funtion_here/ with spaces between each function.
+ You can also write use Math::GSL::CDF qw/:all/ to use all avaible functions of the module.
+ Other tags are also avaible, here is a complete list of all tags for this module.
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Permutation.pm.1.15 b/pm/Math/GSL/Permutation.pm.1.15
+index c83b255..eede16c 100644
+--- a/pm/Math/GSL/Permutation.pm.1.15
++++ b/pm/Math/GSL/Permutation.pm.1.15
+@@ -205,7 +205,7 @@ Math::GSL::Permutation - functions for creating and manipulating permutations
+
+ use Math::GSL::Permutation qw/:all/;
+ my $permutation = Math::GSL::Permutation->new(30); # allocate and initialize a permutation of size 30
+- my $lenght = $permutation->lenght; # returns the lenght of the permutation object, here it is 30
++ my $length = $permutation->length; # returns the length of the permutation object, here it is 30
+ gsl_permutation_swap($permutation->raw, 2,7);
+ # the raw method is made to use the underlying permutation structure of the permutation object
+ my $value = $permutation->get(2); # returns the third value (starting from 0) of the permutation
+@@ -226,7 +226,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_free($p) - free all the memory use by the permutaion $p
+
+-=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same lenght and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same length and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_fread($stream, $p) - This function reads into the permutation $p from the open stream $stream (opened with the gsl_fopen function from the Math::GSL module) in binary format. The permutation $p must be preallocated with the correct length since the function uses the size of $p to determine how many bytes to read. The function returns 1 if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same arc [...]
+
+@@ -242,7 +242,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_get($p, $i) - return the $i-th element of the permutation $p, return 0 if $i is outside the range of 0 to n-1
+
+-=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_valid($p) - return 0 if the permutation $p is valid (if the n elements contain each of the numbers 0 to n-1 once and only once), 1 otherwise
+
+@@ -252,13 +252,13 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_next($p) - advance the permutation $p to the next permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_inversions($p) - return the number of inversions in the permutation $p
+
+@@ -285,7 +285,7 @@ Here is a list of all the functions included in this module :
+ You have to add the functions you want to use inside the qw/put_funtion_here/ with spaces between each function.
+ You can also write use Math::GSL::CDF qw/:all/ to use all avaible functions of the module.
+ Other tags are also avaible, here is a complete list of all tags for this module.
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Permutation.pm.1.16 b/pm/Math/GSL/Permutation.pm.1.16
+index c83b255..eede16c 100644
+--- a/pm/Math/GSL/Permutation.pm.1.16
++++ b/pm/Math/GSL/Permutation.pm.1.16
+@@ -205,7 +205,7 @@ Math::GSL::Permutation - functions for creating and manipulating permutations
+
+ use Math::GSL::Permutation qw/:all/;
+ my $permutation = Math::GSL::Permutation->new(30); # allocate and initialize a permutation of size 30
+- my $lenght = $permutation->lenght; # returns the lenght of the permutation object, here it is 30
++ my $length = $permutation->length; # returns the length of the permutation object, here it is 30
+ gsl_permutation_swap($permutation->raw, 2,7);
+ # the raw method is made to use the underlying permutation structure of the permutation object
+ my $value = $permutation->get(2); # returns the third value (starting from 0) of the permutation
+@@ -226,7 +226,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_free($p) - free all the memory use by the permutaion $p
+
+-=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same lenght and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same length and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_fread($stream, $p) - This function reads into the permutation $p from the open stream $stream (opened with the gsl_fopen function from the Math::GSL module) in binary format. The permutation $p must be preallocated with the correct length since the function uses the size of $p to determine how many bytes to read. The function returns 1 if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same arc [...]
+
+@@ -242,7 +242,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_get($p, $i) - return the $i-th element of the permutation $p, return 0 if $i is outside the range of 0 to n-1
+
+-=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_valid($p) - return 0 if the permutation $p is valid (if the n elements contain each of the numbers 0 to n-1 once and only once), 1 otherwise
+
+@@ -252,13 +252,13 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_next($p) - advance the permutation $p to the next permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_inversions($p) - return the number of inversions in the permutation $p
+
+@@ -285,7 +285,7 @@ Here is a list of all the functions included in this module :
+ You have to add the functions you want to use inside the qw/put_funtion_here/ with spaces between each function.
+ You can also write use Math::GSL::CDF qw/:all/ to use all avaible functions of the module.
+ Other tags are also avaible, here is a complete list of all tags for this module.
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Poly.pm.1.11 b/pm/Math/GSL/Poly.pm.1.11
+index 1bdffb2..2aa4dad 100644
+--- a/pm/Math/GSL/Poly.pm.1.11
++++ b/pm/Math/GSL/Poly.pm.1.11
