[subversion-commit] SVN tetex-base commit + diffs: r1736 - tetex-base/trunk/doc/latex/beamer/examples tetex-doc-nonfree/trunk/doc/latex/beamer/examples

Frank Küster frank at costa.debian.org
Mon Oct 9 15:18:28 UTC 2006


Author: frank
Date: 2006-10-09 15:18:27 +0000 (Mon, 09 Oct 2006)
New Revision: 1736

Added:
   tetex-doc-nonfree/trunk/doc/latex/beamer/examples/beamerexample5.tex
Removed:
   tetex-base/trunk/doc/latex/beamer/examples/beamerexample5.tex
Log:
moving contrib beamerexamples files to tetex-doc-nonfree

Deleted: tetex-base/trunk/doc/latex/beamer/examples/beamerexample5.tex
===================================================================
--- tetex-base/trunk/doc/latex/beamer/examples/beamerexample5.tex	2006-10-09 15:18:15 UTC (rev 1735)
+++ tetex-base/trunk/doc/latex/beamer/examples/beamerexample5.tex	2006-10-09 15:18:27 UTC (rev 1736)
@@ -1,1021 +0,0 @@
-% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample5.tex,v 1.22 2004/10/08 14:02:33 tantau Exp $
-
-\documentclass[11pt]{beamer}
-
-\usetheme{Darmstadt}
-
-\usepackage{times}
-\usefonttheme{structurebold}
-
-\usepackage[english]{babel}
-\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps}
-\usepackage{amsmath,amssymb}
-\usepackage[latin1]{inputenc}
-
-\setbeamercovered{dynamic}
-
-\newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}}
-
-\newcommand{\Class}[1]{\operatorname{\mathchoice
-  {\text{\sf \small #1}}
-  {\text{\sf \small #1}}
-  {\text{\sf #1}}
-  {\text{\sf #1}}}}
-
-\newcommand{\NumSAT}      {\text{\small\#SAT}}
-\newcommand{\NumA}        {\#_{\!A}}
-
-\newcommand{\barA}        {\,\bar{\!A}}
-
-\newcommand{\Nat}{\mathbb{N}}
-\newcommand{\Set}[1]{\{#1\}}
-
-\pgfdeclaremask{tu}{beamer-tu-logo-mask}
-\pgfdeclaremask{computer}{beamer-computer-mask}
-\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerimage}{beamer-computer}
-\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerworkingimage}{beamer-computerred}
-\pgfdeclareimage[mask=tu,height=.5cm]{logo}{beamer-tu-logo}
-
-\logo{\pgfuseimage{logo}}
-
-\title{Weak Cardinality Theorems for First-Order Logic}
-\author{Till Tantau}
-\institute[Technische Universit\"at Berlin]{%
-  Fakultät für Elektrotechnik und Informatik\\
-  Technische Universit\"at Berlin}
-\date{Fundamentals of Computation Theory 2003}
-
-\colorlet{redshaded}{red!25!bg}
-\colorlet{shaded}{black!25!bg}
-\colorlet{shadedshaded}{black!10!bg}
-\colorlet{blackshaded}{black!40!bg}
-
-\colorlet{darkred}{red!80!black}
-\colorlet{darkblue}{blue!80!black}
-\colorlet{darkgreen}{green!80!black}
-
-\def\radius{0.96cm}
-\def\innerradius{0.85cm}
-
-\def\softness{0.4}
-\definecolor{softred}{rgb}{1,\softness,\softness}
-\definecolor{softgreen}{rgb}{\softness,1,\softness}
-\definecolor{softblue}{rgb}{\softness,\softness,1}
-
-\definecolor{softrg}{rgb}{1,1,\softness}
-\definecolor{softrb}{rgb}{1,\softness,1}
-\definecolor{softgb}{rgb}{\softness,1,1}
-
-\newcommand{\Bandshaded}[2]{
-  \color{shadedshaded}
-  \pgfmoveto{\pgfxy(-0.5,0)}
-  \pgflineto{\pgfxy(-0.6,0.1)}
-  \pgflineto{\pgfxy(-0.4,0.2)}
-  \pgflineto{\pgfxy(-0.6,0.3)}
-  \pgflineto{\pgfxy(-0.4,0.4)}
-  \pgflineto{\pgfxy(-0.5,0.5)}
-  \pgflineto{\pgfxy(4,0.5)}
-  \pgflineto{\pgfxy(4.1,0.4)}
-  \pgflineto{\pgfxy(3.9,0.3)}
-  \pgflineto{\pgfxy(4.1,0.2)}
-  \pgflineto{\pgfxy(3.9,0.1)}
-  \pgflineto{\pgfxy(4,0)}
-  \pgfclosepath
-  \pgffill
-
-  \color{black}  
-  \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}}
-  \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}}
-}
-
-\newcommand{\Band}[2]{
-  \color{shaded}
-  \pgfmoveto{\pgfxy(-0.5,0)}
-  \pgflineto{\pgfxy(-0.6,0.1)}
-  \pgflineto{\pgfxy(-0.4,0.2)}
-  \pgflineto{\pgfxy(-0.6,0.3)}
-  \pgflineto{\pgfxy(-0.4,0.4)}
-  \pgflineto{\pgfxy(-0.5,0.5)}
-  \pgflineto{\pgfxy(4,0.5)}
-  \pgflineto{\pgfxy(4.1,0.4)}
-  \pgflineto{\pgfxy(3.9,0.3)}
-  \pgflineto{\pgfxy(4.1,0.2)}
-  \pgflineto{\pgfxy(3.9,0.1)}
-  \pgflineto{\pgfxy(4,0)}
-  \pgfclosepath
-  \pgffill
-
-  \color{black}  
-  \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}}
-  \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}}
-}
-
-\newcommand{\BaenderNormal}
-{%
-  \pgfsetlinewidth{0.4pt}
-  \color{black}
-  \pgfputat{\pgfxy(0,5)}{\Band{input tapes}{}}
-  \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}}
-  \pgfputat{\pgfxy(0,4)}{\Band{}{}}
-
-  \pgfxyline(0,5)(0,5.5)
-  \pgfxyline(1.2,5)(1.2,5.5)
-  \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}}
-
-  \pgfxyline(0,4)(0,4.5)
-  \pgfxyline(1.8,4)(1.8,4.5)        
-  \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}}
-  \ignorespaces}
-
-\newcommand{\BaenderZweiNormal}
-{%
-  \pgfsetlinewidth{0.4pt}
-  \color{black}
-  \pgfputat{\pgfxy(0,5)}{\Band{Zwei Eingabebänder}{}}
-  \pgfputat{\pgfxy(0,4.25)}{\Band{}{}}
-
-  \pgfxyline(0,5)(0,5.5)
-  \pgfxyline(1.2,5)(1.2,5.5)
-  \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}}
-
-  \pgfxyline(0,4.25)(0,4.75)
-  \pgfxyline(1.8,4.25)(1.8,4.75)        
-  \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}}
-  \ignorespaces}
-
-\newcommand{\BaenderHell}
-{%
-  \pgfsetlinewidth{0.4pt}
-  \color{black}
-  \pgfputat{\pgfxy(0,5)}{\Bandshaded{input tapes}{}}
-  \color{shaded}
-  \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}}
-  \pgfputat{\pgfxy(0,4)}{\Bandshaded{}{}}
-
-  \color{blackshaded}
-  \pgfxyline(0,5)(0,5.5)
-  \pgfxyline(1.2,5)(1.2,5.5)
-  \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}}
-
-  \pgfxyline(0,4)(0,4.5)
-  \pgfxyline(1.8,4)(1.8,4.5)        
-  \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}}
-  \ignorespaces}
-
-\newcommand{\BaenderZweiHell}
-{%
-  \pgfsetlinewidth{0.4pt}
-  \color{black}
-  \pgfputat{\pgfxy(0,5)}{\Bandshaded{Zwei Eingabebänder}{}}%
-  \color{blackshaded}
-  \pgfputat{\pgfxy(0,4.25)}{\Bandshaded{}{}}
-  \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}}
-  \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}}%
-
-  \pgfxyline(0,5)(0,5.5)
-  \pgfxyline(1.2,5)(1.2,5.5)
-
-  \pgfxyline(0,4.25)(0,4.75)
-  \pgfxyline(1.8,4.25)(1.8,4.75)        
-  \ignorespaces}
-
-\newcommand{\Slot}[1]{%
-  \begin{pgftranslate}{\pgfpoint{#1}{0pt}}%
-    \pgfsetlinewidth{0.6pt}%
-    \color{structure}%
-    \pgfmoveto{\pgfxy(-0.1,5.5)}%
-    \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}%
-    \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}%
-    \pgflineto{\pgfxy(0.1,4.0)}%
-    \pgfbezier{\pgfxy(0.1,3.95)}{\pgfxy(0.05,3.9)}{\pgfxy(0,3.9)}%
-    \pgfbezier{\pgfxy(-0.05,3.9)}{\pgfxy(-0.1,3.95)}{\pgfxy(-0.1,4.0)}%
-    \pgfclosepath%
-    \pgfstroke%
-  \end{pgftranslate}\ignorespaces}
-
-\newcommand{\SlotZwei}[1]{%
-  \begin{pgftranslate}{\pgfpoint{#1}{0pt}}%
-    \pgfsetlinewidth{0.6pt}%
-    \color{structure}%
-    \pgfmoveto{\pgfxy(-0.1,5.5)}%
-    \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}%
-    \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}%
-    \pgflineto{\pgfxy(0.1,4.25)}%
-    \pgfbezier{\pgfxy(0.1,4.25)}{\pgfxy(0.05,4.15)}{\pgfxy(0,4.15)}%
-    \pgfbezier{\pgfxy(-0.05,4.15)}{\pgfxy(-0.1,4.2)}{\pgfxy(-0.1,4.25)}%
-    \pgfclosepath%
-    \pgfstroke%
-  \end{pgftranslate}\ignorespaces}
-
-\newcommand{\ClipSlot}[1]{%
-  \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4cm}}}{\pgfxy(0.2,1.5)}\ignorespaces}
-
-\newcommand{\ClipSlotZwei}[1]{%
-  \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4.25cm}}}{\pgfxy(0.2,1.25)}\ignorespaces}
-
-
-\AtBeginSection[]{\frame{\frametitle{Outline}\tableofcontents[current]}}
-
-\begin{document}
-
-\frame{\titlepage}
-
-%\section*{Outline}
-\part{Main Part}
-\frame{\frametitle{Outline}\tableofcontents[part=1]}
-
-\section{History}
-
-\subsection{Enumerability in Recursion and Automata Theory}
-
-\frame
-{
-  \frametitle{Motivation of Enumerability}
-
-  \begin{block}{Problem}
-    Many functions are not computable or not efficiently computable.
