[mlpack] 07/207: Style fixes.
Barak A. Pearlmutter
barak+git at pearlmutter.net
Thu Mar 23 17:53:35 UTC 2017
This is an automated email from the git hooks/post-receive script.
bap pushed a commit to branch master
in repository mlpack.
commit d9db269ac0f31a5ff2445e5e3befb9468bb69c03
Author: Ryan Curtin <ryan at ratml.org>
Date: Tue Dec 27 11:21:28 2016 -0500
Style fixes.
---
src/mlpack/core/dists/gamma_distribution.cpp | 13 +++++----
src/mlpack/tests/distribution_test.cpp | 41 ++++++++++++++--------------
2 files changed, 28 insertions(+), 26 deletions(-)
diff --git a/src/mlpack/core/dists/gamma_distribution.cpp b/src/mlpack/core/dists/gamma_distribution.cpp
index 0a46fed..900e4cb 100644
--- a/src/mlpack/core/dists/gamma_distribution.cpp
+++ b/src/mlpack/core/dists/gamma_distribution.cpp
@@ -69,7 +69,8 @@ void GammaDistribution::Train(const arma::mat& rdata, const double tol)
}
//Fits an alpha and beta parameter according to observation probabilities.
-void GammaDistribution::Train(const arma::mat& rdata, const arma::vec& probabilities,
+void GammaDistribution::Train(const arma::mat& rdata,
+ const arma::vec& probabilities,
const double tol)
{
// If fittingSet is empty, nothing to do.
@@ -80,16 +81,16 @@ void GammaDistribution::Train(const arma::mat& rdata, const arma::vec& probabili
arma::vec meanxVec(rdata.n_rows, arma::fill::zeros);
arma::vec logMeanxVec(rdata.n_rows, arma::fill::zeros);
- for(size_t i=0; i<rdata.n_cols; i++)
+ for (size_t i = 0; i < rdata.n_cols; i++)
{
meanLogxVec += probabilities(i) * arma::log(rdata.col(i));
meanxVec += probabilities(i) * rdata.col(i);
}
- double tot_probabilty = arma::accu(probabilities);
+ double totProbability = arma::accu(probabilities);
- meanLogxVec /= tot_probabilty;
- meanxVec /= tot_probabilty;
+ meanLogxVec /= totProbability;
+ meanxVec /= totProbability;
logMeanxVec = arma::log(meanxVec);
// Call the statistics-only GammaDistribution::Train() function to fit the
@@ -98,7 +99,7 @@ void GammaDistribution::Train(const arma::mat& rdata, const arma::vec& probabili
}
// Fits an alpha and beta parameter to each dimension of the data.
-void GammaDistribution::Train(const arma::vec& logMeanxVec,
+void GammaDistribution::Train(const arma::vec& logMeanxVec,
const arma::vec& meanLogxVec,
const arma::vec& meanxVec,
const double tol)
diff --git a/src/mlpack/tests/distribution_test.cpp b/src/mlpack/tests/distribution_test.cpp
index 9f01d89..9df3060 100644
--- a/src/mlpack/tests/distribution_test.cpp
+++ b/src/mlpack/tests/distribution_test.cpp
@@ -459,22 +459,22 @@ BOOST_AUTO_TEST_CASE(GammaDistributionTrainWithProbabilitiesTest)
size_t d = 2;
arma::mat rdata(d, N);
- for(size_t j = 0; j < d; j++)
- for(size_t i = 0; i < N; i++)
+ for (size_t j = 0; j < d; j++)
+ for (size_t i = 0; i < N; i++)
rdata(j, i) = dist(generator);
// create a uniform distribution random generator
std::uniform_real_distribution<double> prob(0, 1);
arma::vec probabilities(N);
- for(size_t i = 0; i < N; i++)
+ for (size_t i = 0; i < N; i++)
probabilities(i) = prob(generator);
- // fit results with probabilities and data
+ // Fit results with probabilities and data.
GammaDistribution gDist;
gDist.Train(rdata, probabilities);
- // fit results with only data
+ // Fit results with only data.
GammaDistribution gDist2;
gDist2.Train(rdata);
@@ -491,15 +491,16 @@ BOOST_AUTO_TEST_CASE(GammaDistributionTrainWithProbabilitiesTest)
BOOST_REQUIRE_CLOSE(betaReal, gDist.Beta(1), 1);
}
-
-// This test ensures that the same result is obtained when
-// trained with probabilities all set to 1 and with no probabilities at all.
-BOOST_AUTO_TEST_CASE(GammaDistributionTrainALLProbabilities1Test)
+/**
+ * This test ensures that the same result is obtained when trained with
+ * probabilities all set to 1 and with no probabilities at all.
+ */
+BOOST_AUTO_TEST_CASE(GammaDistributionTrainAllProbabilities1Test)
{
double alphaReal = 5.4;
double betaReal = 6.7;
- // Create a gamma distribution random generator
+ // Create a gamma distribution random generator.
std::default_random_engine generator;
std::gamma_distribution<double> dist(alphaReal, betaReal);
@@ -507,8 +508,8 @@ BOOST_AUTO_TEST_CASE(GammaDistributionTrainALLProbabilities1Test)
size_t d = 2;
arma::mat rdata(d, N);
- for(size_t j = 0; j < d; j++)
- for(size_t i = 0; i < N; i++)
+ for (size_t j = 0; j < d; j++)
+ for (size_t i = 0; i < N; i++)
rdata(j, i) = dist(generator);
// fit results with only data
@@ -541,7 +542,7 @@ BOOST_AUTO_TEST_CASE(GammaDistributionTrainTwoDistProbabilities1Test)
double alphaReal2 = 1.9;
double betaReal2 = 8.4;
- // Create two gamma distribution random generators
+ // Create two gamma distribution random generators.
std::default_random_engine generator;
std::gamma_distribution<double> dist(alphaReal, betaReal);
std::gamma_distribution<double> dist2(alphaReal2, betaReal2);
@@ -554,21 +555,21 @@ BOOST_AUTO_TEST_CASE(GammaDistributionTrainTwoDistProbabilities1Test)
arma::mat rdata(d, N);
arma::vec probabilities(N);
- // draws points alternately from the two different distributions.
- for(size_t j = 0; j < d; j++)
+ // Draw points alternately from the two different distributions.
+ for (size_t j = 0; j < d; j++)
{
- for(size_t i = 0; i < N; i++)
+ for (size_t i = 0; i < N; i++)
{
- if(i % 2 == 0)
+ if (i % 2 == 0)
rdata(j, i) = dist(generator);
else
rdata(j, i) = dist2(generator);
}
}
- for(size_t i = 0; i<N; i++)
+ for (size_t i = 0; i < N; i++)
{
- if(i % 2 == 0)
+ if (i % 2 == 0)
probabilities(i) = lowProb(generator);
else
probabilities(i) = highProb(generator);
@@ -602,7 +603,7 @@ BOOST_AUTO_TEST_CASE(GammaDistributionFittingTest)
/** Iteration 1 (first parameter set) **/
- // Create a gamma-random generator and data
+ // Create a gamma-random generator and data.
double alphaReal = 5.3;
double betaReal = 1.5;
std::default_random_engine generator;
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-science/packages/mlpack.git
More information about the debian-science-commits
mailing list