+@@ -385,7 +385,7 @@ This function frees all the memory associated with the workspace $w.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Poly.pm.1.12 b/pm/Math/GSL/Poly.pm.1.12
+index 1bdffb2..2aa4dad 100644
+--- a/pm/Math/GSL/Poly.pm.1.12
++++ b/pm/Math/GSL/Poly.pm.1.12
+@@ -385,7 +385,7 @@ This function frees all the memory associated with the workspace $w.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Poly.pm.1.13 b/pm/Math/GSL/Poly.pm.1.13
+index ed08042..994d82b 100644
+--- a/pm/Math/GSL/Poly.pm.1.13
++++ b/pm/Math/GSL/Poly.pm.1.13
+@@ -386,7 +386,7 @@ This function frees all the memory associated with the workspace $w.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Poly.pm.1.14 b/pm/Math/GSL/Poly.pm.1.14
+index ed08042..994d82b 100644
+--- a/pm/Math/GSL/Poly.pm.1.14
++++ b/pm/Math/GSL/Poly.pm.1.14
+@@ -386,7 +386,7 @@ This function frees all the memory associated with the workspace $w.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Poly.pm.1.15 b/pm/Math/GSL/Poly.pm.1.15
+index ed08042..994d82b 100644
+--- a/pm/Math/GSL/Poly.pm.1.15
++++ b/pm/Math/GSL/Poly.pm.1.15
+@@ -386,7 +386,7 @@ This function frees all the memory associated with the workspace $w.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Poly.pm.1.16 b/pm/Math/GSL/Poly.pm.1.16
+index 047bd2f..c687663 100644
+--- a/pm/Math/GSL/Poly.pm.1.16
++++ b/pm/Math/GSL/Poly.pm.1.16
+@@ -387,7 +387,7 @@ This function frees all the memory associated with the workspace $w.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/QRNG.pm.1.11 b/pm/Math/GSL/QRNG.pm.1.11
+index e274589..1144570 100644
+--- a/pm/Math/GSL/QRNG.pm.1.11
++++ b/pm/Math/GSL/QRNG.pm.1.11
+@@ -349,7 +349,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/QRNG.pm.1.12 b/pm/Math/GSL/QRNG.pm.1.12
+index e274589..1144570 100644
+--- a/pm/Math/GSL/QRNG.pm.1.12
++++ b/pm/Math/GSL/QRNG.pm.1.12
+@@ -349,7 +349,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/QRNG.pm.1.13 b/pm/Math/GSL/QRNG.pm.1.13
+index e274589..1144570 100644
+--- a/pm/Math/GSL/QRNG.pm.1.13
++++ b/pm/Math/GSL/QRNG.pm.1.13
+@@ -349,7 +349,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/QRNG.pm.1.14 b/pm/Math/GSL/QRNG.pm.1.14
+index e274589..1144570 100644
+--- a/pm/Math/GSL/QRNG.pm.1.14
++++ b/pm/Math/GSL/QRNG.pm.1.14
+@@ -349,7 +349,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/QRNG.pm.1.15 b/pm/Math/GSL/QRNG.pm.1.15
+index e274589..1144570 100644
+--- a/pm/Math/GSL/QRNG.pm.1.15
++++ b/pm/Math/GSL/QRNG.pm.1.15
+@@ -349,7 +349,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/QRNG.pm.1.16 b/pm/Math/GSL/QRNG.pm.1.16
+index e274589..1144570 100644
+--- a/pm/Math/GSL/QRNG.pm.1.16
++++ b/pm/Math/GSL/QRNG.pm.1.16
+@@ -349,7 +349,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pm/Math/GSL/RNG.pm.1.11 b/pm/Math/GSL/RNG.pm.1.11
+index ad41366..e379197 100644
+--- a/pm/Math/GSL/RNG.pm.1.11
++++ b/pm/Math/GSL/RNG.pm.1.11
+@@ -886,7 +886,7 @@ __END__
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+diff --git a/pm/Math/GSL/RNG.pm.1.12 b/pm/Math/GSL/RNG.pm.1.12
+index ad41366..e379197 100644
+--- a/pm/Math/GSL/RNG.pm.1.12
++++ b/pm/Math/GSL/RNG.pm.1.12
+@@ -886,7 +886,7 @@ __END__
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+diff --git a/pm/Math/GSL/RNG.pm.1.13 b/pm/Math/GSL/RNG.pm.1.13
+index ad41366..e379197 100644
+--- a/pm/Math/GSL/RNG.pm.1.13
++++ b/pm/Math/GSL/RNG.pm.1.13
+@@ -886,7 +886,7 @@ __END__
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+diff --git a/pm/Math/GSL/RNG.pm.1.14 b/pm/Math/GSL/RNG.pm.1.14
+index ad41366..e379197 100644
+--- a/pm/Math/GSL/RNG.pm.1.14
++++ b/pm/Math/GSL/RNG.pm.1.14
+@@ -886,7 +886,7 @@ __END__
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+diff --git a/pm/Math/GSL/RNG.pm.1.15 b/pm/Math/GSL/RNG.pm.1.15
+index ad41366..e379197 100644
+--- a/pm/Math/GSL/RNG.pm.1.15
++++ b/pm/Math/GSL/RNG.pm.1.15
+@@ -886,7 +886,7 @@ __END__
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+diff --git a/pm/Math/GSL/RNG.pm.1.16 b/pm/Math/GSL/RNG.pm.1.16
+index ad41366..e379197 100644
+--- a/pm/Math/GSL/RNG.pm.1.16
++++ b/pm/Math/GSL/RNG.pm.1.16
+@@ -886,7 +886,7 @@ __END__
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+diff --git a/pm/Math/GSL/Randist.pm.1.11 b/pm/Math/GSL/Randist.pm.1.11
+index 6aebd10..2b9eeed 100644
+--- a/pm/Math/GSL/Randist.pm.1.11
++++ b/pm/Math/GSL/Randist.pm.1.11
+@@ -1035,7 +1035,7 @@ De-allocates the gsl_ran_discrete pointed to by g.
+
+ For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Randist.pm.1.12 b/pm/Math/GSL/Randist.pm.1.12
+index 6aebd10..2b9eeed 100644
+--- a/pm/Math/GSL/Randist.pm.1.12
++++ b/pm/Math/GSL/Randist.pm.1.12
+@@ -1035,7 +1035,7 @@ De-allocates the gsl_ran_discrete pointed to by g.
+
+ For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Randist.pm.1.13 b/pm/Math/GSL/Randist.pm.1.13
+index 6aebd10..2b9eeed 100644
+--- a/pm/Math/GSL/Randist.pm.1.13
++++ b/pm/Math/GSL/Randist.pm.1.13
+@@ -1035,7 +1035,7 @@ De-allocates the gsl_ran_discrete pointed to by g.
+
+ For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Randist.pm.1.14 b/pm/Math/GSL/Randist.pm.1.14
+index 6aebd10..2b9eeed 100644
+--- a/pm/Math/GSL/Randist.pm.1.14
++++ b/pm/Math/GSL/Randist.pm.1.14
+@@ -1035,7 +1035,7 @@ De-allocates the gsl_ran_discrete pointed to by g.
+
+ For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Randist.pm.1.15 b/pm/Math/GSL/Randist.pm.1.15
+index 6aebd10..2b9eeed 100644
+--- a/pm/Math/GSL/Randist.pm.1.15
++++ b/pm/Math/GSL/Randist.pm.1.15
+@@ -1035,7 +1035,7 @@ De-allocates the gsl_ran_discrete pointed to by g.
+
+ For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Randist.pm.1.16 b/pm/Math/GSL/Randist.pm.1.16
+index 6aebd10..2b9eeed 100644
+--- a/pm/Math/GSL/Randist.pm.1.16
++++ b/pm/Math/GSL/Randist.pm.1.16
+@@ -1035,7 +1035,7 @@ De-allocates the gsl_ran_discrete pointed to by g.