-  \end{block}
-  \vskip-1em
-  \begin{overprint}
-  \onslide<1-2>
-  \begin{example}
-    \begin{overprint}
-    \onslide<1>
-      \vskip0.5em
-      \begin{itemize}
-      \item
-        $\NumSAT$:\\
-        How many satisfying assignments does a formula have?
-      \end{itemize}
-
-    \onslide<2>
-      \vskip0.5em
-        For difficult languages~$A$:
-        \begin{itemize}
-        \item
-          Cardinality function $\NumA^n$:\\
-          \alert{How many} input words are in~$A$?
-        \item
-          Characteristic function $\chi_A^n$:\\
-          \alert{Which} input words are in~$A$?
-        \end{itemize}
-      \begin{pgfpicture}{-9cm}{0.75cm}{-9cm}{2cm}
-        
-        \pgfnodebox{words}[virtual]{\pgfxy(0,3.5)}{$(w_1, \alert{w_2},
-          w_3, w_4, \alert{w_5})$}{2pt}{5pt}
-
-        \color{red}
-        \pgfputat{\pgfxy(0.75,4.5)}{\pgfbox[center,base]{in $A$}}
-        \pgfxyline(0.75,4.4)(-0.6,3.7)
-        \pgfxyline(0.75,4.4)(1.2,3.7)
-        \color{black}
-
-        \pgfnodebox{number}[virtual]{\pgfxy(-1,1)}{2}{2pt}{2pt}
-        \pgfnodebox{string}[virtual]{\pgfxy(1,1)}{0\alert{1}00\alert{1}}{2pt}{2pt}
-
-        \pgfsetstartarrow{\pgfarrowbar}
-        \pgfsetendarrow{\pgfarrowto}
-
-        \pgfnodeconnline{words}{string}%{-60}{120}{1cm}{1cm}
-        \pgfnodeconnline{words}{number}%{-120}{60}{1cm}{1cm}
-
-        \pgfputat{\pgfxy(-0.9,2.3)}{\pgfbox[center,base]{$\NumA^5$}}
-        \pgfputat{\pgfxy(0.9,2.3)}{\pgfbox[center,base]{$\chi_A^5$}}
-      \end{pgfpicture}
-    \end{overprint}
-  \end{example}
-
-  \onslide<3>
-    \begin{block}{Solutions}
-      Difficult functions can be 
-      \begin{itemize}
-      \item
-        computed using probabilistic algorithms,
-      \item
-        computed efficiently on average,
-      \item
-        approximated, or
-      \item<alert at 1->
-        enumerated.
-      \end{itemize}
-    \end{block}
-  \end{overprint}
-}
-
-\frame
-{
-  \frametitle{Enumerators Output Sets of Possible Function Values}
-  \begin{columns}
-    \begin{column}{4.5cm}
-      \begin{pgfpicture}{-0.5cm}{0cm}{4cm}{6cm}
-
-        \pgfputat{\pgfxy(0,0.5)}{\Band{}{output tape}}
-
-        \BaenderHell
-
-        \color{black}
-
-        \only<1-4,6->{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerimage}}}}
-        \only<5>{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerworkingimage}}}}
-
-        \begin{pgfscope}
-          \only<1>{\ClipSlot{0cm}}
-          \only<2>{\ClipSlot{0.6cm}}
-          \only<3>{\ClipSlot{1.2cm}}
-          \only<4->{\ClipSlot{1.8cm}}
-          \BaenderNormal
-        \end{pgfscope}        
-
-        \only<1>{\Slot{0cm}}
-        \only<2>{\Slot{0.6cm}}
-        \only<3>{\Slot{1.2cm}}
-        \only<4->{\Slot{1.8cm}}
-        
-        \only<6->{
-          \pgfxyline(0,0.5)(0,1)
-          \pgfxyline(1,0.5)(1,1)
-          \pgfputat{\pgfxy(0.5,0.75)}{\pgfbox[center,center]{$u_1$}}}
-        \only<7->{
-          \pgfxyline(2,0.5)(2,1)
-          \pgfputat{\pgfxy(1.5,0.75)}{\pgfbox[center,center]{\alert<9>{$u_2$}}}}
-        \only<8->{
-          \pgfxyline(3,0.5)(3,1)
-          \pgfputat{\pgfxy(2.5,0.75)}{\pgfbox[center,center]{$u_3$}}}
-        
-        \pgfsetlinewidth{0.6pt}
-        \color{structure}
-        \pgfsetendarrow{\pgfarrowto}
-        
-        \pgfsetlinewidth{0.6pt}
-        \color{structure}
-        \pgfsetendarrow{\pgfarrowto}
-        \only<-5>{\pgfxycurve(1.75,1.5)(1.75,1)(0,1.5)(0,1.05)}
-        \only<6>{\pgfxycurve(1.75,1.5)(1.75,1)(1,1.5)(1,1.05)}
-        \only<7>{\pgfxycurve(1.75,1.5)(1.75,1)(2,1.5)(2,1.05)}
-        \only<8->{\pgfxycurve(1.75,1.5)(1.75,1)(3,1.5)(3,1.05)}
-        
-        \only<1>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0,3.5)(0,3.85)}
-        \only<2>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0.6,3.5)(0.6,3.85)}
-        \only<3>{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.2,3.5)(1.2,3.85)}
-        \only<4->{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.8,3.5)(1.8,3.85)}
-      \end{pgfpicture}
-    \end{column}
-    \begin{column}{6.5cm}
-      \begin{definition}[1987, 1989, 1994, 2001]
-        An \alert{$m$-enumerator} for a function~$f$
-        \begin{enumerate}
-        \item<alert at 1-4>
-          reads $n$ input words $w_1$, \dots, $w_n$,
-        \item<alert at 5>
-          does a computation,
-        \item<alert at 6-8>
-          outputs at most $m$ values,
-        \item<alert at 9>
-          one of which is $f(w_1,\dots,w_n)$.
-        \end{enumerate}
-      \end{definition}
-    \end{column}
-  \end{columns}
-}
-
-\subsection{Known Weak Cardinality Theorem}
-
-\frame
-{
-  \frametitle{How Well Can the Cardinality Function Be Enumerated?}
-
-  \begin{block}{Observation}
-    For fixed~$n$, the cardinality function $\NumA^n$
-    \begin{itemize}
-    \item
-      can be \alert{$1$}-enumerated by Turing machines only for \alert{recursive}~$A$,~but\hskip-0.5cm\hbox{}
-    \item
-      can be \alert{$(n+1)$}-enumerated for \alert{every} language~$A$.
-    \end{itemize}
-  \end{block}
-
-  \begin{alertblock}{Question}<2->
-    What about $2$-, $3$-, $4$-, \dots, $n$-enumerability?
-  \end{alertblock}
-}
-
-\newtheorem{card}{Cardinality Theorem}[theorem]
-\newtheorem{weakcard}{Weak Cardinality Theorems}[theorem]
-
-\frame
-{
-  \frametitle{How Well Can the Cardinality Function\\ Be Enumerated
-    by Turing Machines?}
-
-  \begin{card}[Kummer, 1992]
-    If $\NumA^n$ is $n$-enumerable by a Turing machine, then $A$ is
-    recursive.
-  \end{card}
-
-  \begin{weakcard}[\uncover<2->{\alert<1-2>{1987},} \uncover<3->{\alert<3>{1989},}
-      \uncover<4->{\alert<4>{1992}}]<2-> 
-    \begin{enumerate}
-    \item<2-| alert at 2>
-      If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$ is
-        recursive.
-    \item<3-| alert at 3>
-      If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$ is
-        recursive.
-    \item<4-| alert at 4>
-      If $\NumA^n$ is $n$-enumerable by a Turing machine that never
-        enumerates both $0$ and~$n$, then $A$ is recursive.
-    \end{enumerate}
-  \end{weakcard}
-}
-
-
-\frame
-{
-  \frametitle{How Well Can the Cardinality Function\\ Be Enumerated
-    by Finite Automata?}
-
-  \begin{alertblock}{Conjecture}
-    If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is
-    \alert{regular}.
-  \end{alertblock}
-
-  \begin{weakcard}[2001, 2002]
-    \begin{enumerate}
-    \item
-      If $\chi_A^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is
-      \alert{regular}.
-    \item
-      If $\NumA^2$ is $2$-enumerable by a \alert{finite automaton}, then $A$ is
-      \alert{regular}.
-    \item
-      If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton} that never
-      enumerates both $0$ and~$n$, then $A$ is \alert{regular}.
-    \end{enumerate}
-  \end{weakcard}
-}
-
-
-\subsection{Why Do Cardinality Theorems Hold Only for Certain Models?}
-
-\frame
-{
-  \frametitle{Cardinality Theorems Do Not Hold for All Models}
-
-  \begin{pgfpicture}{-2.5cm}{0.3cm}{0.5cm}{6.5cm}
-    \pgfsetlinewidth{0.6pt}
-    
-    \pgfsetendarrow{\pgfarrowto}
-    \pgfxyline(0,0.5)(0,6.5)
-    \pgfclearendarrow
-
-    \pgfputat{\pgfxy(-0.2,5.75)}{\pgfbox[right,base]{Turing machines}}
-
-    \only<2>{
-    \pgfputat{\pgfxy(-0.2,3.75)}{\pgfbox[right,base]{\alert{resource-bounded}}}
-    \pgfputat{\pgfxy(-0.2,3.25)}{\pgfbox[right,base]{\alert{machines}}}
-    \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt}
-    \pgfputat{\pgfxy(0.4,3.5)}{\pgfbox[left,base]{Weak cardinality
-        theorems do \alert{not} hold.}}}
-    
-    \pgfputat{\pgfxy(-0.2,1.5)}{\pgfbox[right,base]{finite}}
-    \pgfputat{\pgfxy(-0.2,1)}{\pgfbox[right,base]{automata}}
-
-    \pgfcircle[fill]{\pgfxy(0,5.85)}{2pt}
-    \pgfcircle[fill]{\pgfxy(0,1.35)}{2pt}
-
-    \pgfputat{\pgfxy(0.4,5.75)}{\pgfbox[left,base]{Weak cardinality
-        theorems hold.}}
-    \pgfputat{\pgfxy(0.4,1.25)}{\pgfbox[left,base]{Weak cardinality
-        theorems hold.}}
-  \end{pgfpicture}
-}
-
-\frame
-{
-  \frametitle{Why?}
-
-  \begin{block}{First Explanation}<1>
-    The weak cardinality theorems hold both for recursion and automata
-    theory \alert{by coincidence}.
-  \end{block}
-
-  \begin{block}{Second Explanation}<1-2>
-    The weak cardinality theorems hold both for
-    recursion and automata theory, \alert{because they are
-      instantiations of\\ single, unifying theorems}.
-  \end{block}
-  
-  \vskip1em
-  \visible<2->{
-    The second explanation is correct.\\
-    The theorems can (almost) be unified using first-order logic.
-    }
-}
-   
-    
-
-\section[Unification by Logic]{Unification by First-Order Logic}
-
-\subsection{Elementary Definitions}
-
-\frame
-{
-  \frametitle{What Are Elementary Definitions?}
-
-  \begin{definition}
-    A relation~$R$ is \alert{elementarily definable in a
-    logical structure~$\mathcal S$} if
-    \begin{enumerate}
-    \item
-      there exists a first-order formula~$\phi$,
-    \item
-      that is true exactly for the elements of~$R$.
-    \end{enumerate}    
-  \end{definition}
-
-  \begin{example}
-    The set of even numbers is elementarily definable in $(\Nat, +)$
-    via the formula $\phi(x) \equiv \exists z \centerdot z+z=x$.
-  \end{example}
-
-  \begin{example}
-    The set of powers of 2 is not elementarily definable in $(\Nat, +)$.
-  \end{example}
-}
-
-
-\frame
-{
-  \frametitle{Characterisation of Classes by Elementary Definitions}
-
-  \begin{theorem}[B\"uchi, 1960]
-    There exists a logical structure~$(\Nat, +, \mathrm e_2)$
-    such that a set $A \subseteq \Nat$ is\\ \alert{regular} iff it is 
-    \alert{elementarily definable in~$(\Nat, +, \mathrm e_2)$}.
-  \end{theorem}
-
-  \begin{theorem}
-    There exists a logical structure~$\mathcal R$ such that a set $A
-    \subseteq \Nat$ is \alert{recursively enumerable} iff it is \alert{positively
-    elementarily definable in~$\mathcal R$}.\hskip-0.5cm\hbox{}
-  \end{theorem}
-}
-
-
-
-\frame
-{
-  \frametitle{Characterisation of Classes by Elementary Definitions} 
-
-  \begin{pgfpicture}{-5.4cm}{0.3cm}{5.4cm}{6.5cm}
-    \pgfsetlinewidth{0.6pt}
-    
-    \pgfsetendarrow{\pgfarrowto}
-    \pgfxyline(0,0.3)(0,6.5)
-    \pgfclearendarrow
-
-    \only<2->{
-    \pgfputat{\pgfxy(-0.3,0.5)}{\pgfbox[right,base]{Presburger arithmetic}}
-    \pgfcircle[fill]{\pgfxy(0,0.6)}{2pt}
-    \pgfputat{\pgfxy(0.3,0.5)}{\pgfbox[left,base]{$(\Nat, +)$}}
-    }
-    \pgfputat{\pgfxy(-0.3,1.5)}{\pgfbox[right,base]{regular sets}}
-    \pgfcircle[fill]{\pgfxy(0,1.6)}{2pt}
-    \pgfputat{\pgfxy(0.3,1.5)}{\pgfbox[left,base]{$(\Nat, +, \mathrm e_2)$}}
-
-    \pgfputat{\pgfxy(-0.3,2.5)}{\pgfbox[right,base]{\alert{resource-bounded classes}}}
-    \pgfcircle[fill]{\pgfxy(0,2.6)}{2pt}
-    \pgfputat{\pgfxy(0.3,2.5)}{\pgfbox[left,base]{\alert{none}}}
-
-    \pgfputat{\pgfxy(-0.3,3.5)}{\pgfbox[right,base]{recursively enumerable sets}}
-    \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt}
-    \pgfputat{\pgfxy(0.3,3.5)}{\pgfbox[left,base]{positively in $\mathcal R$}}
-
-    \only<2->{
-    \pgfputat{\pgfxy(-0.3,4.5)}{\pgfbox[right,base]{arithmetic hierarchy}}
-    \pgfcircle[fill]{\pgfxy(0,4.6)}{2pt}
-    \pgfputat{\pgfxy(0.3,4.5)}{\pgfbox[left,base]{$(\Nat, +, \cdot)$}}
-
-    \pgfputat{\pgfxy(-0.3,5.5)}{\pgfbox[right,base]{ordinal number arithmetic}}
-    \pgfcircle[fill]{\pgfxy(0,5.6)}{2pt}
-    \pgfputat{\pgfxy(0.3,5.5)}{\pgfbox[left,base]{$(\mathrm{On}, +, \cdot)$}}}
-  \end{pgfpicture}
-}
-
-
-\subsection{Enumerability for First-Order Logic}
-
-\frame
-{
-  \frametitle{Elementary Enumerability is a Generalisation of\\ Elementary Definability}
-
-  \begin{columns}
-    \begin{column}{3.25cm}
-      \begin{pgfpicture}{-0.25cm}{0cm}{3cm}{4cm}
-
-        \color{shaded}
-        \pgfmoveto{\pgfxy(0,1.3)}
-        \pgfcurveto{\pgfxy(0.5,2.3)}{\pgfxy(2,1.5)}{\pgfxy(2.5,2.3)}
-        \pgflineto{\pgfxy(2.5,1.7)}
-        \pgfcurveto{\pgfxy(2,0.7)}{\pgfxy(1,1.7)}{\pgfxy(0,0.5)}
-        \pgfclosepath
-        \pgffill
-
-        \pgfsetlinewidth{0.8pt}
-        \color{black}
-        \pgfmoveto{\pgfxy(0,1)}
-        \pgflineto{\pgfxy(0.25,1.15)}
-        \pgflineto{\pgfxy(0.5,1.5)}
-        \pgflineto{\pgfxy(1,1.7)}
-        \pgflineto{\pgfxy(1.5,1.5)}
-        \pgflineto{\pgfxy(2,1.4)}
-        \pgflineto{\pgfxy(2.25,1.5)}
-        \pgflineto{\pgfxy(2.5,2)}
-        \pgfstroke          
-
-        \pgfsetlinewidth{0.4pt}
-        \pgfsetendarrow{\pgfarrowto}
-        \pgfxyline(0,0)(2.5,0)
-        \pgfxyline(0,0)(0,3)
-        \pgfputat{\pgfxy(0.5,1.9)}{\pgfbox[center,base]{$R$}}
-        \pgfputat{\pgfxy(2.6,0)}{\pgfbox[left,center]{$x$}}
-        \pgfputat{\pgfxy(0,3.2)}{\pgfbox[center,base]{$f(x)$}}
-        \pgfputat{\pgfxy(2.55,2)}{\pgfbox[left,center]{$f$}}
-      \end{pgfpicture}
-    \end{column}
-    \begin{column}{7.5cm}
-      \begin{definition}
-        A function~$f$ is\\
-        \alert{elementarily $m$-enumerable in a structure~$\mathcal S$} if
-        \begin{enumerate}
-        \item
-          its graph is contained in an\\
-          \alert{elementarily definable} relation~$R$,
-        \item
-          which is \alert{$m$-bounded}, i.\kern1pt e., for each~$x$
-          there are at most~$m$ different~$y$ with $(x,y) \in R$.
-        \end{enumerate}
-      \end{definition}
-    \end{column}
-  \end{columns}
-}
-
-\frame
-{
-  \frametitle{The Original Notions of Enumerability are Instantiations}
-
-  \begin{theorem}
-    A function is $m$-enumerable by a \alert{finite automaton} iff\\
-    it is elementarily $m$-enumerable in \alert{$(\Nat, +, \mathrm e_2)$}.
-  \end{theorem} 
-
-  \begin{theorem}
-    A function is $m$-enumerable by a \alert{Turing machine} iff\\
-    it is positively elementarily $m$-enumerable in \alert{$\mathcal R$}.
-  \end{theorem} 
-}
-
-%\subsection{Cross Product Theorem for First-Order Logic}
-
-\subsection{Weak Cardinality Theorems for First-Order Logic}
-
-\frame
-{
-  \frametitle{The First Weak Cardinality Theorem}
-  
-  \begin{theorem}
-    Let $\mathcal S$ be a logical structure with universe~$U$ and let
-    $A \subseteq U$. If
-    
-    \begin{enumerate}
-    \item
-      $\mathcal S$ is well-orderable and
-    \item
-      \alert{$\chi_A^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$,
-    \end{enumerate}
-    
-    then \alert{$A$ is elementarily definable} in~$\mathcal S$.    
-  \end{theorem}
-  \begin{overprint}
-    \onslide<2>
-      \begin{corollary}
-        If $\chi_A^n$ is $n$-enumerable by a finite automaton, then
-        $A$ is regular.
-      \end{corollary}
-
-    \onslide<3>
-      \begin{corollary}[with more effort]
-        If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$
-        is recursive.
-      \end{corollary}
-  \end{overprint}  
-}
-
-\frame
-{
-  \frametitle{The Second Weak Cardinality Theorem}
-  
-  \begin{theorem}
-    Let $\mathcal S$ be a logical structure with universe~$U$ and let
-    $A \subseteq U$. If
-    
-    \begin{enumerate}
-    \item
-      $\mathcal S$ is well-orderable,
-    \item
-      every finite relation on~$U$ is elementarily definable
-      in~$\mathcal S$, and
-    \item
-      \alert{$\NumA^2$} is elementarily \alert{$2$}-enumerable in~$\mathcal S$,
-    \end{enumerate}
-    
-    then \alert{$A$ is elementarily definable} in~$\mathcal S$.    
-  \end{theorem}
-%  \begin{overlayarea}{\textwidth}{2cm}
-%    \only<2>{
-%      \begin{corollary}
-%        If $\NumA^2$ is $2$-enumerable by a finite automaton, then
-%        $A$ is regular.
-%      \end{corollary}}%
-%    \only<3>{
-%      \begin{block}{Corollary}
-%        If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$
-%        is recursive in the halting problem.
-%      \end{block}
-%      }
-%  \end{overlayarea}
-}
-
-\frame
-{
-  \frametitle{The Third Weak Cardinality Theorem}
-  
-  \begin{theorem}
-    Let $\mathcal S$ be a logical structure with universe~$U$ and let
-    $A \subseteq U$. If
-    
-    \begin{enumerate}
-    \item
-      $\mathcal S$ is well-orderable,
-    \item
-      every finite relation on~$U$ is elementarily definable
-      in~$\mathcal S$, and
-    \item
-      \alert{$\NumA^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$ via a
-      relation that \alert{never `enumerates' both $0$ and~$n$},
-    \end{enumerate}
-    
-    then \alert{$A$ is elementarily definable} in~$\mathcal S$.    