+
+ For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/SF.pm.1.11 b/pm/Math/GSL/SF.pm.1.11
+index 8258713..b2b619e 100644
+--- a/pm/Math/GSL/SF.pm.1.11
++++ b/pm/Math/GSL/SF.pm.1.11
+@@ -3841,7 +3841,7 @@ This module also contains the following constants used as mode in various of tho
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/SF.pm.1.12 b/pm/Math/GSL/SF.pm.1.12
+index 0ea978a..8bc5cb3 100644
+--- a/pm/Math/GSL/SF.pm.1.12
++++ b/pm/Math/GSL/SF.pm.1.12
+@@ -3842,7 +3842,7 @@ This module also contains the following constants used as mode in various of tho
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/SF.pm.1.13 b/pm/Math/GSL/SF.pm.1.13
+index 0ea978a..8bc5cb3 100644
+--- a/pm/Math/GSL/SF.pm.1.13
++++ b/pm/Math/GSL/SF.pm.1.13
+@@ -3842,7 +3842,7 @@ This module also contains the following constants used as mode in various of tho
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/SF.pm.1.14 b/pm/Math/GSL/SF.pm.1.14
+index 0ea978a..8bc5cb3 100644
+--- a/pm/Math/GSL/SF.pm.1.14
++++ b/pm/Math/GSL/SF.pm.1.14
+@@ -3842,7 +3842,7 @@ This module also contains the following constants used as mode in various of tho
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/SF.pm.1.15 b/pm/Math/GSL/SF.pm.1.15
+index 480d7c8..6585bdf 100644
+--- a/pm/Math/GSL/SF.pm.1.15
++++ b/pm/Math/GSL/SF.pm.1.15
+@@ -3843,7 +3843,7 @@ This module also contains the following constants used as mode in various of tho
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/SF.pm.1.16 b/pm/Math/GSL/SF.pm.1.16
+index 480d7c8..6585bdf 100644
+--- a/pm/Math/GSL/SF.pm.1.16
++++ b/pm/Math/GSL/SF.pm.1.16
+@@ -3843,7 +3843,7 @@ This module also contains the following constants used as mode in various of tho
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Siman.pm.1.11 b/pm/Math/GSL/Siman.pm.1.11
+index 03e0f88..55e3e20 100644
+--- a/pm/Math/GSL/Siman.pm.1.11
++++ b/pm/Math/GSL/Siman.pm.1.11
+@@ -145,7 +145,7 @@ Here is a list of all the functions in this module :
+ =back
+
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Siman.pm.1.12 b/pm/Math/GSL/Siman.pm.1.12
+index 03e0f88..55e3e20 100644
+--- a/pm/Math/GSL/Siman.pm.1.12
++++ b/pm/Math/GSL/Siman.pm.1.12
+@@ -145,7 +145,7 @@ Here is a list of all the functions in this module :
+ =back
+
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Siman.pm.1.13 b/pm/Math/GSL/Siman.pm.1.13
+index 03e0f88..55e3e20 100644
+--- a/pm/Math/GSL/Siman.pm.1.13
++++ b/pm/Math/GSL/Siman.pm.1.13
+@@ -145,7 +145,7 @@ Here is a list of all the functions in this module :
+ =back
+
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Siman.pm.1.14 b/pm/Math/GSL/Siman.pm.1.14
+index 03e0f88..55e3e20 100644
+--- a/pm/Math/GSL/Siman.pm.1.14
++++ b/pm/Math/GSL/Siman.pm.1.14
+@@ -145,7 +145,7 @@ Here is a list of all the functions in this module :
+ =back
+
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Siman.pm.1.15 b/pm/Math/GSL/Siman.pm.1.15
+index 03e0f88..55e3e20 100644
+--- a/pm/Math/GSL/Siman.pm.1.15
++++ b/pm/Math/GSL/Siman.pm.1.15
+@@ -145,7 +145,7 @@ Here is a list of all the functions in this module :
+ =back
+
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Siman.pm.1.16 b/pm/Math/GSL/Siman.pm.1.16
+index 03e0f88..55e3e20 100644
+--- a/pm/Math/GSL/Siman.pm.1.16
++++ b/pm/Math/GSL/Siman.pm.1.16
+@@ -145,7 +145,7 @@ Here is a list of all the functions in this module :
+ =back
+
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Sort.pm.1.11 b/pm/Math/GSL/Sort.pm.1.11
+index 83ff39b..43298d6 100644
+--- a/pm/Math/GSL/Sort.pm.1.11
++++ b/pm/Math/GSL/Sort.pm.1.11
+@@ -285,7 +285,7 @@ should be removed in further versions.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 PERFORMANCE
+diff --git a/pm/Math/GSL/Sort.pm.1.12 b/pm/Math/GSL/Sort.pm.1.12
+index 83ff39b..43298d6 100644
+--- a/pm/Math/GSL/Sort.pm.1.12
++++ b/pm/Math/GSL/Sort.pm.1.12
+@@ -285,7 +285,7 @@ should be removed in further versions.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 PERFORMANCE
+diff --git a/pm/Math/GSL/Sort.pm.1.13 b/pm/Math/GSL/Sort.pm.1.13
+index 83ff39b..43298d6 100644
+--- a/pm/Math/GSL/Sort.pm.1.13
++++ b/pm/Math/GSL/Sort.pm.1.13
+@@ -285,7 +285,7 @@ should be removed in further versions.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 PERFORMANCE
+diff --git a/pm/Math/GSL/Sort.pm.1.14 b/pm/Math/GSL/Sort.pm.1.14
+index 83ff39b..43298d6 100644
+--- a/pm/Math/GSL/Sort.pm.1.14
++++ b/pm/Math/GSL/Sort.pm.1.14
+@@ -285,7 +285,7 @@ should be removed in further versions.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 PERFORMANCE
+diff --git a/pm/Math/GSL/Sort.pm.1.15 b/pm/Math/GSL/Sort.pm.1.15
+index 83ff39b..43298d6 100644
+--- a/pm/Math/GSL/Sort.pm.1.15
++++ b/pm/Math/GSL/Sort.pm.1.15
+@@ -285,7 +285,7 @@ should be removed in further versions.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 PERFORMANCE
+diff --git a/pm/Math/GSL/Sort.pm.1.16 b/pm/Math/GSL/Sort.pm.1.16
+index 133e990..dde1b56 100644
+--- a/pm/Math/GSL/Sort.pm.1.16
++++ b/pm/Math/GSL/Sort.pm.1.16
+@@ -286,7 +286,7 @@ should be removed in further versions.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 PERFORMANCE
+diff --git a/pm/Math/GSL/Spline.pm.1.11 b/pm/Math/GSL/Spline.pm.1.11
+index c3cddca..6216526 100644
+--- a/pm/Math/GSL/Spline.pm.1.11
++++ b/pm/Math/GSL/Spline.pm.1.11
+@@ -184,7 +184,7 @@ ya as arguments on each evaluation.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Spline.pm.1.12 b/pm/Math/GSL/Spline.pm.1.12
+index c3cddca..6216526 100644
+--- a/pm/Math/GSL/Spline.pm.1.12
++++ b/pm/Math/GSL/Spline.pm.1.12
+@@ -184,7 +184,7 @@ ya as arguments on each evaluation.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Spline.pm.1.13 b/pm/Math/GSL/Spline.pm.1.13
+index c3cddca..6216526 100644
+--- a/pm/Math/GSL/Spline.pm.1.13
++++ b/pm/Math/GSL/Spline.pm.1.13
+@@ -184,7 +184,7 @@ ya as arguments on each evaluation.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Spline.pm.1.14 b/pm/Math/GSL/Spline.pm.1.14
+index c3cddca..6216526 100644
+--- a/pm/Math/GSL/Spline.pm.1.14