-  \end{theorem}
-%  \begin{overlayarea}{\textwidth}{2cm}
-%    \only<2>{
-%      \begin{corollary}
-%        If $\NumA^n$ is $n$-enumerable by a finite automaton that
-%        never enumerates both $0$ and~$n$, then $A$ is regular.
-%      \end{corollary}}%
-%    \only<3>{
-%      \begin{block}{Corollary}
-%        If $\NumA^n$ is $n$-enumerable by a Turing machine that never
-%        enumerates both $0$ and~$n$, then $A$ is recursive in the
-%        halting problem.
-%      \end{block}
-%      }
-%  \end{overlayarea}
-}
-
-
-
-\frame
-{
-  \frametitle{Relationships Between Cardinality Theorems (CT)}
-
-  \begin{pgfpicture}{0cm}{0cm}{10cm}{5cm}
-    \only<2>{%
-    \color{alert}
-    \pgfnodebox{autX}[virtual]{\pgfxy(2.2,4)}{CT}{2pt}{2pt}
-    \color{black}}%
-    \pgfnodebox{autA}[virtual]{\pgfxy(1,3)}{1st Weak CT}{2pt}{2pt}
-    \pgfnodebox{autB}[virtual]{\pgfxy(1,2)}{2nd Weak CT}{2pt}{2pt}
-    \pgfnodebox{autC}[virtual]{\pgfxy(1,1)}{3rd Weak CT}{2pt}{2pt}
-
-    \only<2>{%
-    \color{alert}
-    \pgfnodebox{logX}[virtual]{\pgfxy(6.2,4.5)}{CT}{2pt}{2pt}%
-    \color{black}}%
-    \pgfnodebox{logA}[virtual]{\pgfxy(5,3.5)}{1st Weak CT}{2pt}{2pt}
-    \pgfnodebox{logB}[virtual]{\pgfxy(5,2.5)}{2nd Weak CT}{2pt}{2pt}
-    \pgfnodebox{logC}[virtual]{\pgfxy(5,1.5)}{3rd Weak CT}{2pt}{2pt}
-
-    \pgfnodebox{recX}[virtual]{\pgfxy(10.2,4)}{CT}{2pt}{2pt}
-    \pgfnodebox{recA}[virtual]{\pgfxy(9,3)}{1st Weak CT}{2pt}{2pt}
-    \pgfnodebox{recB}[virtual]{\pgfxy(9,2)}{2nd Weak CT}{2pt}{2pt}
-    \pgfnodebox{recC}[virtual]{\pgfxy(9,1)}{3rd Weak CT}{2pt}{2pt}
-
-    \pgfputat{\pgfxy(1,4.5)}{\pgfbox[center,base]{\structure{automata theory}}}
-    \pgfputat{\pgfxy(5,5)}{\pgfbox[center,base]{\structure{first-order logic}}}
-    \pgfputat{\pgfxy(9,4.5)}{\pgfbox[center,base]{\structure{recursion
-          theory}}}
-
-    {%
-    \color{structure}%
-    \pgfxyline(3,0)(3,5)
-    \pgfxyline(7,0)(7,5)
-    }%
-    \pgfsetendarrow{\pgfarrowto}
-    \pgfnodeconnline{logA}{autA}
-    \pgfnodeconnline{logA}{recA}
-    \pgfnodeconnline{logB}{autB}
-    \pgfnodeconnline{logC}{autC}
-
-    \pgfnodeconncurve{recX}{recA}{-60}{5}{10pt}{10pt}
-    \pgfnodeconncurve{recX}{recB}{-55}{5}{10pt}{20pt}
-    \pgfnodeconncurve{recX}{recC}{-50}{5}{10pt}{30pt}
-
-    \only<2>{%
-      \alert{
-        \pgfnodeconnline{logX}{autX}
-        \pgfnodeconncurve{logX}{logA}{-60}{0}{10pt}{10pt}
-        \pgfnodeconncurve{logX}{logB}{-55}{0}{10pt}{20pt}
-        \pgfnodeconncurve{logX}{logC}{-50}{0}{10pt}{30pt}
-        \pgfnodeconncurve{autX}{autA}{-60}{11}{10pt}{10pt}
-        \pgfnodeconncurve{autX}{autB}{-55}{11}{10pt}{20pt}
-        \pgfnodeconncurve{autX}{autC}{-50}{11}{10pt}{30pt}
-      }
-    }
-
-    \pgfsetdash{{3pt}{3pt}}{0pt}
-    \pgfnodeconnline{logB}{recB}
-    \pgfnodeconnline{logC}{recC}
-
-    \only<2>{%
-    \alert{\pgfnodeconnline{logX}{recX}}}
-  \end{pgfpicture}
-}
-
-
-\section{Applications}
-
-\subsection{A Separability Result for First-Order Logic}
-
-%\frame
-%{
-%  \begin{columns}
-%    \begin{column}{2.4cm}
-%      \begin{pgfpicture}{-1.2cm}{-1.2cm}{1cm}{1cm}
-%        \color{shaded}
-%        \pgfrect[fill]{\pgfxy(-1.4,-1)}{\pgfxy(2.8,2)}
-
-%        \color{white}
-%        \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.5cm}
-%        \pgfcircle[fill]{\pgfxy(0.6,0)}{0.5cm}
-%        \only<2->{%      
-%          \color{softred}
-%          \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.6cm}}%
-%        %
-%        \color{black}
-%        \pgfcircle[stroke]{\pgfxy(-0.6,0)}{0.5cm}
-%        \pgfcircle[stroke]{\pgfxy(0.6,0)}{0.5cm}
-
-%        \pgfputat{\pgfxy(-0.6,0)}{\pgfbox[center,center]{$A^{(n)}$}}
-%        \pgfputat{\pgfxy(0.6,0)}{\pgfbox[center,center]{$\barA{}^{(n)}$}}     
-%      \end{pgfpicture}
-%    \end{column}
-%    \begin{column}{8cm}
-%      \begin{block}{Notation}
-%        Let $A^{(n)}$ contain all $n$ tuples of\\
-%        distinct elements of~$A$.
-%      \end{block}
-      
-%      \begin{block}{Theorem}
-%        Let $\mathcal S$ be a well-orderable logical structure in which
-%        all finite relations are elementarily definable.\\[0.5em]
-%        If $A^{(n)}$ and $\barA{}^{(n)}$ are \alert<2>{elementarily separable}
-%        in~$\mathcal S$, then~so~are~$A$~and~$\barA$.
-%      \end{block}
-
-%      \uncover<3>{
-%        \begin{alertblock}{Note}
-%          The theorem is no longer true if $\barA$ is replaced by an
-%          arbitrary set~$B$.
-%        \end{alertblock}
-%      }
-%    \end{column}
-%  \end{columns}
-%}
-
-
-\frame
-{
-  \begin{columns}
-    \begin{column}{4cm}
-      \begin{pgfpicture}{-2cm}{-1.75cm}{2cm}{2.25cm}
-        \color{shaded}
-        \pgfrect[fill]{\pgfxy(-2,-1.75)}{\pgfxy(4,4)}
-                                %\pgfcircle[fill]{\pgforigin}{2cm}
-
-        \only<1>{%
-          \color{white}%
-          \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\innerradius}
-          \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\innerradius}
-          \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\innerradius}}%
-        \only<2->{%      
-        \color{softred}
-        \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\radius}
-        \color{softgreen}
-        \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius}
-        \color{softblue}
-        \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}}%
-        %
-      \only<2->{%
-        \begin{pgftranslate}{\pgfpolar{90}{1cm}}
-          \pgfzerocircle{\radius}
-          \pgfclip
-          
-          \begin{pgftranslate}{\pgfpolar{-90}{1cm}}
-            \color{softrb}
-            \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}
-            \color{softrg}
-            \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius}
-          \end{pgftranslate}
-        \end{pgftranslate}
-
-        \begin{pgftranslate}{\pgfpolar{210}{1cm}}
-          \pgfzerocircle{\radius}
-          \pgfclip
-          
-          \begin{pgftranslate}{\pgfpolar{30}{1cm}}
-            \color{softgb}
-            \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}
-          \end{pgftranslate}
-        \end{pgftranslate}}%
-        %
-        \color{black}
-        \pgfcircle[stroke]{\pgfpolar{90}{1cm}}{\innerradius}
-        \pgfcircle[stroke]{\pgfpolar{210}{1cm}}{\innerradius}
-        \pgfcircle[stroke]{\pgfpolar{330}{1cm}}{\innerradius}
-
-        \pgfputat{\pgfrelative{\pgfpolar{90}{1cm}}%
-          {\pgfpoint{0pt}{-.5ex}}}%
-        {\pgfbox[center,base]{$A\times \barA$}}
-        \pgfputat{\pgfrelative{\pgfpolar{210}{1cm}}%
-          {\pgfpoint{0pt}{-.5ex}}}%
-        {\pgfbox[center,base]{$A\times A$}}
-        \pgfputat{\pgfrelative{\pgfpolar{330}{1cm}}%
-          {\pgfpoint{0pt}{-.5ex}}}%
-        {\pgfbox[center,base]{$\barA\times \barA$}}
-
-      \end{pgfpicture}
-    \end{column}
-    \begin{column}{6.8cm}
-      \begin{theorem}
-        Let $\mathcal S$ be a well-orderable logical structure in which
-        all finite relations are elementarily definable.\\[0.5em]
-        If there exist elementarily definable supersets of
-        {\color<2>{darkgreen}$A \times A$},
-        {\color<2>{darkred}$A \times \barA$}, and
-        {\color<2>{darkblue}$\barA \times \barA$} whose
-        intersection is empty,\\
-        then $A$ is elementarily definable in~$\mathcal S$. 
-      \end{theorem}  
-      \begin{alertblock}{Note}<3>
-        The theorem is no longer true\\
-        if we add $\barA \times A$ to the list. 
-      \end{alertblock}%
-    \end{column}
-  \end{columns}
-}
-
-
-\section*{Summary}
-
-\frame
-{
-  \frametitle{Summary}
-
-  \begin{block}{Summary}
-  \begin{itemize}
-  \item
-    The weak cardinality theorems for first-order logic \alert{unify}\\
-    the weak cardinality theorems of automata and recursion theory.
-  \item
-    The logical approach yields
-    weak cardinality theorems for\\ \alert{other computational models}.
-  \item
-    Cardinality theorems are \alert{separability theorems} in disguise.
-  \end{itemize}
-  \end{block}{}
-
-  \begin{block}{Open Problems}
-    \begin{itemize}
-    \item
-      Does a cardinality theorem for first-order logic hold?
-    \item
-      What about non-well-orderable structures like $(\mathbb R, +,
-      \cdot)$? 
-    \end{itemize}
-  \end{block}
-}
-
-\end{document}
-
-

Copied: tetex-doc-nonfree/trunk/doc/latex/beamer/examples/beamerexample5.tex (from rev 1735, tetex-base/trunk/doc/latex/beamer/examples/beamerexample5.tex)
===================================================================
--- tetex-doc-nonfree/trunk/doc/latex/beamer/examples/beamerexample5.tex	                        (rev 0)
+++ tetex-doc-nonfree/trunk/doc/latex/beamer/examples/beamerexample5.tex	2006-10-09 15:18:27 UTC (rev 1736)
@@ -0,0 +1,1021 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample5.tex,v 1.22 2004/10/08 14:02:33 tantau Exp $
+
+\documentclass[11pt]{beamer}
+
+\usetheme{Darmstadt}
+
+\usepackage{times}
+\usefonttheme{structurebold}
+
+\usepackage[english]{babel}
+\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps}
+\usepackage{amsmath,amssymb}
+\usepackage[latin1]{inputenc}
+
+\setbeamercovered{dynamic}
+
+\newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}}
+
+\newcommand{\Class}[1]{\operatorname{\mathchoice
+  {\text{\sf \small #1}}
+  {\text{\sf \small #1}}
+  {\text{\sf #1}}
+  {\text{\sf #1}}}}
+
+\newcommand{\NumSAT}      {\text{\small\#SAT}}
+\newcommand{\NumA}        {\#_{\!A}}
+
+\newcommand{\barA}        {\,\bar{\!A}}
+
+\newcommand{\Nat}{\mathbb{N}}
+\newcommand{\Set}[1]{\{#1\}}
+
+\pgfdeclaremask{tu}{beamer-tu-logo-mask}
+\pgfdeclaremask{computer}{beamer-computer-mask}
+\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerimage}{beamer-computer}
+\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerworkingimage}{beamer-computerred}
+\pgfdeclareimage[mask=tu,height=.5cm]{logo}{beamer-tu-logo}
+
+\logo{\pgfuseimage{logo}}
+
+\title{Weak Cardinality Theorems for First-Order Logic}
+\author{Till Tantau}
+\institute[Technische Universit\"at Berlin]{%
+  Fakultät für Elektrotechnik und Informatik\\
+  Technische Universit\"at Berlin}
+\date{Fundamentals of Computation Theory 2003}
+
+\colorlet{redshaded}{red!25!bg}
+\colorlet{shaded}{black!25!bg}
+\colorlet{shadedshaded}{black!10!bg}
+\colorlet{blackshaded}{black!40!bg}
+
+\colorlet{darkred}{red!80!black}
+\colorlet{darkblue}{blue!80!black}
+\colorlet{darkgreen}{green!80!black}
+
+\def\radius{0.96cm}
+\def\innerradius{0.85cm}
+
+\def\softness{0.4}
+\definecolor{softred}{rgb}{1,\softness,\softness}
+\definecolor{softgreen}{rgb}{\softness,1,\softness}
+\definecolor{softblue}{rgb}{\softness,\softness,1}
+
+\definecolor{softrg}{rgb}{1,1,\softness}
+\definecolor{softrb}{rgb}{1,\softness,1}
+\definecolor{softgb}{rgb}{\softness,1,1}
+
+\newcommand{\Bandshaded}[2]{
+  \color{shadedshaded}
+  \pgfmoveto{\pgfxy(-0.5,0)}
+  \pgflineto{\pgfxy(-0.6,0.1)}
+  \pgflineto{\pgfxy(-0.4,0.2)}
+  \pgflineto{\pgfxy(-0.6,0.3)}
+  \pgflineto{\pgfxy(-0.4,0.4)}
+  \pgflineto{\pgfxy(-0.5,0.5)}
+  \pgflineto{\pgfxy(4,0.5)}
+  \pgflineto{\pgfxy(4.1,0.4)}
+  \pgflineto{\pgfxy(3.9,0.3)}
+  \pgflineto{\pgfxy(4.1,0.2)}
+  \pgflineto{\pgfxy(3.9,0.1)}
+  \pgflineto{\pgfxy(4,0)}
+  \pgfclosepath
+  \pgffill
+
+  \color{black}  
+  \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}}
+  \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}}
+}
+
+\newcommand{\Band}[2]{
+  \color{shaded}
+  \pgfmoveto{\pgfxy(-0.5,0)}
+  \pgflineto{\pgfxy(-0.6,0.1)}
+  \pgflineto{\pgfxy(-0.4,0.2)}
+  \pgflineto{\pgfxy(-0.6,0.3)}
+  \pgflineto{\pgfxy(-0.4,0.4)}
+  \pgflineto{\pgfxy(-0.5,0.5)}
+  \pgflineto{\pgfxy(4,0.5)}
+  \pgflineto{\pgfxy(4.1,0.4)}
+  \pgflineto{\pgfxy(3.9,0.3)}
+  \pgflineto{\pgfxy(4.1,0.2)}
+  \pgflineto{\pgfxy(3.9,0.1)}
+  \pgflineto{\pgfxy(4,0)}
+  \pgfclosepath
+  \pgffill
+
+  \color{black}  
+  \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}}
+  \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}}
+}
+
+\newcommand{\BaenderNormal}
+{%
+  \pgfsetlinewidth{0.4pt}
+  \color{black}
+  \pgfputat{\pgfxy(0,5)}{\Band{input tapes}{}}
+  \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}}
+  \pgfputat{\pgfxy(0,4)}{\Band{}{}}
+
+  \pgfxyline(0,5)(0,5.5)
+  \pgfxyline(1.2,5)(1.2,5.5)
+  \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}}
+
+  \pgfxyline(0,4)(0,4.5)
+  \pgfxyline(1.8,4)(1.8,4.5)        
+  \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}}
+  \ignorespaces}
+
+\newcommand{\BaenderZweiNormal}
+{%
+  \pgfsetlinewidth{0.4pt}
+  \color{black}
+  \pgfputat{\pgfxy(0,5)}{\Band{Zwei Eingabebänder}{}}
+  \pgfputat{\pgfxy(0,4.25)}{\Band{}{}}
+
+  \pgfxyline(0,5)(0,5.5)
+  \pgfxyline(1.2,5)(1.2,5.5)
+  \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}}
+
+  \pgfxyline(0,4.25)(0,4.75)
+  \pgfxyline(1.8,4.25)(1.8,4.75)        
+  \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}}
+  \ignorespaces}
+
+\newcommand{\BaenderHell}
+{%
+  \pgfsetlinewidth{0.4pt}
+  \color{black}
+  \pgfputat{\pgfxy(0,5)}{\Bandshaded{input tapes}{}}
+  \color{shaded}
+  \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}}
+  \pgfputat{\pgfxy(0,4)}{\Bandshaded{}{}}
+
+  \color{blackshaded}
+  \pgfxyline(0,5)(0,5.5)
+  \pgfxyline(1.2,5)(1.2,5.5)
+  \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}}
+
+  \pgfxyline(0,4)(0,4.5)
+  \pgfxyline(1.8,4)(1.8,4.5)        
+  \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}}
+  \ignorespaces}
+
+\newcommand{\BaenderZweiHell}
+{%
+  \pgfsetlinewidth{0.4pt}
+  \color{black}
+  \pgfputat{\pgfxy(0,5)}{\Bandshaded{Zwei Eingabebänder}{}}%
+  \color{blackshaded}
+  \pgfputat{\pgfxy(0,4.25)}{\Bandshaded{}{}}
+  \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}}
+  \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}}%
+
+  \pgfxyline(0,5)(0,5.5)
+  \pgfxyline(1.2,5)(1.2,5.5)
+
+  \pgfxyline(0,4.25)(0,4.75)
+  \pgfxyline(1.8,4.25)(1.8,4.75)        
+  \ignorespaces}
+
+\newcommand{\Slot}[1]{%
+  \begin{pgftranslate}{\pgfpoint{#1}{0pt}}%
+    \pgfsetlinewidth{0.6pt}%
+    \color{structure}%
+    \pgfmoveto{\pgfxy(-0.1,5.5)}%
+    \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}%
+    \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}%
+    \pgflineto{\pgfxy(0.1,4.0)}%
+    \pgfbezier{\pgfxy(0.1,3.95)}{\pgfxy(0.05,3.9)}{\pgfxy(0,3.9)}%
+    \pgfbezier{\pgfxy(-0.05,3.9)}{\pgfxy(-0.1,3.95)}{\pgfxy(-0.1,4.0)}%
+    \pgfclosepath%
+    \pgfstroke%
+  \end{pgftranslate}\ignorespaces}
+
+\newcommand{\SlotZwei}[1]{%
+  \begin{pgftranslate}{\pgfpoint{#1}{0pt}}%
+    \pgfsetlinewidth{0.6pt}%
+    \color{structure}%
+    \pgfmoveto{\pgfxy(-0.1,5.5)}%
+    \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}%
+    \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}%
+    \pgflineto{\pgfxy(0.1,4.25)}%
+    \pgfbezier{\pgfxy(0.1,4.25)}{\pgfxy(0.05,4.15)}{\pgfxy(0,4.15)}%
+    \pgfbezier{\pgfxy(-0.05,4.15)}{\pgfxy(-0.1,4.2)}{\pgfxy(-0.1,4.25)}%
+    \pgfclosepath%
+    \pgfstroke%
+  \end{pgftranslate}\ignorespaces}
+
+\newcommand{\ClipSlot}[1]{%
+  \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4cm}}}{\pgfxy(0.2,1.5)}\ignorespaces}
+
+\newcommand{\ClipSlotZwei}[1]{%
+  \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4.25cm}}}{\pgfxy(0.2,1.25)}\ignorespaces}
+
+
+\AtBeginSection[]{\frame{\frametitle{Outline}\tableofcontents[current]}}
+
+\begin{document}
+
+\frame{\titlepage}
+
+%\section*{Outline}
+\part{Main Part}
+\frame{\frametitle{Outline}\tableofcontents[part=1]}
+
+\section{History}
+
+\subsection{Enumerability in Recursion and Automata Theory}
+
+\frame
+{
+  \frametitle{Motivation of Enumerability}
+
+  \begin{block}{Problem}
+    Many functions are not computable or not efficiently computable.
+  \end{block}
+  \vskip-1em
+  \begin{overprint}
+  \onslide<1-2>
+  \begin{example}
+    \begin{overprint}
+    \onslide<1>
+      \vskip0.5em
+      \begin{itemize}
+      \item
+        $\NumSAT$:\\
+        How many satisfying assignments does a formula have?