++++ b/pm/Math/GSL/Spline.pm.1.14
+@@ -184,7 +184,7 @@ ya as arguments on each evaluation.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Spline.pm.1.15 b/pm/Math/GSL/Spline.pm.1.15
+index c3cddca..6216526 100644
+--- a/pm/Math/GSL/Spline.pm.1.15
++++ b/pm/Math/GSL/Spline.pm.1.15
+@@ -184,7 +184,7 @@ ya as arguments on each evaluation.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Spline.pm.1.16 b/pm/Math/GSL/Spline.pm.1.16
+index c3cddca..6216526 100644
+--- a/pm/Math/GSL/Spline.pm.1.16
++++ b/pm/Math/GSL/Spline.pm.1.16
+@@ -184,7 +184,7 @@ ya as arguments on each evaluation.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Statistics.pm.1.11 b/pm/Math/GSL/Statistics.pm.1.11
+index 088dcf0..369962e 100644
+--- a/pm/Math/GSL/Statistics.pm.1.11
++++ b/pm/Math/GSL/Statistics.pm.1.11
+@@ -363,7 +363,7 @@ These functions return the total sum of squares (TSS) of data about the mean. Fo
+
+ =item * C<gsl_stats_variance_m($data, $stride, $n, $mean)> - This function returns the sample variance of $data, an array reference, relative to the given value of $mean. The function is computed with \Hat\mu replaced by the value of mean that you supply, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
+
+-=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array refrence, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
++=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array reference, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
+
+ =item * C<gsl_stats_wmean($w, $wstride, $data, $stride, $n)> - This function returns the weighted mean of the dataset $data array reference with stride $stride and length $n, using the set of weights $w, which is an array reference, with stride $wstride and length $n. The weighted mean is defined as, \Hat\mu = (\sum w_i x_i) / (\sum w_i)
+
+@@ -557,7 +557,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Statistics.pm.1.12 b/pm/Math/GSL/Statistics.pm.1.12
+index 088dcf0..369962e 100644
+--- a/pm/Math/GSL/Statistics.pm.1.12
++++ b/pm/Math/GSL/Statistics.pm.1.12
+@@ -363,7 +363,7 @@ These functions return the total sum of squares (TSS) of data about the mean. Fo
+
+ =item * C<gsl_stats_variance_m($data, $stride, $n, $mean)> - This function returns the sample variance of $data, an array reference, relative to the given value of $mean. The function is computed with \Hat\mu replaced by the value of mean that you supply, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
+
+-=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array refrence, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
++=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array reference, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
+
+ =item * C<gsl_stats_wmean($w, $wstride, $data, $stride, $n)> - This function returns the weighted mean of the dataset $data array reference with stride $stride and length $n, using the set of weights $w, which is an array reference, with stride $wstride and length $n. The weighted mean is defined as, \Hat\mu = (\sum w_i x_i) / (\sum w_i)
+
+@@ -557,7 +557,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Statistics.pm.1.13 b/pm/Math/GSL/Statistics.pm.1.13
+index 088dcf0..369962e 100644
+--- a/pm/Math/GSL/Statistics.pm.1.13
++++ b/pm/Math/GSL/Statistics.pm.1.13
+@@ -363,7 +363,7 @@ These functions return the total sum of squares (TSS) of data about the mean. Fo
+
+ =item * C<gsl_stats_variance_m($data, $stride, $n, $mean)> - This function returns the sample variance of $data, an array reference, relative to the given value of $mean. The function is computed with \Hat\mu replaced by the value of mean that you supply, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
+
+-=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array refrence, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
++=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array reference, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
+
+ =item * C<gsl_stats_wmean($w, $wstride, $data, $stride, $n)> - This function returns the weighted mean of the dataset $data array reference with stride $stride and length $n, using the set of weights $w, which is an array reference, with stride $wstride and length $n. The weighted mean is defined as, \Hat\mu = (\sum w_i x_i) / (\sum w_i)
+
+@@ -557,7 +557,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Statistics.pm.1.14 b/pm/Math/GSL/Statistics.pm.1.14
+index 088dcf0..369962e 100644
+--- a/pm/Math/GSL/Statistics.pm.1.14
++++ b/pm/Math/GSL/Statistics.pm.1.14
+@@ -363,7 +363,7 @@ These functions return the total sum of squares (TSS) of data about the mean. Fo
+
+ =item * C<gsl_stats_variance_m($data, $stride, $n, $mean)> - This function returns the sample variance of $data, an array reference, relative to the given value of $mean. The function is computed with \Hat\mu replaced by the value of mean that you supply, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
+
+-=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array refrence, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
++=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array reference, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
+
+ =item * C<gsl_stats_wmean($w, $wstride, $data, $stride, $n)> - This function returns the weighted mean of the dataset $data array reference with stride $stride and length $n, using the set of weights $w, which is an array reference, with stride $wstride and length $n. The weighted mean is defined as, \Hat\mu = (\sum w_i x_i) / (\sum w_i)
+
+@@ -557,7 +557,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Statistics.pm.1.15 b/pm/Math/GSL/Statistics.pm.1.15
+index 088dcf0..369962e 100644
+--- a/pm/Math/GSL/Statistics.pm.1.15
++++ b/pm/Math/GSL/Statistics.pm.1.15
+@@ -363,7 +363,7 @@ These functions return the total sum of squares (TSS) of data about the mean. Fo
+