+      \end{itemize}
+
+    \onslide<2>
+      \vskip0.5em
+        For difficult languages~$A$:
+        \begin{itemize}
+        \item
+          Cardinality function $\NumA^n$:\\
+          \alert{How many} input words are in~$A$?
+        \item
+          Characteristic function $\chi_A^n$:\\
+          \alert{Which} input words are in~$A$?
+        \end{itemize}
+      \begin{pgfpicture}{-9cm}{0.75cm}{-9cm}{2cm}
+        
+        \pgfnodebox{words}[virtual]{\pgfxy(0,3.5)}{$(w_1, \alert{w_2},
+          w_3, w_4, \alert{w_5})$}{2pt}{5pt}
+
+        \color{red}
+        \pgfputat{\pgfxy(0.75,4.5)}{\pgfbox[center,base]{in $A$}}
+        \pgfxyline(0.75,4.4)(-0.6,3.7)
+        \pgfxyline(0.75,4.4)(1.2,3.7)
+        \color{black}
+
+        \pgfnodebox{number}[virtual]{\pgfxy(-1,1)}{2}{2pt}{2pt}
+        \pgfnodebox{string}[virtual]{\pgfxy(1,1)}{0\alert{1}00\alert{1}}{2pt}{2pt}
+
+        \pgfsetstartarrow{\pgfarrowbar}
+        \pgfsetendarrow{\pgfarrowto}
+
+        \pgfnodeconnline{words}{string}%{-60}{120}{1cm}{1cm}
+        \pgfnodeconnline{words}{number}%{-120}{60}{1cm}{1cm}
+
+        \pgfputat{\pgfxy(-0.9,2.3)}{\pgfbox[center,base]{$\NumA^5$}}
+        \pgfputat{\pgfxy(0.9,2.3)}{\pgfbox[center,base]{$\chi_A^5$}}
+      \end{pgfpicture}
+    \end{overprint}
+  \end{example}
+
+  \onslide<3>
+    \begin{block}{Solutions}
+      Difficult functions can be 
+      \begin{itemize}
+      \item
+        computed using probabilistic algorithms,
+      \item
+        computed efficiently on average,
+      \item
+        approximated, or
+      \item<alert at 1->
+        enumerated.
+      \end{itemize}
+    \end{block}
+  \end{overprint}
+}
+
+\frame
+{
+  \frametitle{Enumerators Output Sets of Possible Function Values}
+  \begin{columns}
+    \begin{column}{4.5cm}
+      \begin{pgfpicture}{-0.5cm}{0cm}{4cm}{6cm}
+
+        \pgfputat{\pgfxy(0,0.5)}{\Band{}{output tape}}
+
+        \BaenderHell
+
+        \color{black}
+
+        \only<1-4,6->{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerimage}}}}
+        \only<5>{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerworkingimage}}}}
+
+        \begin{pgfscope}
+          \only<1>{\ClipSlot{0cm}}
+          \only<2>{\ClipSlot{0.6cm}}
+          \only<3>{\ClipSlot{1.2cm}}
+          \only<4->{\ClipSlot{1.8cm}}
+          \BaenderNormal
+        \end{pgfscope}        
+
+        \only<1>{\Slot{0cm}}
+        \only<2>{\Slot{0.6cm}}
+        \only<3>{\Slot{1.2cm}}
+        \only<4->{\Slot{1.8cm}}
+        
+        \only<6->{
+          \pgfxyline(0,0.5)(0,1)
+          \pgfxyline(1,0.5)(1,1)
+          \pgfputat{\pgfxy(0.5,0.75)}{\pgfbox[center,center]{$u_1$}}}
+        \only<7->{
+          \pgfxyline(2,0.5)(2,1)
+          \pgfputat{\pgfxy(1.5,0.75)}{\pgfbox[center,center]{\alert<9>{$u_2$}}}}
+        \only<8->{
+          \pgfxyline(3,0.5)(3,1)
+          \pgfputat{\pgfxy(2.5,0.75)}{\pgfbox[center,center]{$u_3$}}}
+        
+        \pgfsetlinewidth{0.6pt}
+        \color{structure}
+        \pgfsetendarrow{\pgfarrowto}
+        
+        \pgfsetlinewidth{0.6pt}
+        \color{structure}
+        \pgfsetendarrow{\pgfarrowto}
+        \only<-5>{\pgfxycurve(1.75,1.5)(1.75,1)(0,1.5)(0,1.05)}
+        \only<6>{\pgfxycurve(1.75,1.5)(1.75,1)(1,1.5)(1,1.05)}
+        \only<7>{\pgfxycurve(1.75,1.5)(1.75,1)(2,1.5)(2,1.05)}
+        \only<8->{\pgfxycurve(1.75,1.5)(1.75,1)(3,1.5)(3,1.05)}
+        
+        \only<1>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0,3.5)(0,3.85)}
+        \only<2>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0.6,3.5)(0.6,3.85)}
+        \only<3>{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.2,3.5)(1.2,3.85)}
+        \only<4->{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.8,3.5)(1.8,3.85)}
+      \end{pgfpicture}
+    \end{column}
+    \begin{column}{6.5cm}
+      \begin{definition}[1987, 1989, 1994, 2001]
+        An \alert{$m$-enumerator} for a function~$f$
+        \begin{enumerate}
+        \item<alert at 1-4>
+          reads $n$ input words $w_1$, \dots, $w_n$,
+        \item<alert at 5>
+          does a computation,
+        \item<alert at 6-8>
+          outputs at most $m$ values,
+        \item<alert at 9>
+          one of which is $f(w_1,\dots,w_n)$.
+        \end{enumerate}
+      \end{definition}
+    \end{column}
+  \end{columns}
+}
+
+\subsection{Known Weak Cardinality Theorem}
+
+\frame
+{
+  \frametitle{How Well Can the Cardinality Function Be Enumerated?}
+
+  \begin{block}{Observation}
+    For fixed~$n$, the cardinality function $\NumA^n$
+    \begin{itemize}
+    \item
+      can be \alert{$1$}-enumerated by Turing machines only for \alert{recursive}~$A$,~but\hskip-0.5cm\hbox{}
+    \item
+      can be \alert{$(n+1)$}-enumerated for \alert{every} language~$A$.
+    \end{itemize}
+  \end{block}
+
+  \begin{alertblock}{Question}<2->
+    What about $2$-, $3$-, $4$-, \dots, $n$-enumerability?
+  \end{alertblock}
+}
+
+\newtheorem{card}{Cardinality Theorem}[theorem]
+\newtheorem{weakcard}{Weak Cardinality Theorems}[theorem]
+
+\frame
+{
+  \frametitle{How Well Can the Cardinality Function\\ Be Enumerated
+    by Turing Machines?}
+
+  \begin{card}[Kummer, 1992]
+    If $\NumA^n$ is $n$-enumerable by a Turing machine, then $A$ is
+    recursive.
+  \end{card}
+
+  \begin{weakcard}[\uncover<2->{\alert<1-2>{1987},} \uncover<3->{\alert<3>{1989},}
+      \uncover<4->{\alert<4>{1992}}]<2-> 
+    \begin{enumerate}
+    \item<2-| alert at 2>
+      If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$ is
+        recursive.
+    \item<3-| alert at 3>
+      If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$ is
+        recursive.
+    \item<4-| alert at 4>
+      If $\NumA^n$ is $n$-enumerable by a Turing machine that never
+        enumerates both $0$ and~$n$, then $A$ is recursive.
+    \end{enumerate}
+  \end{weakcard}
+}
+
+
+\frame
+{
+  \frametitle{How Well Can the Cardinality Function\\ Be Enumerated
+    by Finite Automata?}
+
+  \begin{alertblock}{Conjecture}
+    If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is
+    \alert{regular}.
+  \end{alertblock}
+
+  \begin{weakcard}[2001, 2002]
+    \begin{enumerate}
+    \item
+      If $\chi_A^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is
+      \alert{regular}.
+    \item
+      If $\NumA^2$ is $2$-enumerable by a \alert{finite automaton}, then $A$ is
+      \alert{regular}.
+    \item
+      If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton} that never
+      enumerates both $0$ and~$n$, then $A$ is \alert{regular}.
+    \end{enumerate}
+  \end{weakcard}
+}
+
+
+\subsection{Why Do Cardinality Theorems Hold Only for Certain Models?}
+
+\frame
+{
+  \frametitle{Cardinality Theorems Do Not Hold for All Models}
+
+  \begin{pgfpicture}{-2.5cm}{0.3cm}{0.5cm}{6.5cm}
+    \pgfsetlinewidth{0.6pt}
+    
+    \pgfsetendarrow{\pgfarrowto}
+    \pgfxyline(0,0.5)(0,6.5)
+    \pgfclearendarrow
+
+    \pgfputat{\pgfxy(-0.2,5.75)}{\pgfbox[right,base]{Turing machines}}
+
+    \only<2>{
+    \pgfputat{\pgfxy(-0.2,3.75)}{\pgfbox[right,base]{\alert{resource-bounded}}}
+    \pgfputat{\pgfxy(-0.2,3.25)}{\pgfbox[right,base]{\alert{machines}}}
+    \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt}
+    \pgfputat{\pgfxy(0.4,3.5)}{\pgfbox[left,base]{Weak cardinality
+        theorems do \alert{not} hold.}}}
+    
+    \pgfputat{\pgfxy(-0.2,1.5)}{\pgfbox[right,base]{finite}}
+    \pgfputat{\pgfxy(-0.2,1)}{\pgfbox[right,base]{automata}}
+
+    \pgfcircle[fill]{\pgfxy(0,5.85)}{2pt}
+    \pgfcircle[fill]{\pgfxy(0,1.35)}{2pt}
+
+    \pgfputat{\pgfxy(0.4,5.75)}{\pgfbox[left,base]{Weak cardinality
+        theorems hold.}}
+    \pgfputat{\pgfxy(0.4,1.25)}{\pgfbox[left,base]{Weak cardinality
+        theorems hold.}}
+  \end{pgfpicture}
+}
+
+\frame
+{
+  \frametitle{Why?}
+
+  \begin{block}{First Explanation}<1>
+    The weak cardinality theorems hold both for recursion and automata
+    theory \alert{by coincidence}.
+  \end{block}
+
+  \begin{block}{Second Explanation}<1-2>
+    The weak cardinality theorems hold both for
+    recursion and automata theory, \alert{because they are
+      instantiations of\\ single, unifying theorems}.