+ =item * C<gsl_stats_variance_m($data, $stride, $n, $mean)> - This function returns the sample variance of $data, an array reference, relative to the given value of $mean. The function is computed with \Hat\mu replaced by the value of mean that you supply, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
+
+-=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array refrence, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
++=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array reference, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
+
+ =item * C<gsl_stats_wmean($w, $wstride, $data, $stride, $n)> - This function returns the weighted mean of the dataset $data array reference with stride $stride and length $n, using the set of weights $w, which is an array reference, with stride $wstride and length $n. The weighted mean is defined as, \Hat\mu = (\sum w_i x_i) / (\sum w_i)
+
+@@ -557,7 +557,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Statistics.pm.1.16 b/pm/Math/GSL/Statistics.pm.1.16
+index 1590fa3..f7ff739 100644
+--- a/pm/Math/GSL/Statistics.pm.1.16
++++ b/pm/Math/GSL/Statistics.pm.1.16
+@@ -364,7 +364,7 @@ These functions return the total sum of squares (TSS) of data about the mean. Fo
+
+ =item * C<gsl_stats_variance_m($data, $stride, $n, $mean)> - This function returns the sample variance of $data, an array reference, relative to the given value of $mean. The function is computed with \Hat\mu replaced by the value of mean that you supply, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
+
+-=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array refrence, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
++=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array reference, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
+
+ =item * C<gsl_stats_wmean($w, $wstride, $data, $stride, $n)> - This function returns the weighted mean of the dataset $data array reference with stride $stride and length $n, using the set of weights $w, which is an array reference, with stride $wstride and length $n. The weighted mean is defined as, \Hat\mu = (\sum w_i x_i) / (\sum w_i)
+
+@@ -558,7 +558,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pm/Math/GSL/Sys.pm.1.11 b/pm/Math/GSL/Sys.pm.1.11
+index f2a7bc8..00a1484 100644
+--- a/pm/Math/GSL/Sys.pm.1.11
++++ b/pm/Math/GSL/Sys.pm.1.11
+@@ -218,7 +218,7 @@ zero. The implementation is based on the package fcmp by T.C. Belding.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Sys.pm.1.12 b/pm/Math/GSL/Sys.pm.1.12
+index f2a7bc8..00a1484 100644
+--- a/pm/Math/GSL/Sys.pm.1.12
++++ b/pm/Math/GSL/Sys.pm.1.12
+@@ -218,7 +218,7 @@ zero. The implementation is based on the package fcmp by T.C. Belding.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Sys.pm.1.13 b/pm/Math/GSL/Sys.pm.1.13
+index f2a7bc8..00a1484 100644
+--- a/pm/Math/GSL/Sys.pm.1.13
++++ b/pm/Math/GSL/Sys.pm.1.13
+@@ -218,7 +218,7 @@ zero. The implementation is based on the package fcmp by T.C. Belding.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Sys.pm.1.14 b/pm/Math/GSL/Sys.pm.1.14
+index f2a7bc8..00a1484 100644
+--- a/pm/Math/GSL/Sys.pm.1.14
++++ b/pm/Math/GSL/Sys.pm.1.14
+@@ -218,7 +218,7 @@ zero. The implementation is based on the package fcmp by T.C. Belding.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Sys.pm.1.15 b/pm/Math/GSL/Sys.pm.1.15
+index f2a7bc8..00a1484 100644
+--- a/pm/Math/GSL/Sys.pm.1.15
++++ b/pm/Math/GSL/Sys.pm.1.15
+@@ -218,7 +218,7 @@ zero. The implementation is based on the package fcmp by T.C. Belding.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Sys.pm.1.16 b/pm/Math/GSL/Sys.pm.1.16
+index f2a7bc8..00a1484 100644
+--- a/pm/Math/GSL/Sys.pm.1.16
++++ b/pm/Math/GSL/Sys.pm.1.16
+@@ -218,7 +218,7 @@ zero. The implementation is based on the package fcmp by T.C. Belding.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pm/Math/GSL/Vector.pm.1.11 b/pm/Math/GSL/Vector.pm.1.11
+index fe52b0f..dfeb145 100644
+--- a/pm/Math/GSL/Vector.pm.1.11
++++ b/pm/Math/GSL/Vector.pm.1.11
+@@ -1369,7 +1369,7 @@ leaving the odd elements untouched :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 EXAMPLES
+diff --git a/pm/Math/GSL/Vector.pm.1.12 b/pm/Math/GSL/Vector.pm.1.12
+index 1af232d..7a93080 100644
+--- a/pm/Math/GSL/Vector.pm.1.12
++++ b/pm/Math/GSL/Vector.pm.1.12
+@@ -1376,7 +1376,7 @@ leaving the odd elements untouched :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 EXAMPLES
+diff --git a/pm/Math/GSL/Vector.pm.1.13 b/pm/Math/GSL/Vector.pm.1.13
+index 1af232d..7a93080 100644
+--- a/pm/Math/GSL/Vector.pm.1.13
++++ b/pm/Math/GSL/Vector.pm.1.13
+@@ -1376,7 +1376,7 @@ leaving the odd elements untouched :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 EXAMPLES
+diff --git a/pm/Math/GSL/Vector.pm.1.14 b/pm/Math/GSL/Vector.pm.1.14
+index 1af232d..7a93080 100644
+--- a/pm/Math/GSL/Vector.pm.1.14
++++ b/pm/Math/GSL/Vector.pm.1.14
+@@ -1376,7 +1376,7 @@ leaving the odd elements untouched :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 EXAMPLES
+diff --git a/pm/Math/GSL/Vector.pm.1.15 b/pm/Math/GSL/Vector.pm.1.15
+index 8f0723d..c4883c5 100644
+--- a/pm/Math/GSL/Vector.pm.1.15
++++ b/pm/Math/GSL/Vector.pm.1.15
+@@ -1380,7 +1380,7 @@ leaving the odd elements untouched :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 EXAMPLES
+diff --git a/pm/Math/GSL/Vector.pm.1.16 b/pm/Math/GSL/Vector.pm.1.16
+index 8f0723d..c4883c5 100644
+--- a/pm/Math/GSL/Vector.pm.1.16
++++ b/pm/Math/GSL/Vector.pm.1.16
+@@ -1380,7 +1380,7 @@ leaving the odd elements untouched :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 EXAMPLES
+diff --git a/pod/BLAS.pod b/pod/BLAS.pod
+index d03270e..a3b17d8 100644
+--- a/pod/BLAS.pod
++++ b/pod/BLAS.pod
+@@ -100,7 +100,7 @@ The functions of this module are divised into 3 levels:
+ =item C<gsl_blas_ddot($x, $y)>
+
+ This function computes the scalar product x^T y for the vectors $x and $y. The
+-function returns two values, the first is 0 if the operation suceeded, 1
++function returns two values, the first is 0 if the operation succeeded, 1
+ otherwise and the second value is the result of the computation.