+  \end{block}
+  
+  \vskip1em
+  \visible<2->{
+    The second explanation is correct.\\
+    The theorems can (almost) be unified using first-order logic.
+    }
+}
+   
+    
+
+\section[Unification by Logic]{Unification by First-Order Logic}
+
+\subsection{Elementary Definitions}
+
+\frame
+{
+  \frametitle{What Are Elementary Definitions?}
+
+  \begin{definition}
+    A relation~$R$ is \alert{elementarily definable in a
+    logical structure~$\mathcal S$} if
+    \begin{enumerate}
+    \item
+      there exists a first-order formula~$\phi$,
+    \item
+      that is true exactly for the elements of~$R$.
+    \end{enumerate}    
+  \end{definition}
+
+  \begin{example}
+    The set of even numbers is elementarily definable in $(\Nat, +)$
+    via the formula $\phi(x) \equiv \exists z \centerdot z+z=x$.
+  \end{example}
+
+  \begin{example}
+    The set of powers of 2 is not elementarily definable in $(\Nat, +)$.
+  \end{example}
+}
+
+
+\frame
+{
+  \frametitle{Characterisation of Classes by Elementary Definitions}
+
+  \begin{theorem}[B\"uchi, 1960]
+    There exists a logical structure~$(\Nat, +, \mathrm e_2)$
+    such that a set $A \subseteq \Nat$ is\\ \alert{regular} iff it is 
+    \alert{elementarily definable in~$(\Nat, +, \mathrm e_2)$}.
+  \end{theorem}
+
+  \begin{theorem}
+    There exists a logical structure~$\mathcal R$ such that a set $A
+    \subseteq \Nat$ is \alert{recursively enumerable} iff it is \alert{positively
+    elementarily definable in~$\mathcal R$}.\hskip-0.5cm\hbox{}
+  \end{theorem}
+}
+
+
+
+\frame
+{
+  \frametitle{Characterisation of Classes by Elementary Definitions} 
+
+  \begin{pgfpicture}{-5.4cm}{0.3cm}{5.4cm}{6.5cm}
+    \pgfsetlinewidth{0.6pt}
+    
+    \pgfsetendarrow{\pgfarrowto}
+    \pgfxyline(0,0.3)(0,6.5)
+    \pgfclearendarrow
+
+    \only<2->{
+    \pgfputat{\pgfxy(-0.3,0.5)}{\pgfbox[right,base]{Presburger arithmetic}}
+    \pgfcircle[fill]{\pgfxy(0,0.6)}{2pt}
+    \pgfputat{\pgfxy(0.3,0.5)}{\pgfbox[left,base]{$(\Nat, +)$}}
+    }
+    \pgfputat{\pgfxy(-0.3,1.5)}{\pgfbox[right,base]{regular sets}}
+    \pgfcircle[fill]{\pgfxy(0,1.6)}{2pt}
+    \pgfputat{\pgfxy(0.3,1.5)}{\pgfbox[left,base]{$(\Nat, +, \mathrm e_2)$}}
+
+    \pgfputat{\pgfxy(-0.3,2.5)}{\pgfbox[right,base]{\alert{resource-bounded classes}}}
+    \pgfcircle[fill]{\pgfxy(0,2.6)}{2pt}
+    \pgfputat{\pgfxy(0.3,2.5)}{\pgfbox[left,base]{\alert{none}}}
+
+    \pgfputat{\pgfxy(-0.3,3.5)}{\pgfbox[right,base]{recursively enumerable sets}}
+    \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt}
+    \pgfputat{\pgfxy(0.3,3.5)}{\pgfbox[left,base]{positively in $\mathcal R$}}
+
+    \only<2->{
+    \pgfputat{\pgfxy(-0.3,4.5)}{\pgfbox[right,base]{arithmetic hierarchy}}
+    \pgfcircle[fill]{\pgfxy(0,4.6)}{2pt}
+    \pgfputat{\pgfxy(0.3,4.5)}{\pgfbox[left,base]{$(\Nat, +, \cdot)$}}
+
+    \pgfputat{\pgfxy(-0.3,5.5)}{\pgfbox[right,base]{ordinal number arithmetic}}
+    \pgfcircle[fill]{\pgfxy(0,5.6)}{2pt}
+    \pgfputat{\pgfxy(0.3,5.5)}{\pgfbox[left,base]{$(\mathrm{On}, +, \cdot)$}}}
+  \end{pgfpicture}
+}
+
+
+\subsection{Enumerability for First-Order Logic}
+
+\frame
+{
+  \frametitle{Elementary Enumerability is a Generalisation of\\ Elementary Definability}
+
+  \begin{columns}
+    \begin{column}{3.25cm}
+      \begin{pgfpicture}{-0.25cm}{0cm}{3cm}{4cm}
+
+        \color{shaded}
+        \pgfmoveto{\pgfxy(0,1.3)}
+        \pgfcurveto{\pgfxy(0.5,2.3)}{\pgfxy(2,1.5)}{\pgfxy(2.5,2.3)}
+        \pgflineto{\pgfxy(2.5,1.7)}
+        \pgfcurveto{\pgfxy(2,0.7)}{\pgfxy(1,1.7)}{\pgfxy(0,0.5)}
+        \pgfclosepath
+        \pgffill
+
+        \pgfsetlinewidth{0.8pt}
+        \color{black}
+        \pgfmoveto{\pgfxy(0,1)}
+        \pgflineto{\pgfxy(0.25,1.15)}
+        \pgflineto{\pgfxy(0.5,1.5)}
+        \pgflineto{\pgfxy(1,1.7)}
+        \pgflineto{\pgfxy(1.5,1.5)}
+        \pgflineto{\pgfxy(2,1.4)}
+        \pgflineto{\pgfxy(2.25,1.5)}
+        \pgflineto{\pgfxy(2.5,2)}
+        \pgfstroke          
+
+        \pgfsetlinewidth{0.4pt}
+        \pgfsetendarrow{\pgfarrowto}
+        \pgfxyline(0,0)(2.5,0)
+        \pgfxyline(0,0)(0,3)
+        \pgfputat{\pgfxy(0.5,1.9)}{\pgfbox[center,base]{$R$}}
+        \pgfputat{\pgfxy(2.6,0)}{\pgfbox[left,center]{$x$}}
+        \pgfputat{\pgfxy(0,3.2)}{\pgfbox[center,base]{$f(x)$}}
+        \pgfputat{\pgfxy(2.55,2)}{\pgfbox[left,center]{$f$}}
+      \end{pgfpicture}
+    \end{column}
+    \begin{column}{7.5cm}
+      \begin{definition}
+        A function~$f$ is\\
+        \alert{elementarily $m$-enumerable in a structure~$\mathcal S$} if
+        \begin{enumerate}
+        \item
+          its graph is contained in an\\
+          \alert{elementarily definable} relation~$R$,
+        \item
+          which is \alert{$m$-bounded}, i.\kern1pt e., for each~$x$
+          there are at most~$m$ different~$y$ with $(x,y) \in R$.
+        \end{enumerate}
+      \end{definition}
+    \end{column}
+  \end{columns}
+}
+
+\frame
+{
+  \frametitle{The Original Notions of Enumerability are Instantiations}
+
+  \begin{theorem}
+    A function is $m$-enumerable by a \alert{finite automaton} iff\\
+    it is elementarily $m$-enumerable in \alert{$(\Nat, +, \mathrm e_2)$}.
+  \end{theorem} 
+
+  \begin{theorem}
+    A function is $m$-enumerable by a \alert{Turing machine} iff\\
+    it is positively elementarily $m$-enumerable in \alert{$\mathcal R$}.
+  \end{theorem} 
+}
+
+%\subsection{Cross Product Theorem for First-Order Logic}
+
+\subsection{Weak Cardinality Theorems for First-Order Logic}
+
+\frame
+{
+  \frametitle{The First Weak Cardinality Theorem}
+  
+  \begin{theorem}
+    Let $\mathcal S$ be a logical structure with universe~$U$ and let
+    $A \subseteq U$. If
+    
+    \begin{enumerate}
+    \item
+      $\mathcal S$ is well-orderable and
+    \item
+      \alert{$\chi_A^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$,
+    \end{enumerate}
+    
+    then \alert{$A$ is elementarily definable} in~$\mathcal S$.    
+  \end{theorem}
+  \begin{overprint}
+    \onslide<2>
+      \begin{corollary}
+        If $\chi_A^n$ is $n$-enumerable by a finite automaton, then
+        $A$ is regular.
+      \end{corollary}
+
+    \onslide<3>
+      \begin{corollary}[with more effort]
+        If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$
+        is recursive.
+      \end{corollary}
+  \end{overprint}  
+}
+
+\frame
+{
+  \frametitle{The Second Weak Cardinality Theorem}
+  
+  \begin{theorem}
+    Let $\mathcal S$ be a logical structure with universe~$U$ and let
+    $A \subseteq U$. If
+    
+    \begin{enumerate}
+    \item
+      $\mathcal S$ is well-orderable,
+    \item
+      every finite relation on~$U$ is elementarily definable
+      in~$\mathcal S$, and
+    \item
+      \alert{$\NumA^2$} is elementarily \alert{$2$}-enumerable in~$\mathcal S$,
+    \end{enumerate}
+    
+    then \alert{$A$ is elementarily definable} in~$\mathcal S$.    
+  \end{theorem}
+%  \begin{overlayarea}{\textwidth}{2cm}
+%    \only<2>{
+%      \begin{corollary}
+%        If $\NumA^2$ is $2$-enumerable by a finite automaton, then
+%        $A$ is regular.
+%      \end{corollary}}%
+%    \only<3>{
+%      \begin{block}{Corollary}
+%        If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$
+%        is recursive in the halting problem.
+%      \end{block}
+%      }
+%  \end{overlayarea}
+}
+
+\frame
+{
+  \frametitle{The Third Weak Cardinality Theorem}
+  
+  \begin{theorem}
+    Let $\mathcal S$ be a logical structure with universe~$U$ and let
+    $A \subseteq U$. If
+    
+    \begin{enumerate}
+    \item
+      $\mathcal S$ is well-orderable,
+    \item
+      every finite relation on~$U$ is elementarily definable
+      in~$\mathcal S$, and
+    \item
+      \alert{$\NumA^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$ via a
+      relation that \alert{never `enumerates' both $0$ and~$n$},
+    \end{enumerate}
+    
+    then \alert{$A$ is elementarily definable} in~$\mathcal S$.    
+  \end{theorem}
+%  \begin{overlayarea}{\textwidth}{2cm}
+%    \only<2>{
+%      \begin{corollary}
+%        If $\NumA^n$ is $n$-enumerable by a finite automaton that
+%        never enumerates both $0$ and~$n$, then $A$ is regular.
+%      \end{corollary}}%
+%    \only<3>{
+%      \begin{block}{Corollary}
+%        If $\NumA^n$ is $n$-enumerable by a Turing machine that never
+%        enumerates both $0$ and~$n$, then $A$ is recursive in the
+%        halting problem.
+%      \end{block}
+%      }
+%  \end{overlayarea}
+}
+
+
+
+\frame
+{
+  \frametitle{Relationships Between Cardinality Theorems (CT)}
+
+  \begin{pgfpicture}{0cm}{0cm}{10cm}{5cm}
+    \only<2>{%
+    \color{alert}
+    \pgfnodebox{autX}[virtual]{\pgfxy(2.2,4)}{CT}{2pt}{2pt}
+    \color{black}}%
+    \pgfnodebox{autA}[virtual]{\pgfxy(1,3)}{1st Weak CT}{2pt}{2pt}
+    \pgfnodebox{autB}[virtual]{\pgfxy(1,2)}{2nd Weak CT}{2pt}{2pt}
+    \pgfnodebox{autC}[virtual]{\pgfxy(1,1)}{3rd Weak CT}{2pt}{2pt}
+
+    \only<2>{%
+    \color{alert}
+    \pgfnodebox{logX}[virtual]{\pgfxy(6.2,4.5)}{CT}{2pt}{2pt}%
+    \color{black}}%
+    \pgfnodebox{logA}[virtual]{\pgfxy(5,3.5)}{1st Weak CT}{2pt}{2pt}
+    \pgfnodebox{logB}[virtual]{\pgfxy(5,2.5)}{2nd Weak CT}{2pt}{2pt}
+    \pgfnodebox{logC}[virtual]{\pgfxy(5,1.5)}{3rd Weak CT}{2pt}{2pt}
+
+    \pgfnodebox{recX}[virtual]{\pgfxy(10.2,4)}{CT}{2pt}{2pt}
+    \pgfnodebox{recA}[virtual]{\pgfxy(9,3)}{1st Weak CT}{2pt}{2pt}
+    \pgfnodebox{recB}[virtual]{\pgfxy(9,2)}{2nd Weak CT}{2pt}{2pt}
+    \pgfnodebox{recC}[virtual]{\pgfxy(9,1)}{3rd Weak CT}{2pt}{2pt}
+
+    \pgfputat{\pgfxy(1,4.5)}{\pgfbox[center,base]{\structure{automata theory}}}
+    \pgfputat{\pgfxy(5,5)}{\pgfbox[center,base]{\structure{first-order logic}}}
+    \pgfputat{\pgfxy(9,4.5)}{\pgfbox[center,base]{\structure{recursion
+          theory}}}
+
+    {%
+    \color{structure}%
+    \pgfxyline(3,0)(3,5)
+    \pgfxyline(7,0)(7,5)
+    }%
+    \pgfsetendarrow{\pgfarrowto}
+    \pgfnodeconnline{logA}{autA}
+    \pgfnodeconnline{logA}{recA}
+    \pgfnodeconnline{logB}{autB}
+    \pgfnodeconnline{logC}{autC}
+
+    \pgfnodeconncurve{recX}{recA}{-60}{5}{10pt}{10pt}
+    \pgfnodeconncurve{recX}{recB}{-55}{5}{10pt}{20pt}
+    \pgfnodeconncurve{recX}{recC}{-50}{5}{10pt}{30pt}
+
+    \only<2>{%
+      \alert{
+        \pgfnodeconnline{logX}{autX}
+        \pgfnodeconncurve{logX}{logA}{-60}{0}{10pt}{10pt}
+        \pgfnodeconncurve{logX}{logB}{-55}{0}{10pt}{20pt}
+        \pgfnodeconncurve{logX}{logC}{-50}{0}{10pt}{30pt}
+        \pgfnodeconncurve{autX}{autA}{-60}{11}{10pt}{10pt}
+        \pgfnodeconncurve{autX}{autB}{-55}{11}{10pt}{20pt}
+        \pgfnodeconncurve{autX}{autC}{-50}{11}{10pt}{30pt}
+      }
+    }
+
+    \pgfsetdash{{3pt}{3pt}}{0pt}
+    \pgfnodeconnline{logB}{recB}
+    \pgfnodeconnline{logC}{recC}
+
+    \only<2>{%
+    \alert{\pgfnodeconnline{logX}{recX}}}
+  \end{pgfpicture}
+}
+
+
+\section{Applications}
+
+\subsection{A Separability Result for First-Order Logic}
+
+%\frame
+%{
+%  \begin{columns}
+%    \begin{column}{2.4cm}
+%      \begin{pgfpicture}{-1.2cm}{-1.2cm}{1cm}{1cm}
+%        \color{shaded}
+%        \pgfrect[fill]{\pgfxy(-1.4,-1)}{\pgfxy(2.8,2)}
+
+%        \color{white}
+%        \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.5cm}
+%        \pgfcircle[fill]{\pgfxy(0.6,0)}{0.5cm}
+%        \only<2->{%      
+%          \color{softred}
+%          \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.6cm}}%
+%        %
+%        \color{black}
+%        \pgfcircle[stroke]{\pgfxy(-0.6,0)}{0.5cm}
+%        \pgfcircle[stroke]{\pgfxy(0.6,0)}{0.5cm}
+
+%        \pgfputat{\pgfxy(-0.6,0)}{\pgfbox[center,center]{$A^{(n)}$}}
+%        \pgfputat{\pgfxy(0.6,0)}{\pgfbox[center,center]{$\barA{}^{(n)}$}}     
+%      \end{pgfpicture}
+%    \end{column}
+%    \begin{column}{8cm}
+%      \begin{block}{Notation}
+%        Let $A^{(n)}$ contain all $n$ tuples of\\
+%        distinct elements of~$A$.
+%      \end{block}
+      
+%      \begin{block}{Theorem}
+%        Let $\mathcal S$ be a well-orderable logical structure in which
+%        all finite relations are elementarily definable.\\[0.5em]
+%        If $A^{(n)}$ and $\barA{}^{(n)}$ are \alert<2>{elementarily separable}
+%        in~$\mathcal S$, then~so~are~$A$~and~$\barA$.
+%      \end{block}
+
+%      \uncover<3>{
+%        \begin{alertblock}{Note}
+%          The theorem is no longer true if $\barA$ is replaced by an
+%          arbitrary set~$B$.
+%        \end{alertblock}
+%      }
+%    \end{column}
+%  \end{columns}
+%}
+
+
+\frame
+{
+  \begin{columns}
+    \begin{column}{4cm}
+      \begin{pgfpicture}{-2cm}{-1.75cm}{2cm}{2.25cm}
+        \color{shaded}
+        \pgfrect[fill]{\pgfxy(-2,-1.75)}{\pgfxy(4,4)}
+                                %\pgfcircle[fill]{\pgforigin}{2cm}
+
+        \only<1>{%
+          \color{white}%
+          \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\innerradius}
+          \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\innerradius}
+          \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\innerradius}}%
+        \only<2->{%      
+        \color{softred}
+        \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\radius}
+        \color{softgreen}
+        \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius}
+        \color{softblue}
+        \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}}%
+        %
+      \only<2->{%
+        \begin{pgftranslate}{\pgfpolar{90}{1cm}}
+          \pgfzerocircle{\radius}
+          \pgfclip
+          
+          \begin{pgftranslate}{\pgfpolar{-90}{1cm}}
+            \color{softrb}
+            \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}
+            \color{softrg}
+            \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius}
+          \end{pgftranslate}
+        \end{pgftranslate}
+
+        \begin{pgftranslate}{\pgfpolar{210}{1cm}}
+          \pgfzerocircle{\radius}
+          \pgfclip
+          
+          \begin{pgftranslate}{\pgfpolar{30}{1cm}}
+            \color{softgb}
+            \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}
+          \end{pgftranslate}
+        \end{pgftranslate}}%
+        %
+        \color{black}
+        \pgfcircle[stroke]{\pgfpolar{90}{1cm}}{\innerradius}
+        \pgfcircle[stroke]{\pgfpolar{210}{1cm}}{\innerradius}
+        \pgfcircle[stroke]{\pgfpolar{330}{1cm}}{\innerradius}
+
+        \pgfputat{\pgfrelative{\pgfpolar{90}{1cm}}%
+          {\pgfpoint{0pt}{-.5ex}}}%
+        {\pgfbox[center,base]{$A\times \barA$}}
+        \pgfputat{\pgfrelative{\pgfpolar{210}{1cm}}%
+          {\pgfpoint{0pt}{-.5ex}}}%
+        {\pgfbox[center,base]{$A\times A$}}
+        \pgfputat{\pgfrelative{\pgfpolar{330}{1cm}}%
+          {\pgfpoint{0pt}{-.5ex}}}%
+        {\pgfbox[center,base]{$\barA\times \barA$}}
+
+      \end{pgfpicture}
+    \end{column}
+    \begin{column}{6.8cm}
+      \begin{theorem}
+        Let $\mathcal S$ be a well-orderable logical structure in which
+        all finite relations are elementarily definable.\\[0.5em]
+        If there exist elementarily definable supersets of
+        {\color<2>{darkgreen}$A \times A$},
+        {\color<2>{darkred}$A \times \barA$}, and
+        {\color<2>{darkblue}$\barA \times \barA$} whose
+        intersection is empty,\\
+        then $A$ is elementarily definable in~$\mathcal S$. 
+      \end{theorem}  
+      \begin{alertblock}{Note}<3>
+        The theorem is no longer true\\
+        if we add $\barA \times A$ to the list. 
+      \end{alertblock}%
+    \end{column}
+  \end{columns}
+}
+
+
+\section*{Summary}
+
+\frame
+{
+  \frametitle{Summary}
+
+  \begin{block}{Summary}
+  \begin{itemize}
+  \item
+    The weak cardinality theorems for first-order logic \alert{unify}\\
+    the weak cardinality theorems of automata and recursion theory.
+  \item
+    The logical approach yields
+    weak cardinality theorems for\\ \alert{other computational models}.
+  \item
+    Cardinality theorems are \alert{separability theorems} in disguise.
+  \end{itemize}
+  \end{block}{}
+
+  \begin{block}{Open Problems}
+    \begin{itemize}
+    \item
+      Does a cardinality theorem for first-order logic hold?
+    \item
+      What about non-well-orderable structures like $(\mathbb R, +,
+      \cdot)$? 
+    \end{itemize}
+  \end{block}
+}
+
+\end{document}
+
+




More information about the Pkg-tetex-commits mailing list