+
+ =item C<gsl_blas_cdotu>
+@@ -111,13 +111,13 @@ otherwise and the second value is the result of the computation.
+
+ This function computes the complex scalar product x^T y for the complex vectors
+ $x and $y, returning the result in the complex number $dotu. The function
+-returns 0 if the operation suceeded, 1 otherwise.
++returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zdotc($x, $y, $dotc)>
+
+ This function computes the complex conjugate scalar product x^H y for the
+ complex vectors $x and $y, returning the result in the complex number $dotc.
+-The function returns 0 if the operation suceeded, 1 otherwise.
++The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_snrm2>
+ =item C<gsl_blas_sasum>
+@@ -162,11 +162,11 @@ This function computes the sum of the magnitudes of the real and imaginary parts
+
+ =item C<gsl_blas_dswap($x, $y)>
+
+-This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function exchanges the elements of the vectors $x and $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dcopy($x, $y)>
+
+-This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation suceeded, 1 otherwise.
++This function copies the elements of the vector $x into the vector $y. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_daxpy($alpha, $x, $y)>
+
+@@ -228,11 +228,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsv>
+
+-=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)> - This function computes the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
++=item C<gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)> - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Di [...]
+
+-=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
++=item C<gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)> - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal e [...]
+
+ =item C<gsl_blas_cgemv >
+
+@@ -256,9 +256,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_dsymv>
+
+-=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dger($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsyr($Uplo, $alpha, $x, $A)> - This function computes the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)> - This function computes the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used.
+
+@@ -274,11 +274,11 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemv >
+
+-=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_zgeru($alpha, $x, $y, $A)> - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_blas_zgerc>
+
+-=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
++=item C<gsl_blas_zher($Uplo, $alpha, $x, $A)> - This function computes the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to ze [...]
+
+
+ =item C<gsl_blas_zher2 >
+@@ -301,17 +301,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_strsm>
+
+-=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_cgemm>
+
+@@ -325,17 +325,17 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_ctrsm>
+
+-=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation suceeded, 1 otherwise. $A, $B and $C are complex matrices
++=item C<gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices
+
+-=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
++=item C<gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the o [...]
+
+-=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
++=item C<gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the symmetric complex matrix $C, C = \alpha A A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C [...]
+
+-=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
++=item C<gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the symmetric matrix $C, C = \alpha A B^T + \alpha B A^T + \beta C when $Trans is $CblasNoTrans and C = \alpha A^T B + \alpha B^T A + \beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower [...]
+
+-=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
++=item C<gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the matrix-matrix product B = \alpha op(A) B for $Side is $CblasLeft and B = \alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then th [...]
+
+-=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
++=item C<gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)> - This function computes the inverse-matrix matrix product B = \alpha op(inv(A))B for $Side is $CblasLeft and B = \alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $Cbl [...]
+
+ =item C<gsl_blas_chemm>
+
+@@ -345,9 +345,9 @@ This function rescales the vector $x by the multiplicative factor $alpha.
+
+ =item C<gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)> - This function computes the matrix-matrix product and sum C = \alpha A B + \beta C for $Side is $CblasLeft and C = \alpha B A + \beta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.
+
+-=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
++=item C<gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)> - This function computes a rank-k update of the hermitian matrix $C, C = \alpha A A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H A + \beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are use [...]
+
+-=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
++=item C<gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)> - This function computes a rank-2k update of the hermitian matrix $C, C = \alpha A B^H + \alpha^* B A^H + \beta C when $Trans is $CblasNoTrans and C = \alpha A^H B + \alpha^* B^H A + \beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then t [...]
+
+ =back
+
+@@ -365,7 +365,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+
+diff --git a/pod/BSpline.pod b/pod/BSpline.pod
+index 698d604..033f1ea 100644
+--- a/pod/BSpline.pod
++++ b/pod/BSpline.pod
+@@ -68,7 +68,7 @@ gsl_bspline_ncoeffs. It is far more efficient to compute all of the basis
+ functions at once than to compute them individually, due to the nature of the
+ defining recurrence relation.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ http://www.gnu.org/software/gsl/manual/html_node/
+
+ =back
+diff --git a/pod/CBLAS.pod b/pod/CBLAS.pod
+index 8e3f0a4..a3fbbb2 100644
+--- a/pod/CBLAS.pod
++++ b/pod/CBLAS.pod
+@@ -491,7 +491,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pod/CDF.pod b/pod/CDF.pod
+index 4a8b71a..49010f7 100644
+--- a/pod/CDF.pod
++++ b/pod/CDF.pod
+@@ -370,7 +370,7 @@ This is the list of available import tags:
+ For example the beta tag contains theses functions : gsl_cdf_beta_P,
+ gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv .
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Chebyshev.pod b/pod/Chebyshev.pod
+index fa1b21f..13d888e 100644
+--- a/pod/Chebyshev.pod
++++ b/pod/Chebyshev.pod
+@@ -93,7 +93,7 @@ in $deriv, which must be pre-allocated. Returns a GSL status code.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pod/Combination.pod b/pod/Combination.pod
+index 31775ba..4d32850 100644
+--- a/pod/Combination.pod
++++ b/pod/Combination.pod
+@@ -205,7 +205,7 @@ sub prev {
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Deriv.pod b/pod/Deriv.pod
+index 8b69a7c..f316904 100644
+--- a/pod/Deriv.pod
++++ b/pod/Deriv.pod
+@@ -84,7 +84,7 @@ function is evaluated at $x and $x+$h.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pod/Eigen.pod b/pod/Eigen.pod
+index 31bd052..d572547 100644
+--- a/pod/Eigen.pod
++++ b/pod/Eigen.pod
+@@ -179,7 +179,7 @@ This module also includes these constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/FFT.pod b/pod/FFT.pod
+index 72d93d3..9c332ef 100644
+--- a/pod/FFT.pod
++++ b/pod/FFT.pod
+@@ -277,7 +277,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Fit.pod b/pod/Fit.pod
+index 1cc6127..e84d5d5 100644
+--- a/pod/Fit.pod
++++ b/pod/Fit.pod
+@@ -103,7 +103,7 @@ and y_err.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Heapsort.pod b/pod/Heapsort.pod
+index c744018..d00a6b9 100644
+--- a/pod/Heapsort.pod
++++ b/pod/Heapsort.pod
+@@ -32,7 +32,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Integration.pod b/pod/Integration.pod
+index 08f594f..a85c476 100644
+--- a/pod/Integration.pod
++++ b/pod/Integration.pod
+@@ -230,7 +230,7 @@ The integral is divergent, or too slowly convergent to be integrated numerically
+
+ =head1 MORE INFO
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pod/Linalg.pod b/pod/Linalg.pod
+index 92e66cc..eb02090 100644
+--- a/pod/Linalg.pod
++++ b/pod/Linalg.pod
+@@ -345,7 +345,7 @@ Here is a list of all the functions included in this module :
+
+ You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+ =back
+diff --git a/pod/Matrix.pod b/pod/Matrix.pod
+index 52d3ec1..16b41fc 100644
+--- a/pod/Matrix.pod
++++ b/pod/Matrix.pod
+@@ -1234,11 +1234,11 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_swap($m1, $m2)> - Exchange the elements of the matrices $m1 and $m2 by copying. The two matrices must have the same size.
+
+-=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
+
+-=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation suceeded, 1 otherwise.
++=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation succeeded, 1 otherwise.
+
+ =item C<gsl_matrix_transpose($m)> - This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.
+
+@@ -1258,7 +1258,7 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_isnull($m)> - Return 1 if all the elements of the matrix $m are zero, 0 otherwise
+
+-=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positve, 0 otherwise
++=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positive, 0 otherwise
+
+ =item C<gsl_matrix_isneg($m)> - Return 1 if all the elements of the matrix $m are strictly negative, 0 otherwise
+
+@@ -1278,13 +1278,13 @@ Here is a list of all the functions included in this module :
+
+ =item C<gsl_matrix_add_diagonal($a, $x)> - Add the constant value $x to the elements of the diagonal of the matrix $a
+
+-=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the row. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The length of the vector must be of the same as the length of the row. The function returns 0 if it succeded, 1 otherwise.
+
+-=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The lenght of the vector must be of the same as the lenght of the column. The function returns 0 if it succeded, 1 otherwise.
++=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The length of the vector must be of the same as the length of the column. The function returns 0 if it succeded, 1 otherwise.
+
+ =back
+
+@@ -1586,7 +1586,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/MatrixComplex.pod b/pod/MatrixComplex.pod
+index a78f281..41e1d1f 100644
+--- a/pod/MatrixComplex.pod
++++ b/pod/MatrixComplex.pod
+@@ -693,7 +693,7 @@ sub lndet($)
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation
++For more information on the functions, we refer you to the GSL offcial documentation
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Min.pod b/pod/Min.pod
+index c9b9a5e..75605da 100644
+--- a/pod/Min.pod
++++ b/pod/Min.pod
+@@ -107,7 +107,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pod/Monte.pod b/pod/Monte.pod
+index 72f95eb..d24a04a 100644
+--- a/pod/Monte.pod
++++ b/pod/Monte.pod
+@@ -76,7 +76,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pod/Multifit.pod b/pod/Multifit.pod
+index 1be4c58..e9b02d5 100644
+--- a/pod/Multifit.pod
++++ b/pod/Multifit.pod
+@@ -106,7 +106,7 @@ The following functions are not yet implemented. Patches Welcome!
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Multimin.pod b/pod/Multimin.pod
+index da302df..240667d 100644
+--- a/pod/Multimin.pod
++++ b/pod/Multimin.pod
+@@ -105,7 +105,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Multiroots.pod b/pod/Multiroots.pod
+index b8640d4..9c3c181 100644
+--- a/pod/Multiroots.pod
++++ b/pod/Multiroots.pod
+@@ -93,7 +93,7 @@ Here is a list of all the functions in this module :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pod/NTuple.pod b/pod/NTuple.pod
+index 9256edd..26cdeca 100644
+--- a/pod/NTuple.pod
++++ b/pod/NTuple.pod
+@@ -89,7 +89,7 @@ memory.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pod/ODEIV.pod b/pod/ODEIV.pod
+index da953de..27509f5 100644
+--- a/pod/ODEIV.pod
++++ b/pod/ODEIV.pod
+@@ -135,7 +135,7 @@ This module also includes the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Permutation.pod b/pod/Permutation.pod
+index 22078f7..fd51ddd 100644
+--- a/pod/Permutation.pod
++++ b/pod/Permutation.pod
+@@ -72,7 +72,7 @@ Math::GSL::Permutation - functions for creating and manipulating permutations
+
+ use Math::GSL::Permutation qw/:all/;
+ my $permutation = Math::GSL::Permutation->new(30); # allocate and initialize a permutation of size 30
+- my $lenght = $permutation->lenght; # returns the lenght of the permutation object, here it is 30
++ my $length = $permutation->length; # returns the length of the permutation object, here it is 30
+ gsl_permutation_swap($permutation->raw, 2,7);
+ # the raw method is made to use the underlying permutation structure of the permutation object
+ my $value = $permutation->get(2); # returns the third value (starting from 0) of the permutation
+@@ -93,7 +93,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_free($p) - free all the memory use by the permutaion $p
+
+-=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same lenght and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_memcpy($dest, $src) - copy the permutation $src into the permutation $dest, the two permutations must have the same length and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_fread($stream, $p) - This function reads into the permutation $p from the open stream $stream (opened with the gsl_fopen function from the Math::GSL module) in binary format. The permutation $p must be preallocated with the correct length since the function uses the size of $p to determine how many bytes to read. The function returns 1 if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same arc [...]
+
+@@ -109,7 +109,7 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_get($p, $i) - return the $i-th element of the permutation $p, return 0 if $i is outside the range of 0 to n-1
+
+-=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_swap($p, $i, $j) - exchange the $i-th position and the $j-th position of the permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_valid($p) - return 0 if the permutation $p is valid (if the n elements contain each of the numbers 0 to n-1 once and only once), 1 otherwise
+
+@@ -119,13 +119,13 @@ Here is a list of all the functions included in this module :
+
+ =item gsl_permutation_next($p) - advance the permutation $p to the next permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_prev($p) - step backward from the permutation $p to the previous permutation in lexicographic order and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_mul($p, $pa, $pb) - combine the two permutation $pa and $pb into a single permutation $p and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_linear_to_canonical($q, $p) - compute the canonical form the permutation $p and store it in $q and return 0 if the operation succeeded, 1 otherwise
+
+-=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation suceeded, 1 otherwise
++=item gsl_permutation_canonical_to_linear($p, $q) - convert a canonical permutation $q back into linear form and store it in $p and return 0 if the operation succeeded, 1 otherwise
+
+ =item gsl_permutation_inversions($p) - return the number of inversions in the permutation $p
+
+@@ -152,7 +152,7 @@ Here is a list of all the functions included in this module :
+ You have to add the functions you want to use inside the qw/put_funtion_here/ with spaces between each function.
+ You can also write use Math::GSL::CDF qw/:all/ to use all avaible functions of the module.
+ Other tags are also avaible, here is a complete list of all tags for this module.
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Poly.pod b/pod/Poly.pod
+index fd5ca8b..38582a9 100644
+--- a/pod/Poly.pod
++++ b/pod/Poly.pod
+@@ -95,7 +95,7 @@ This function frees all the memory associated with the workspace $w.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pod/QRNG.pod b/pod/QRNG.pod
+index db79f28..9a2ca5f 100644
+--- a/pod/QRNG.pod
++++ b/pod/QRNG.pod
+@@ -168,7 +168,7 @@ This module also contains the following constants :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
++For more information on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+
+diff --git a/pod/RNG.pod b/pod/RNG.pod
+index b6c2a87..c802dc6 100644
+--- a/pod/RNG.pod
++++ b/pod/RNG.pod
+@@ -399,7 +399,7 @@ __END__
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+diff --git a/pod/Randist.pod b/pod/Randist.pod
+index e0893e2..44b1e8d 100644
+--- a/pod/Randist.pod
++++ b/pod/Randist.pod
+@@ -835,7 +835,7 @@ De-allocates the gsl_ran_discrete pointed to by g.
+
+ For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/SF.pod b/pod/SF.pod
+index f113fdc..2f9ed28 100644
+--- a/pod/SF.pod
++++ b/pod/SF.pod
+@@ -3125,7 +3125,7 @@ This module also contains the following constants used as mode in various of tho
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Siman.pod b/pod/Siman.pod
+index b1ca8f7..af22dd7 100644
+--- a/pod/Siman.pod
++++ b/pod/Siman.pod
+@@ -32,7 +32,7 @@ Here is a list of all the functions in this module :
+ =back
+
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Sort.pod b/pod/Sort.pod
+index bc5af2d..dd48bcc 100644
+--- a/pod/Sort.pod
++++ b/pod/Sort.pod
+@@ -136,7 +136,7 @@ should be removed in further versions.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 PERFORMANCE
+diff --git a/pod/Spline.pod b/pod/Spline.pod
+index a0ec6a4..59ebb57 100644
+--- a/pod/Spline.pod
++++ b/pod/Spline.pod
+@@ -66,7 +66,7 @@ ya as arguments on each evaluation.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Statistics.pod b/pod/Statistics.pod
+index 8186e61..9d03600 100644
+--- a/pod/Statistics.pod
++++ b/pod/Statistics.pod
+@@ -198,7 +198,7 @@ These functions return the total sum of squares (TSS) of data about the mean. Fo
+
+ =item * C<gsl_stats_variance_m($data, $stride, $n, $mean)> - This function returns the sample variance of $data, an array reference, relative to the given value of $mean. The function is computed with \Hat\mu replaced by the value of mean that you supply, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2
+
+-=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array refrence, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
++=item * C<gsl_stats_absdev_m($data, $stride, $n, $mean)> - This function computes the absolute deviation of the dataset $data, an array reference, relative to the given value of $mean, absdev = (1/N) \sum |x_i - mean|. This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).
+
+ =item * C<gsl_stats_wmean($w, $wstride, $data, $stride, $n)> - This function returns the weighted mean of the dataset $data array reference with stride $stride and length $n, using the set of weights $w, which is an array reference, with stride $wstride and length $n. The weighted mean is defined as, \Hat\mu = (\sum w_i x_i) / (\sum w_i)
+
+@@ -392,7 +392,7 @@ Other tags are also avaible, here is a complete list of all tags for this module
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+
+diff --git a/pod/Sys.pod b/pod/Sys.pod
+index 34bcd6d..10e1f76 100644
+--- a/pod/Sys.pod
++++ b/pod/Sys.pod
+@@ -138,7 +138,7 @@ zero. The implementation is based on the package fcmp by T.C. Belding.
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial
++For more information on the functions, we refer you to the GSL offcial
+ documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 AUTHORS
+diff --git a/pod/Vector.pod b/pod/Vector.pod
+index bd43832..8c38090 100644
+--- a/pod/Vector.pod
++++ b/pod/Vector.pod
+@@ -640,7 +640,7 @@ leaving the odd elements untouched :
+
+ =back
+
+-For more informations on the functions, we refer you to the GSL offcial documentation:
++For more information on the functions, we refer you to the GSL offcial documentation:
+ L<http://www.gnu.org/software/gsl/manual/html_node/>
+
+ =head1 EXAMPLES
diff --git a/debian/patches/series b/debian/patches/series
index d2e4206..168722e 100644
--- a/debian/patches/series
+++ b/debian/patches/series
@@ -1 +1,2 @@
0001-Hardening-Build-Patch.patch
+0002-Fixed-spelling-errors-in-man.patch
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-perl/packages/libmath-gsl-perl.git
More information about the Pkg-perl-cvs-commits
mailing list